88教案网

第八章平面向量(高中数学竞赛标准教材)

一般给学生们上课之前,老师就早早地准备好了教案课件,大家静下心来写教案课件了。必须要写好了教案课件计划,未来的工作就会做得更好!你们会写一段优秀的教案课件吗?考虑到您的需要,小编特地编辑了“第八章平面向量(高中数学竞赛标准教材)”,相信能对大家有所帮助。

第八章平面向量

一、基础知识
定义1既有大小又有方向的量,称为向量。画图时用有向线段来表示,线段的长度表示向量的模。向量的符号用两个大写字母上面加箭头,或一个小写字母上面加箭头表示。书中用黑体表示向量,如a.|a|表示向量的模,模为零的向量称为零向量,规定零向量的方向是任意的。零向量和零不同,模为1的向量称为单位向量。
定义2方向相同或相反的向量称为平行向量(或共线向量),规定零向量与任意一个非零向量平行和结合律。
定理1向量的运算,加法满足平行四边形法规,减法满足三角形法则。加法和减法都满足交换律和结合律。
定理2非零向量a,b共线的充要条件是存在实数0,使得a=f
定理3平面向量的基本定理,若平面内的向量a,b不共线,则对同一平面内任意向是c,存在唯一一对实数x,y,使得c=xa+yb,其中a,b称为一组基底。
定义3向量的坐标,在直角坐标系中,取与x轴,y轴方向相同的两个单位向量i,j作为基底,任取一个向量c,由定理3可知存在唯一一组实数x,y,使得c=xi+yi,则(x,y)叫做c坐标。
定义4向量的数量积,若非零向量a,b的夹角为,则a,b的数量积记作ab=|a||b|cos=|a||b|cosa,b,也称内积,其中|b|cos叫做b在a上的投影(注:投影可能为负值)。
定理4平面向量的坐标运算:若a=(x1,y1),b=(x2,y2),
1.a+b=(x1+x2,y1+y2),a-b=(x1-x2,y1-y2),
2.λa=(λx1,λy1),a(b+c)=ab+ac,
3.ab=x1x2+y1y2,cos(a,b)=(a,b0),
4.a//bx1y2=x2y1,abx1x2+y1y2=0.
定义5若点P是直线P1P2上异于p1,p2的一点,则存在唯一实数λ,使,λ叫P分所成的比,若O为平面内任意一点,则。由此可得若P1,P,P2的坐标分别为(x1,y1),(x,y),(x2,y2),则
定义6设F是坐标平面内的一个图形,将F上所有的点按照向量a=(h,k)的方向,平移|a|=个单位得到图形,这一过程叫做平移。设p(x,y)是F上任意一点,平移到上对应的点为,则称为平移公式。
定理5对于任意向量a=(x1,y1),b=(x2,y2),|ab|≤|a||b|,并且|a+b|≤|a|+|b|.
【证明】因为|a|2|b|2-|ab|2=-(x1x2+y1y2)2=(x1y2-x2y1)2≥0,又|ab|≥0,|a||b|≥0,
所以|a||b|≥|ab|.
由向量的三角形法则及直线段最短定理可得|a+b|≤|a|+|b|.
注:本定理的两个结论均可推广。1)对n维向量,a=(x1,x2,…,xn),b=(y1,y2,…,yn),同样有|ab|≤|a||b|,化简即为柯西不等式:(x1y1+x2y2+…+xnyn)2≥0,又|ab|≥0,|a||b|≥0,
所以|a||b|≥|ab|.
由向量的三角形法则及直线段最短定理可得|a+b|≤|a|+|b|.
注:本定理的两个结论均可推广。1)对n维向量,a=(x1,x2,…,xn),b=(y1,y2,…,yn),同样有|ab|≤|a||b|,化简即为柯西不等式:(x1y1+x2y2+…+xnyn)2。
2)对于任意n个向量,a1,a2,…,an,有|a1,a2,…,an|≤|a1|+|a2|+…+|an|。
二、方向与例题
1.向量定义和运算法则的运用。
例1设O是正n边形A1A2…An的中心,求证:
【证明】记,若,则将正n边形绕中心O旋转后与原正n边形重合,所以不变,这不可能,所以
例2给定△ABC,求证:G是△ABC重心的充要条件是
【证明】必要性。如图所示,设各边中点分别为D,E,F,延长AD至P,使DP=GD,则
又因为BC与GP互相平分,
所以BPCG为平行四边形,所以BGPC,所以
所以
充分性。若,延长AG交BC于D,使GP=AG,连结CP,则因为,则,所以GBCP,所以AG平分BC。
同理BG平分CA。
所以G为重心。
例3在凸四边形ABCD中,P和Q分别为对角线BD和AC的中点,求证:AB2+BC2+CD2+DA2=AC2+BD2+4PQ2。
【证明】如图所示,结结BQ,QD。
因为,
所以
=
=①
又因为
同理,②
,③
由①,②,③可得
。得证。
2.证利用定理2证明共线。
例4△ABC外心为O,垂心为H,重心为G。求证:O,G,H为共线,且OG:GH=1:2。
【证明】首先
=
其次设BO交外接圆于另一点E,则连结CE后得CE
又AHBC,所以AH//CE。
又EAAB,CHAB,所以AHCE为平行四边形。
所以
所以,
所以,
所以与共线,所以O,G,H共线。
所以OG:GH=1:2。
3.利用数量积证明垂直。
例5给定非零向量a,b.求证:|a+b|=|a-b|的充要条件是ab.
【证明】|a+b|=|a-b|(a+b)2=(a-b)2a2+2ab+b2=a2-2ab+b2ab=0ab.
例6已知△ABC内接于⊙O,AB=AC,D为AB中点,E为△ACD重心。求证:OECD。
【证明】设,
则,
又,
所以
a(b-c).(因为|a|2=|b|2=|c|2=|OH|2)
又因为AB=AC,OB=OC,所以OA为BC的中垂线。
所以a(b-c)=0.所以OECD。
4.向量的坐标运算。
例7已知四边形ABCD是正方形,BE//AC,AC=CE,EC的延长线交BA的延长线于点F,求证:AF=AE。
【证明】如图所示,以CD所在的直线为x轴,以C为原点建立直角坐标系,设正方形边长为1,则A,B坐标分别为(-1,1)和(0,1),设E点的坐标为(x,y),则=(x,y-1),,因为,所以-x-(y-1)=0.
又因为,所以x2+y2=2.
由①,②解得
所以
设,则。由和共线得
所以,即F,
所以=4+,所以AF=AE。
三、基础训练题
1.以下命题中正确的是__________.①a=b的充要条件是|a|=|b|,且a//b;②(ab)c=(ac)b;③若ab=ac,则b=c;④若a,b不共线,则xa+yb=ma+nb的充要条件是x=m,y=n;⑤若,且a,b共线,则A,B,C,D共线;⑥a=(8,1)在b=(-3,4)上的投影为-4。
2.已知正六边形ABCDEF,在下列表达式中:①;②;③;④与,相等的有__________.
3.已知a=y-x,b=2x-y,|a|=|b|=1,ab=0,则|x|+|y|=__________.
4.设s,t为非零实数,a,b为单位向量,若|sa+tb|=|ta-sb|,则a和b的夹角为__________.
5.已知a,b不共线,=a+kb,=la+b,则“kl-1=0”是“M,N,P共线”的__________条件.
6.在△ABC中,M是AC中点,N是AB的三等分点,且,BM与CN交于D,若,则λ=__________.
7.已知不共线,点C分所成的比为2,,则__________.
8.已知=b,ab=|a-b|=2,当△AOB面积最大时,a与b的夹角为__________.
9.把函数y=2x2-4x+5的图象按向量a平移后得到y=2x2的图象,c=(1,-1),若,cb=4,则b的坐标为__________.
10.将向量a=(2,1)绕原点按逆时针方向旋转得到向量b,则b的坐标为__________.
11.在Rt△BAC中,已知BC=a,若长为2a的线段PQ以点A为中点,试问与的夹角取何值时的值最大?并求出这个最大值。
12.在四边形ABCD中,,如果ab=bc=cd=da,试判断四边形ABCD的形状。

四、高考水平训练题
1.点O是平面上一定点,A,B,C是此平面上不共线的三个点,动点P满足则点P的轨迹一定通过△ABC的________心。
2.在△ABC中,,且ab0,则△ABC的形状是__________.
3.非零向量,若点B关于所在直线对称的点为B1,则=__________.
4.若O为△ABC的内心,且,则△ABC的形状为__________.
5.设O点在△ABC内部,且,则△AOB与△AOC的面积比为__________.
6.P是△ABC所在平面上一点,若,则P是△ABC的__________心.
7.已知,则||的取值范围是__________.
8.已知a=(2,1),b=(λ,1),若a与b的夹角为锐角,则λ的取值范围是__________.
9.在△ABC中,O为中线AM上的一个动点,若AM=2,则的最小值为__________.
10.已知集合M={a|a=(1,2)+λ(3,4),λ∈R},集合N={a|a=(-2,-2)+λ(4,5),λ∈R},mjMN=__________.
11.设G为△ABO的重心,过G的直线与边OA和OB分别交于P和Q,已知,△OAB与△OPQ的面积分别为S和T,
(1)求y=f(x)的解析式及定义域;(2)求的取值范围。
12.已知两点M(-1,0),N(1,0),有一点P使得成公差小于零的等差数列。
(1)试问点P的轨迹是什么?(2)若点P坐标为(x0,y0),为与的夹角,求tan.

五、联赛一试水平训练题
1.在直角坐标系内,O为原点,点A,B坐标分别为(1,0),(0,2),当实数p,q满足时,若点C,D分别在x轴,y轴上,且,则直线CD恒过一个定点,这个定点的坐标为___________.
2.p为△ABC内心,角A,B,C所对边长分别为a,b,c.O为平面内任意一点,则=___________(用a,b,c,x,y,z表示).
3.已知平面上三个向量a,b,c均为单位向量,且两两的夹角均为1200,若|ka+b+c|1(k∈R),则k的取值范围是___________.
4.平面内四点A,B,C,D满足,则的取值有___________个.
5.已知A1A2A3A4A5是半径为r的⊙O内接正五边形,P为⊙O上任意一点,则取值的集合是___________.
6.O为△ABC所在平面内一点,A,B,C为△ABC的角,若sinA+sinB+sinC,则点O为△ABC的___________心.
7.对于非零向量a,b,“|a|=|b|”是“(a+b)(a-b)”的___________条件.
8.在△ABC中,,又(cb):(ba):(ac)=1:2:3,则△ABC三边长之比|a|:|b|:|c|=____________.
9.已知P为△ABC内一点,且,CP交AB于D,求证:
10.已知△ABC的垂心为H,△HBC,△HCA,△HAB的外心分别为O1,O2,O3,令,求证:(1)2p=b+c-a;(2)H为△O1O2O3的外心。
11.设坐标平面上全部向量的集合为V,a=(a1,a2)为V中的一个单位向量,已知从V到的变换T,由T(x)=-x+2(xa)a(x∈V)确定,
(1)对于V的任意两个向量x,y,求证:T(x)T(y)=xy;
(2)对于V的任意向量x,计算T[T(x)]-x;
(3)设u=(1,0);,若,求a.
六、联赛二试水平训练题
1.已知A,B为两条定直线AX,BY上的定点,P和R为射线AX上两点,Q和S为射线BY上的两点,为定比,M,N,T分别为线段AB,PQ,RS上的点,为另一定比,试问M,N,T三点的位置关系如何?证明你的结论。
2.已知AC,CE是正六边形ABCDEF的两条对角线,点M,N分别内分AC,CE,使得AM:AC=CN:CE=r,如果B,M,N三点共线,求r.
3.在矩形ABCD的外接圆的弧AB上取一个不同于顶点A,B的点M,点P,Q,R,S是M分别在直线AD,AB,BC,CD上的射影,求证:直线PQ与RS互相垂直。
4.在△ABC内,设D及E是BC的三等分点,D在B和F之间,F是AC的中点,G是AB的中点,又设H是线段EG和DF的交点,求比值EH:HG。
5.是否存在四个平面向量,两两不共线,其中任何两个向量之和均与其余两个向量之和垂直?
6.已知点O在凸多边形A1A2…An内,考虑所有的AiOAj,这里的i,j为1至n中不同的自然数,求证:其中至少有n-1个不是锐角。
7.如图,在△ABC中,O为外心,三条高AD,BE,CF交于点H,直线ED和AB交于点M,FD和AC交于点N,求证:(1)OBDF,OCDE,(2)OHMN。
8.平面上两个正三角形△A1B1C1和△A2B2C2,字母排列顺序一致,过平面上一点O作,求证△ABC为正三角形。
9.在平面上给出和为的向量a,b,c,d,任何两个不共线,求证:
|a|+|b|+|c|+|d|≥|a+d|+|b+d|+|c+d|.

相关阅读

第三章函数(高中数学竞赛标准教材)


第三章函数

一、基础知识
定义1映射,对于任意两个集合A,B,依对应法则f,若对A中的任意一个元素x,在B中都有唯一一个元素与之对应,则称f:A→B为一个映射。
定义2单射,若f:A→B是一个映射且对任意x,y∈A,xy,都有f(x)f(y)则称之为单射。
定义3满射,若f:A→B是映射且对任意y∈B,都有一个x∈A使得f(x)=y,则称f:A→B是A到B上的满射。
定义4一一映射,若f:A→B既是单射又是满射,则叫做一一映射,只有一一映射存在逆映射,即从B到A由相反的对应法则f-1构成的映射,记作f-1:A→B。
定义5函数,映射f:A→B中,若A,B都是非空数集,则这个映射为函数。A称为它的定义域,若x∈A,y∈B,且f(x)=y(即x对应B中的y),则y叫做x的象,x叫y的原象。集合{f(x)|x∈A}叫函数的值域。通常函数由解析式给出,此时函数定义域就是使解析式有意义的未知数的取值范围,如函数y=3-1的定义域为{x|x≥0,x∈R}.
定义6反函数,若函数f:A→B(通常记作y=f(x))是一一映射,则它的逆映射f-1:A→B叫原函数的反函数,通常写作y=f-1(x).这里求反函数的过程是:在解析式y=f(x)中反解x得x=f-1(y),然后将x,y互换得y=f-1(x),最后指出反函数的定义域即原函数的值域。例如:函数y=的反函数是y=1-(x0).
定理1互为反函数的两个函数的图象关于直线y=x对称。
定理2在定义域上为增(减)函数的函数,其反函数必为增(减)函数。
定义7函数的性质。
(1)单调性:设函数f(x)在区间I上满足对任意的x1,x2∈I并且x1x2,总有f(x1)f(x2)(f(x)f(x2)),则称f(x)在区间I上是增(减)函数,区间I称为单调增(减)区间。
(2)奇偶性:设函数y=f(x)的定义域为D,且D是关于原点对称的数集,若对于任意的x∈D,都有f(-x)=-f(x),则称f(x)是奇函数;若对任意的x∈D,都有f(-x)=f(x),则称f(x)是偶函数。奇函数的图象关于原点对称,偶函数的图象关于y轴对称。
(3)周期性:对于函数f(x),如果存在一个不为零的常数T,使得当x取定义域内每一个数时,f(x+T)=f(x)总成立,则称f(x)为周期函数,T称为这个函数的周期,如果周期中存在最小的正数T0,则这个正数叫做函数f(x)的最小正周期。
定义8如果实数ab,则数集{x|axb,x∈R}叫做开区间,记作(a,b),集合{x|a≤x≤b,x∈R}记作闭区间[a,b],集合{x|ax≤b}记作半开半闭区间(a,b],集合{x|a≤xb}记作半闭半开区间[a,b),集合{x|xa}记作开区间(a,+∞),集合{x|x≤a}记作半开半闭区间(-∞,a].
定义9函数的图象,点集{(x,y)|y=f(x),x∈D}称为函数y=f(x)的图象,其中D为f(x)的定义域。通过画图不难得出函数y=f(x)的图象与其他函数图象之间的关系(a,b0);(1)向右平移a个单位得到y=f(x-a)的图象;(2)向左平移a个单位得到y=f(x+a)的图象;(3)向下平移b个单位得到y=f(x)-b的图象;(4)与函数y=f(-x)的图象关于y轴对称;(5)与函数y=-f(-x)的图象关于原点成中心对称;(6)与函数y=f-1(x)的图象关于直线y=x对称;(7)与函数y=-f(x)的图象关于x轴对称。
定理3复合函数y=f[g(x)]的单调性,记住四个字:“同增异减”。例如y=,u=2-x在(-∞,2)上是减函数,y=在(0,+∞)上是减函数,所以y=在(-∞,2)上是增函数。
注:复合函数单调性的判断方法为同增异减。这里不做严格论证,求导之后是显然的。
二、方法与例题
1.数形结合法。
例1求方程|x-1|=的正根的个数.
【解】分别画出y=|x-1|和y=的图象,由图象可知两者有唯一交点,所以方程有一个正根。

例2求函数f(x)=的最大值。
【解】f(x)=,记点P(x,x2),A(3,2),B(0,1),则f(x)表示动点P到点A和B距离的差。
因为|PA|-|PA|≤|AB|=,当且仅当P为AB延长线与抛物线y=x2的交点时等号成立。
所以f(x)max=
2.函数性质的应用。
例3设x,y∈R,且满足,求x+y.
【解】设f(t)=t3+1997t,先证f(t)在(-∞,+∞)上递增。事实上,若ab,则f(b)-f(a)=b3-a3+1997(b-a)=(b-a)(b2+ba+a2+1997)0,所以f(t)递增。
由题设f(x-1)=-1=f(1-y),所以x-1=1-y,所以x+y=2.
例4奇函数f(x)在定义域(-1,1)内是减函数,又f(1-a)+f(1-a2)0,求a的取值范围。
【解】因为f(x)是奇函数,所以f(1-a2)=-f(a2-1),由题设f(1-a)f(a2-1)。
又f(x)在定义域(-1,1)上递减,所以-11-aa2-11,解得0a1。
例5设f(x)是定义在(-∞,+∞)上以2为周期的函数,对k∈Z,用Ik表示区间(2k-1,2k+1],已知当x∈I0时,f(x)=x2,求f(x)在Ik上的解析式。
【解】设x∈Ik,则2k-1x≤2k+1,
所以f(x-2k)=(x-2k)2.
又因为f(x)是以2为周期的函数,
所以当x∈Ik时,f(x)=f(x-2k)=(x-2k)2.
例6解方程:(3x-1)()+(2x-3)(+1)=0.
【解】令m=3x-1,n=2x-3,方程化为
m(+1)+n(+1)=0.①
若m=0,则由①得n=0,但m,n不同时为0,所以m0,n0.
ⅰ)若m0,则由①得n0,设f(t)=t(+1),则f(t)在(0,+∞)上是增函数。又f(m)=f(-n),所以m=-n,所以3x-1+2x-3=0,所以x=
ⅱ)若m0,且n0。同理有m+n=0,x=,但与m0矛盾。
综上,方程有唯一实数解x=
3.配方法。
例7求函数y=x+的值域。
【解】y=x+=[2x+1+2+1]-1
=(+1)-1≥-1=-.
当x=-时,y取最小值-,所以函数值域是[-,+∞)。
4.换元法。
例8求函数y=(++2)(+1),x∈[0,1]的值域。
【解】令+=u,因为x∈[0,1],所以2≤u2=2+2≤4,所以≤u≤2,所以≤≤2,1≤≤2,所以y=,u2∈[+2,8]。
所以该函数值域为[2+,8]。
5.判别式法。
例9求函数y=的值域。
【解】由函数解析式得(y-1)x2+3(y+1)x+4y-4=0.①
当y1时,①式是关于x的方程有实根。
所以△=9(y+1)2-16(y-1)2≥0,解得≤y≤1.
又当y=1时,存在x=0使解析式成立,
所以函数值域为[,7]。
6.关于反函数。
例10若函数y=f(x)定义域、值域均为R,且存在反函数。若f(x)在(-∞,+∞)上递增,求证:y=f-1(x)在(-∞,+∞)上也是增函数。
【证明】设x1x2,且y1=f-1(x1),y2=f-1(x2),则x1=f(y1),x2=f(y2),若y1≥y2,则因为f(x)在(-∞,+∞)上递增,所以x1≥x2与假设矛盾,所以y1y2。
即y=f-1(x)在(-∞,+∞)递增。
例11设函数f(x)=,解方程:f(x)=f-1(x).
【解】首先f(x)定义域为(-∞,-)∪[-,+∞);其次,设x1,x2是定义域内变量,且x1x2-;=0,
所以f(x)在(-∞,-)上递增,同理f(x)在[-,+∞)上递增。
在方程f(x)=f-1(x)中,记f(x)=f-1(x)=y,则y≥0,又由f-1(x)=y得f(y)=x,所以x≥0,所以x,y∈[-,+∞).
若xy,设xy,则f(x)=yf(y)=x,矛盾。
同理若xy也可得出矛盾。所以x=y.
即f(x)=x,化简得3x5+2x4-4x-1=0,
即(x-1)(3x4+5x3+5x2+5x+1)=0,
因为x≥0,所以3x4+5x3+5x2+5x+10,所以x=1.
三、基础训练题
1.已知X={-1,0,1},Y={-2,-1,0,1,2},映射f:X→Y满足:对任意的x∈X,它在Y中的象f(x)使得x+f(x)为偶数,这样的映射有_______个。
2.给定A={1,2,3},B={-1,0,1}和映射f:X→Y,若f为单射,则f有_______个;若f为满射,则f有_______个;满足f[f(x)]=f(x)的映射有_______个。
3.若直线y=k(x-2)与函数y=x2+2x图象相交于点(-1,-1),则图象与直线一共有_______个交点。
4.函数y=f(x)的值域为[],则函数g(x)=f(x)+的值域为_______。
5.已知f(x)=,则函数g(x)=f[f(x)]的值域为_______。
6.已知f(x)=|x+a|,当x≥3时f(x)为增函数,则a的取值范围是_______。
7.设y=f(x)在定义域(,2)内是增函数,则y=f(x2-1)的单调递减区间为_______。
8.若函数y=(x)存在反函数y=-1(x),则y=-1(x)的图象与y=-(-x)的图象关于直线_______对称。
9.函数f(x)满足=1-,则f()=_______。
10.函数y=,x∈(1,+∞)的反函数是_______。
11.求下列函数的值域:(1)y=;(2)y=;(3)y=x+2;(4)y=
12.已知定义在R上,对任意x∈R,f(x)=f(x+2),且f(x)是偶函数,又当x∈[2,3]时,f(x)=x,则当x∈[-2,0]时,求f(x)的解析式。
四、高考水平训练题
1.已知a∈,f(x)定义域是(0,1],则g(x)=f(x+a)+f(x-a)+f(x)的定义域为_______。
2.设0≤a1时,f(x)=(a-1)x2-6ax+a+1恒为正值。则f(x)定义域为_______。
3.映射f:{a,b,c,d}→{1,2,3}满足10f(a)f(b)f(c)f(d)20,这样的映射f有_______个。
4.设函数y=f(x)(x∈R)的值域为R,且为增函数,若方程f(x)=x解集为P,f[f(x)]=x解集为Q,则P,Q的关系为:P_______Q(填=、、)。
5.下列函数是否为奇函数:(1)f(x)=(x-1);(2)g(x)=|2x+1|-|2x-1|;(3)(x)=;(4)y=
6.设函数y=f(x)(x∈R且x0),对任意非零实数x1,x2满足f(x1x2)=f(x1)+f(x2),又f(x)在(0,+∞)是增函数,则不等式f(x)+f(x-)≤0的解集为_______。
7.函数f(x)=,其中P,M为R的两个非空子集,又规定f(P)={y|y=f(x),x∈P},f(M)={y|y=f(x),x∈M},给出如下判断:①若P∩M=,则f(P)∩f(M)=;②若P∩M,则f(P)∩f(M);③若P∪M=R,则f(P)∪f(M)=R;④若P∪MR,则f(P)∪f(M)R.其中正确的判断是_______。
8.函数y=f(x+1)的反函数是y=f-1(x+1),并且f(1)=3997,则f(1998)=_______。
9.已知y=f(x)是定义域为[-6,6]的奇函数,且当x∈[0,3]时是一次函数,当x∈[3,6]时是二次函数,又f(6)=2,当x∈[3,6]时,f(x)≤f(5)=3。求f(x)的解析式。
10.设a0,函数f(x)定义域为R,且f(x+a)=,求证:f(x)为周期函数。
11.设关于x的方程2x2-tx-2=0的两根为α,β(αβ),已知函数f(x)=,(1)求f(α)、f(β);(2)求证:f(x)在[α,β]上是增函数;(3)对任意正数x1,x2,求证:2|α-β|.

五、联赛一试水平训练题
1.奇函数f(x)存在函数f-1(x),若把y=f(x)的图象向上平移3个单位,然后向右平移2个单位后,再关于直线y=-x对称,得到的曲线所对应的函数是________.
2.若a0,a1,F(x)是奇函数,则G(x)=F(x)是________(奇偶性).
3.若=x,则下列等式中正确的有________.①F(-2-x)=-2-F(x);②F(-x)=;③F(x-1)=F(x);④F(F(x))=-x.
4.设函数f:R→R满足f(0)=1,且对任意x,y∈R,都有f(xy+1)=f(x)f(y)-f(y)-x+2,则f(x)=________.
5.已知f(x)是定义在R上的函数,f(1)=1,且对任意x∈R都有f(x+5)≥f(x)+5,f(x+1)≤f(x)+1。若g(x)=f(x)+1-x,则g(2002)=________.
6.函数f(x)=的单调递增区间是________.
7.函数f(x)=的奇偶性是:________奇函数,________偶函数(填是,非)。
8.函数y=x+的值域为________.
9.设f(x)=,
对任意的a∈R,记V(a)=max{f(x)-ax|x∈[1,3]}-min{f(x)-ax|x∈[1,3]},试求V(a)的最小值。
10.解方程组:(在实数范围内)
11.设k∈N+,f:N+→N+满足:(1)f(x)严格递增;(2)对任意n∈N+,有f[f(n)]=kn,求证:对任意n∈N+,都有n≤f(n)≤
六、联赛二试水平训练题
1.求证:恰有一个定义在所有非零实数上的函数f,满足:(1)对任意x≠0,f(x)=xf;(2)对所有的x≠-y且xy≠0,有f(x)+f(y)=1+f(x+y).
2.设f(x)对一切x0有定义,且满足:(ⅰ)f(x)在(0,+∞)是增函数;(ⅱ)任意x0,f(x)f=1,试求f(1).
3.f:[0,1]→R满足:(1)任意x∈[0,1],f(x)≥0;(2)f(1)=1;(3)当x,y,x+y∈[0,1]时,f(x)+f(y)≤f(x+y),试求最小常数c,对满足(1),(2),(3)的函数f(x)都有f(x)≤cx.
4.试求f(x,y)=6(x2+y2)(x+y)-4(x2+xy+y2)-3(x+y)+5(x0,y0)的最小值。
5.对给定的正数p,q∈(0,1),有p+q1≥p2+q2,试求f(x)=(1-x)+在[1-q,p]上的最大值。
6.已知f:(0,1)→R且f(x)=.
当x∈时,试求f(x)的最大值。
7.函数f(x)定义在整数集上,且满足f(n)=,求f(100)的值。
8.函数y=f(x)定义在整个实轴上,它的图象在围绕坐标原点旋转角后不变。(1)求证:方程f(x)=x恰有一个解;(2)试给出一个具有上述性质的函数。
9.设Q+是正有理数的集合,试构造一个函数f:Q+→Q+,满足这样的条件:f(xf(y))=x,y∈Q+.

第十五章复数(高中数学竞赛标准教材)


第十五章复数
一、基础知识
1.复数的定义:设i为方程x2=-1的根,i称为虚数单位,由i与实数进行加、减、乘、除等运算。便产生形如a+bi(a,b∈R)的数,称为复数。所有复数构成的集合称复数集。通常用C来表示。
2.复数的几种形式。对任意复数z=a+bi(a,b∈R),a称实部记作Re(z),b称虚部记作Im(z).z=ai称为代数形式,它由实部、虚部两部分构成;若将(a,b)作为坐标平面内点的坐标,那么z与坐标平面唯一一个点相对应,从而可以建立复数集与坐标平面内所有的点构成的集合之间的一一映射。因此复数可以用点来表示,表示复数的平面称为复平面,x轴称为实轴,y轴去掉原点称为虚轴,点称为复数的几何形式;如果将(a,b)作为向量的坐标,复数z又对应唯一一个向量。因此坐标平面内的向量也是复数的一种表示形式,称为向量形式;另外设z对应复平面内的点Z,见图15-1,连接OZ,设∠xOZ=θ,|OZ|=r,则a=rcosθ,b=rsinθ,所以z=r(cosθ+isinθ),这种形式叫做三角形式。若z=r(cosθ+isinθ),则θ称为z的辐角。若0≤θ2π,则θ称为z的辐角主值,记作θ=Arg(z).r称为z的模,也记作|z|,由勾股定理知|z|=.如果用eiθ表示cosθ+isinθ,则z=reiθ,称为复数的指数形式。
3.共轭与模,若z=a+bi,(a,b∈R),则a-bi称为z的共轭复数。模与共轭的性质有:(1);(2);(3);(4);(5);(6);(7)||z1|-|z2||≤|z1±z2|≤|z1|+|z2|;(8)|z1+z2|2+|z1-z2|2=2|z1|2+2|z2|2;(9)若|z|=1,则。
4.复数的运算法则:(1)按代数形式运算加、减、乘、除运算法则与实数范围内一致,运算结果可以通过乘以共轭复数将分母分为实数;(2)按向量形式,加、减法满足平行四边形和三角形法则;(3)按三角形式,若z1=r1(cosθ1+isinθ1),z2=r2(cosθ2+isinθ2),则z1z2=r1r2[cos(θ1+θ2)+isin(θ1+θ2)];若[cos(θ1-θ2)+isin(θ1-θ2)],用指数形式记为z1z2=r1r2ei(θ1+θ2),
5.棣莫弗定理:[r(cosθ+isinθ)]n=rn(cosnθ+isinnθ).
6.开方:若r(cosθ+isinθ),则,k=0,1,2,…,n-1。
7.单位根:若wn=1,则称w为1的一个n次单位根,简称单位根,记Z1=,则全部单位根可表示为1,,.单位根的基本性质有(这里记,k=1,2,…,n-1):(1)对任意整数k,若k=nq+r,q∈Z,0≤r≤n-1,有Znq+r=Zr;(2)对任意整数m,当n≥2时,有=特别1+Z1+Z2+…+Zn-1=0;(3)xn-1+xn-2+…+x+1=(x-Z1)(x-Z2)…(x-Zn-1)=(x-Z1)(x-)…(x-).
8.复数相等的充要条件:(1)两个复数实部和虚部分别对应相等;(2)两个复数的模和辐角主值分别相等。
9.复数z是实数的充要条件是z=;z是纯虚数的充要条件是:z+=0(且z≠0).
10.代数基本定理:在复数范围内,一元n次方程至少有一个根。
11.实系数方程虚根成对定理:实系数一元n次方程的虚根成对出现,即若z=a+bi(b≠0)是方程的一个根,则=a-bi也是一个根。
12.若a,b,c∈R,a≠0,则关于x的方程ax2+bx+c=0,当Δ=b2-4ac0时方程的根为
二、方法与例题
1.模的应用。
例1求证:当n∈N+时,方程(z+1)2n+(z-1)2n=0只有纯虚根。
[证明]若z是方程的根,则(z+1)2n=-(z-1)2n,所以|(z+1)2n|=|-(z-1)2n|,即|z+1|2=|z-1|2,即(z+1)(+1)=(z-1)(-1),化简得z+=0,又z=0不是方程的根,所以z是纯虚数。
例2设f(z)=z2+az+b,a,b为复数,对一切|z|=1,有|f(z)|=1,求a,b的值。
[解]因为4=(1+a+b)+(1-a+b)-(-1+ai+b)-(-1-ai+b)
=|f(1)+f(-1)-f(i)-f(-i)|

≥|f(1)|+|f(-1)|+|f(i)|+|f(-i)|=4,其中等号成立。
所以f(1),f(-1),-f(i),-f(-i)四个向量方向相同,且模相等。
所以f(1)=f(-1)=-f(i)=-f(-i),解得a=b=0.
2.复数相等。
例3设λ∈R,若二次方程(1-i)x2+(λ+i)x+1+λi=0有两个虚根,求λ满足的充要条件。
[解]若方程有实根,则方程组有实根,由方程组得(λ+1)x+λ+1=0.若λ=-1,则方程x2-x+1=0中Δ0无实根,所以λ≠-1。所以x=-1,λ=2.所以当λ≠2时,方程无实根。所以方程有两个虚根的充要条件为λ≠2。
3.三角形式的应用。
例4设n≤2000,n∈N,且存在θ满足(sinθ+icosθ)n=sinnθ+icosnθ,那么这样的n有多少个?
[解]由题设得
,所以n=4k+1.又因为0≤n≤2000,所以1≤k≤500,所以这样的n有500个。
4.二项式定理的应用。
例5计算:(1);(2)
[解](1+i)100=[(1+i)2]50=(2i)50=-250,由二项式定理(1+i)100==)+()i,比较实部和虚部,得=-250,=0。
5.复数乘法的几何意义。
例6以定长线段BC为一边任作ΔABC,分别以AB,AC为腰,B,C为直角顶点向外作等腰直角ΔABM、等腰直角ΔACN。求证:MN的中点为定点。
[证明]设|BC|=2a,以BC中点O为原点,BC为x轴,建立直角坐标系,确定复平面,则B,C对应的复数为-a,a,点A,M,N对应的复数为z1,z2,z3,,由复数乘法的几何意义得:,①,②由①+②得z2+z3=i(z1+a)-i(z1-a)=2ai.设MN的中点为P,对应的复数z=,为定值,所以MN的中点P为定点。
例7设A,B,C,D为平面上任意四点,求证:ABAD+BCAD≥ACBD。
[证明]用A,B,C,D表示它们对应的复数,则(A-B)(C-D)+(B-C)(A-D)=(A-C)(B-D),因为|A-B||C-D|+|B-C||A-D|≥(A-B)(C-D)+(B-C)(A-D).
所以|A-B||C-D|+|B-C||A-D|≥|A-C||B-D|,“=”成立当且仅当,即=π,即A,B,C,D共圆时成立。不等式得证。
6.复数与轨迹。
例8ΔABC的顶点A表示的复数为3i,底边BC在实轴上滑动,且|BC|=2,求ΔABC的外心轨迹。
[解]设外心M对应的复数为z=x+yi(x,y∈R),B,C点对应的复数分别是b,b+2.因为外心M是三边垂直平分线的交点,而AB的垂直平分线方程为|z-b|=|z-3i|,BC的垂直平分线的方程为|z-b|=|z-b-2|,所以点M对应的复数z满足|z-b|=|z-3i|=|z-b-2|,消去b解得
所以ΔABC的外心轨迹是轨物线。
7.复数与三角。
例9已知cosα+cosβ+cosγ=sinα+sinβ+sinγ=0,求证:cos2α+cos2β+cos2γ=0。
[证明]令z1=cosα+isinα,z2=cosβ+isinβ,z3=cosγ+isinγ,则
z1+z2+z3=0。所以又因为|zi|=1,i=1,2,3.
所以zi=1,即
由z1+z2+z3=0得①

所以
所以cos2α+cos2β+cos2γ+i(sin2α+sin2β+sin2γ)=0.
所以cos2α+cos2β+cos2γ=0。
例10求和:S=cos200+2cos400+…+18cos18×200.
[解]令w=cos200+isin200,则w18=1,令P=sin200+2sin400+…+18sin18×200,则S+iP=w+2w2+…+18w18.①由①×w得w(S+iP)=w2+2w3+…+17w18+18w19,②由①-②得(1-w)(S+iP)=w+w2+…+w18-18w19=,所以S+iP=,所以
8.复数与多项式。
例11已知f(z)=c0zn+c1zn-1+…+cn-1z+cn是n次复系数多项式(c0≠0).
求证:一定存在一个复数z0,|z0|≤1,并且|f(z0)|≥|c0|+|cn|.
[证明]记c0zn+c1zn-1+…+cn-1z=g(z),令=Arg(cn)-Arg(z0),则方程g(Z)-c0eiθ=0为n次方程,其必有n个根,设为z1,z2,…,zn,从而g(z)-c0eiθ=(z-z1)(z-z2)…(z-zn)c0,令z=0得-c0eiθ=(-1)nz1z2…znc0,取模得|z1z2…zn|=1。所以z1,z2,…,zn中必有一个zi使得|zi|≤1,从而f(zi)=g(zi)+cn=c0eiθ=cn,所以|f(zi)|=|c0eiθ+cn|=|c0|+|cn|.
9.单位根的应用。
例12证明:自⊙O上任意一点p到正多边形A1A2…An各个顶点的距离的平方和为定值。
[证明]取此圆为单位圆,O为原点,射线OAn为实轴正半轴,建立复平面,顶点A1对应复数设为,则顶点A2A3…An对应复数分别为ε2,ε3,…,εn.设点p对应复数z,则|z|=1,且=2n-
=2n-命题得证。
10.复数与几何。
例13如图15-2所示,在四边形ABCD内存在一点P,使得ΔPAB,ΔPCD都是以P为直角顶点的等腰直角三角形。求证:必存在另一点Q,使得ΔQBC,ΔQDA也都是以Q为直角顶点的等腰直角三角形。
[证明]以P为原点建立复平面,并用A,B,C,D,P,Q表示它们对应的复数,由题设及复数乘法的几何意义知D=iC,B=iA;取,则C-Q=i(B-Q),则ΔBCQ为等腰直角三角形;又由C-Q=i(B-Q)得,即A-Q=i(D-Q),所以ΔADQ也为等腰直角三角形且以Q为直角顶点。综上命题得证。
例14平面上给定ΔA1A2A3及点p0,定义As=As-3,s≥4,构造点列p0,p1,p2,…,使得pk+1为绕中心Ak+1顺时针旋转1200时pk所到达的位置,k=0,1,2,…,若p1986=p0.证明:ΔA1A2A3为等边三角形。
[证明]令u=,由题设,约定用点同时表示它们对应的复数,取给定平面为复平面,则p1=(1+u)A1-up0,
p2=(1+u)A2-up1,
p3=(1+u)A3-up2,
①×u2+②×(-u)得p3=(1+u)(A3-uA2+u2A1)+p0=w+p0,w为与p0无关的常数。同理得p6=w+p3=2w+p0,…,p1986=662w+p0=p0,所以w=0,从而A3-uA2+u2A1=0.由u2=u-1得A3-A1=(A2-A1)u,这说明ΔA1A2A3为正三角形。
三、基础训练题
1.满足(2x2+5x+2)+(y2-y-2)i=0的有序实数对(x,y)有__________组。
2.若z∈C且z2=8+6i,且z3-16z-=__________。
3.复数z满足|z|=5,且(3+4i)z是纯虚数,则__________。
4.已知,则1+z+z2+…+z1992=__________。
5.设复数z使得的一个辐角的绝对值为,则z辐角主值的取值范围是__________。
6.设z,w,λ∈C,|λ|≠1,则关于z的方程-Λz=w的解为z=__________。
7.设0x1,则2arctan__________。
8.若α,β是方程ax2+bx+c=0(a,b,c∈R)的两个虚根且,则__________。
9.若a,b,c∈C,则a2+b2c2是a2+b2-c20成立的__________条件。
10.已知关于x的实系数方程x2-2x+2=0和x2+2mx+1=0的四个不同的根在复平面上对应的点共圆,则m取值的集合是__________。
11.二次方程ax2+x+1=0的两根的模都小于2,求实数a的取值范围。
12.复平面上定点Z0,动点Z1对应的复数分别为z0,z1,其中z0≠0,且满足方程|z1-z0|=|z1|,①另一个动点Z对应的复数z满足z1z=-1,②求点Z的轨迹,并指出它在复平面上的形状和位置。
13.N个复数z1,z2,…,zn成等比数列,其中|z1|≠1,公比为q,|q|=1且q≠±1,复数w1,w2,…,wn满足条件:wk=zk++h,其中k=1,2,…,n,h为已知实数,求证:复平面内表示w1,w2,…,wn的点p1,p2,…,pn都在一个焦距为4的椭圆上。
四、高考水平训练题
1.复数z和cosθ+isinθ对应的点关于直线|iz+1|=|z+i|对称,则z=__________。
2.设复数z满足z+|z|=2+i,那么z=__________。
3.有一个人在草原上漫步,开始时从O出发,向东行走,每走1千米后,便向左转角度,他走过n千米后,首次回到原出发点,则n=__________。
4.若,则|z|=__________。
5.若ak≥0,k=1,2,…,n,并规定an+1=a1,使不等式恒成立的实数λ的最大值为__________。
6.已知点P为椭圆上任意一点,以OP为边逆时针作正方形OPQR,则动点R的轨迹方程为__________。
7.已知P为直线x-y+1=0上的动点,以OP为边作正ΔOPQ(O,P,Q按顺时针方向排列)。则点Q的轨迹方程为__________。
8.已知z∈C,则命题“z是纯虚数”是命题“”的__________条件。
9.若n∈N,且n≥3,则方程zn+1+zn-1=0的模为1的虚根的个数为__________。
10.设(x2006+x2008+3)2007=a0+a1x+a2x2+…+anxn,则+…+a3k-__________。
11.设复数z1,z2满足z1,其中A≠0,A∈C。证明:
(1)|z1+A||z2+A|=|A|2;(2)
12.若z∈C,且|z|=1,u=z4-z3-3z2i-z+1.求|u|的最大值和最小值,并求取得最大值、最小值时的复数z.
13.给定实数a,b,c,已知复数z1,z2,z3满足求
|az1+bz2+cz3|的值。
三、联赛一试水平训练题
1.已知复数z满足则z的辐角主值的取值范围是__________。
2.设复数z=cosθ+isinθ(0≤θ≤π),复数z,(1+i)z,2在复平面上对应的三个点分别是P,Q,R,当P,Q,R不共线时,以PQ,PR为两边的平行四边形第四个顶点为S,则S到原点距离的最大值为__________。
3.设复平面上单位圆内接正20边形的20个顶点所对应的复数依次为z1,z2,…,z20,则复数所对应的不同点的个数是__________。
4.已知复数z满足|z|=1,则|z+iz+1|的最小值为__________。
5.设,z1=w-z,z2=w+z,z1,z2对应复平面上的点A,B,点O为原点,∠AOB=900,|AO|=|BO|,则ΔOAB面积是__________。
6.设,则(x-w)(x-w3)(x-w7)(x-w9)的展开式为__________。
7.已知()m=(1+i)n(m,n∈N+),则mn的最小值是__________。
8.复平面上,非零复数z1,z2在以i为圆心,1为半径的圆上,z2的实部为零,z1的辐角主值为,则z2=__________。
9.当n∈N,且1≤n≤100时,的值中有实数__________个。
10.已知复数z1,z2满足,且,,,则的值是__________。
11.集合A={z|z18=1},B={w|w48=1},C={zw|z∈A,w∈B},问:集合C中有多少个不同的元素?
12.证明:如果复数A的模为1,那么方程的所有根都是不相等的实根(n∈N+).
13.对于适合|z|≤1的每一个复数z,要使0|αz+β|2总能成立,试问:复数α,β应满足什么条件?
六、联赛二试水平训练题
1.设非零复数a1,a2,a3,a4,a5满足
其中S为实数且|S|≤2,求证:复数a1,a2,a3,a4,a5在复平面上所对应的点位于同一圆周上。
2.求证:。
3.已知p(z)=zn+c1zn-1+c2zn-2+…+cn是复变量z的实系数多项式,且|p(i)|1,求证:存在实数a,b,使得p(a+bi)=0且(a2+b2+1)24b2+1.
4.运用复数证明:任给8个非零实数a1,a2,…,a8,证明六个数a1a3+a2a4,a1a5+a2a6,a1a7+a2a8,a3a5+a4a6,a3a7+a4a8,a5a7+a6a8中至少有一个是非负数。
5.已知复数z满足11z10+10iz9+10iz-11=0,求证:|z|=1.
6.设z1,z2,z3为复数,求证:
|z1|+|z2|+|z3|+|z1+z2+z3|≥|z1+z2|+|z2+z3|+|z3+z1|。

高中数学知识点归纳:平面向量


高中数学知识点归纳:平面向量

平面向量的实际背景及基本概念

1.了解向量的实际背景.

2.理解平面向量的概念,理解两个向量相等的含义.

3.理解向量的几何表示.

向量的线性运算

1.掌握向量加法、减法的运算,并理解其几何意义.

2.掌握向量数乘的运算及其几何意义,理解两个向量共线的含义.

3.了解向量线性运算的性质及其几何意义.

平面向量的基本定理及坐标表示

1.了解平面向量的基本定理及其意义.

2.掌握平面向量的正交分解及其坐标表示.

3.会用坐标表示平面向量的加法、减法与数乘运算.

4.理解用坐标表示的平面向量共线的条件.

平面向量的数量积及向量的应用

1.理解平面向量数量积的含义及其物理意义.

2.了解平面向量的数量积与向量投影的关系.

3.掌握数量积的坐标表达式,会进行平面向量数量积的运算.

4.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.

5.会用向量方法解决某些简单的平面几何问题.

6.会用向量方法解决简单的力学问题与其他一些实际问题.

1.向量的有关概念

(1)向量:既有大小又有方向的量叫做向量,向量的大小叫做向量的模.

(2)零向量:长度为0的向量,其方向是任意的.

(3)单位向量:长度等于1个单位的向量.

(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量共线.

(5)相等向量:长度相等且方向相同的向量.

(6)相反向量:长度相等且方向相反的向量.

第九章不等式(高中数学竞赛标准教材)


第九章不等式

一、基础知识
不等式的基本性质:
(1)aba-b0;(2)ab,bcac;
(3)aba+cb+c;(4)ab,c0acbc;
(5)ab,c0acbc;(6)ab0,cd0acbd;
(7)ab0,n∈N+anbn;(8)ab0,n∈N+;
(9)a0,|x|a-axa,|x|axa或x-a;
(10)a,b∈R,则|a|-|b|≤|a+b|≤|a|+|b|;
(11)a,b∈R,则(a-b)2≥0a2+b2≥2ab;
(12)x,y,z∈R+,则x+y≥2,x+y+z
前五条是显然的,以下从第六条开始给出证明。
(6)因为ab0,cd0,所以acbc,bcbd,所以acbd;重复利用性质(6),可得性质(7);再证性质(8),用反证法,若,由性质(7)得,即a≤b,与ab矛盾,所以假设不成立,所以;由绝对值的意义知(9)成立;-|a|≤a≤|a|,-|b|≤b≤|b|,所以-(|a|+|b|)≤a+b≤|a|+|b|,所以|a+b|≤|a|+|b|;下面再证(10)的左边,因为|a|=|a+b-b|≤|a+b|+|b|,所以|a|-|b|≤|a+b|,所以(10)成立;(11)显然成立;下证(12),因为x+y-2≥0,所以x+y≥,当且仅当x=y时,等号成立,再证另一不等式,令,因为x3+b3+c3-3abc=(a+b)3+c3-3a2b-3ab2-3abc=(a+b)3+c3-3ab(a+b+c)=(a+b+c)[(a+b)2-(a+b)c+c2]-3ab(a+b+c)=(a+b+c)(a2+b2+c2-ab-bc-ca)=(a+b+c)[(a-b)2+(b-c)2+(c-a)2]≥0,所以a3+b3+c3≥3abc,即x+y+z≥,等号当且仅当x=y=z时成立。
二、方法与例题
1.不等式证明的基本方法。
(1)比较法,在证明AB或AB时利用A-B与0比较大小,或把(A,B0)与1比较大小,最后得出结论。
例1设a,b,c∈R+,试证:对任意实数x,y,z,有x2+y2+z2
【证明】左边-右边=x2+y2+z2
所以左边≥右边,不等式成立。
例2若ax1,比较大小:|loga(1-x)|与|loga(1+x)|.
【解】因为1-x1,所以loga(1-x)0,=|log(1-x)(1+x)|=-log(1-x)(1+x)=log(1-x)log(1-x)(1-x)=1(因为01-x21,所以1-x0,01-x1).
所以|loga(1+x)||loga(1-x)|.
(2)分析法,即从欲证不等式出发,层层推出使之成立的充分条件,直到已知为止,叙述方式为:要证……,只需证……。
例3已知a,b,c∈R+,求证:a+b+c-3≥a+b
【证明】要证a+b+c≥a+b只需证,
因为,所以原不等式成立。
例4已知实数a,b,c满足0a≤b≤c≤,求证:
【证明】因为0a≤b≤c≤,由二次函数性质可证a(1-a)≤b(1-b)≤c(1-c),
所以,
所以,
所以只需证明,
也就是证,
只需证b(a-b)≤a(a-b),即(a-b)2≥0,显然成立。所以命题成立。
(3)数学归纳法。
例5对任意正整数n(≥3),求证:nn+1(n+1)n.
【证明】1)当n=3时,因为34=8164=43,所以命题成立。
2)设n=k时有kk+1(k+1)k,当n=k+1时,只需证(k+1)k+2(k+2)k+1,即1.因为,所以只需证,即证(k+1)2k+2[k(k+2)]k+1,只需证(k+1)2k(k+2),即证k2+2k+1k2+2k.显然成立。
所以由数学归纳法,命题成立。
(4)反证法。
例6设实数a0,a1,…,an满足a0=an=0,且a0-2a1+a2≥0,a1-2a2+a3≥0,…,an-2-2an-1+an≥0,求证ak≤0(k=1,2,…,n-1).
【证明】假设ak(k=1,2,…,n-1)中至少有一个正数,不妨设ar是a1,a2,…,an-1中第一个出现的正数,则a1≤0,a2≤0,…,ar-1≤0,ar0.于是ar-ar-10,依题设ak+1-ak≥ak-ak-1(k=1,2,…,n-1)。
所以从k=r起有an-ak-1≥an-1-an-2≥…≥ar-ar-10.
因为an≥ak-1≥…≥ar+1≥ar0与an=0矛盾。故命题获证。
(5)分类讨论法。
例7已知x,y,z∈R+,求证:
【证明】不妨设x≥y,x≥z.
ⅰ)x≥y≥z,则,x2≥y2≥z2,由排序原理可得
,原不等式成立。
ⅱ)x≥z≥y,则,x2≥z2≥y2,由排序原理可得
,原不等式成立。

(6)放缩法,即要证AB,可证AC1,C1≥C2,…,Cn-1≥Cn,CnB(n∈N+).
例8求证:
【证明】
,得证。
例9已知a,b,c是△ABC的三条边长,m0,求证:
【证明】
(因为a+bc),得证。
(7)引入参变量法。
例10已知x,y∈R+,l,a,b为待定正数,求f(x,y)=的最小值。
【解】设,则,f(x,y)=
(a3+b3+3a2b+3ab2)=
,等号当且仅当时成立。所以f(x,y)min=
例11设x1≥x2≥x3≥x4≥2,x2+x3+x4≥x1,求证:(x1+x2+x3+x4)2≤4x1x2x3x4.
【证明】设x1=k(x2+x3+x4),依题设有≤k≤1,x3x4≥4,原不等式等价于(1+k)2(x2+x3+x4)2≤4kx2x3x4(x2+x3+x4),即
(x2+x3+x4)≤x2x3x4,因为f(k)=k+在上递减,
所以(x2+x3+x4)=(x2+x3+x4)
≤3x2=4x2≤x2x3x4.
所以原不等式成立。
(8)局部不等式。
例12已知x,y,z∈R+,且x2+y2+z2=1,求证:
【证明】先证
因为x(1-x2)=,
所以
同理,

所以
例13已知0≤a,b,c≤1,求证:≤2。
【证明】先证①
即a+b+c≤2bc+2.
即证(b-1)(c-1)+1+bc≥a.
因为0≤a,b,c≤1,所以①式成立。
同理
三个不等式相加即得原不等式成立。
(9)利用函数的思想。
例14已知非负实数a,b,c满足ab+bc+ca=1,求f(a,b,c)=的最小值。
【解】当a,b,c中有一个为0,另两个为1时,f(a,b,c)=,以下证明f(a,b,c)≥.不妨设a≥b≥c,则0≤c≤,f(a,b,c)=
因为1=(a+b)c+ab≤+(a+b)c,
解关于a+b的不等式得a+b≥2(-c).
考虑函数g(t)=,g(t)在[)上单调递增。
又因为0≤c≤,所以3c2≤1.所以c2+a≥4c2.所以2≥
所以f(a,b,c)=

=
=

下证0①c2+6c+9≥9c2+9≥0因为,所以①式成立。
所以f(a,b,c)≥,所以f(a,b,c)min=
2.几个常用的不等式。
(1)柯西不等式:若ai∈R,bi∈R,i=1,2,…,n,则
等号当且仅当存在λ∈R,使得对任意i=1,2,,n,ai=λbi,
变式1:若ai∈R,bi∈R,i=1,2,…,n,则
等号成立条件为ai=λbi,(i=1,2,…,n)。
变式2:设ai,bi同号且不为0(i=1,2,…,n),则
等号成立当且仅当b1=b2=…=bn.
(2)平均值不等式:设a1,a2,…,an∈R+,记Hn=,Gn=,An=,则Hn≤Gn≤An≤Qn.即调和平均≤几何平均≤算术平均≤平方平均。
其中等号成立的条件均为a1=a2=…=an.
【证明】由柯西不等式得An≤Qn,再由Gn≤An可得Hn≤Gn,以下仅证Gn≤An.
1)当n=2时,显然成立;
2)设n=k时有Gk≤Ak,当n=k+1时,记=Gk+1.
因为a1+a2+…+ak+ak+1+(k-1)Gk+1≥
≥2kGk+1,
所以a1+a2+…+ak+1≥(k+1)Gk+1,即Ak+1≥Gk+1.
所以由数学归纳法,结论成立。
(3)排序不等式:若两组实数a1≤a2≤…≤an且b1≤b2≤…≤bn,则对于b1,b2,…,bn的任意排列,有a1bn+a2bn-1+…+anb1≤≤a1b1+a2b2+…+anbn.
【证明】引理:记A0=0,Ak=,则=(阿贝尔求和法)。
证法一:因为b1≤b2≤…≤bn,所以≥b1+b2+…+bk.
记sk=-(b1+b2+…+bk),则sk≥0(k=1,2,…,n)。
所以-(a1b1+a2b2+…+anbn)=+snan≤0.
最后一个不等式的理由是aj-aj+1≤0(j=1,2,…,n-1,sn=0),
所以右侧不等式成立,同理可证左侧不等式。
证法二:(调整法)考察,若,则存在。
若(j≤n-1),则将与互换。
因为
≥0,
所调整后,和是不减的,接下来若,则继续同样的调整。至多经n-1次调整就可将乱序和调整为顺序和,而且每次调整后和是不减的,这说明右边不等式成立,同理可得左边不等式。
例15已知a1,a2,…,an∈R+,求证;a1+a2+…+an.
【证明】证法一:因为,…,≥2an.
上述不等式相加即得≥a1+a2+…+an.
证法二:由柯西不等式(a1+a2+…+an)≥(a1+a2+…+an)2,
因为a1+a2+…+an0,所以≥a1+a2+…+an.
证法三:设a1,a2,…,an从小到大排列为,则,,由排序原理可得

=a1+a2+…+an≥,得证。
注:本讲的每种方法、定理都有极广泛的应用,希望读者在解题中再加以总结。

三、基础训练题
1.已知0x1,a,b∈R+,则的最小值是____________.
2.已知x∈R+,则的最小值是____________.
3.已知a,b,c∈R,且a2+b2+c2=1,ab+bc+ca的最大值为M,最小值为N,则MN=___________.
4.若不等式对所有实数x成立,则a的取值范围是____________.
5.若不等式x+a的解是xm,则m的最小值是____________.
6.“a+b=4”是“不等式|x-a|+|x-b|8的解集是{x|-2x6}”的____________条件.
7.若a,b∈R+,则a+b=1,以下结论成立是__________.①a4+b4≥;②≤a3+b31;③;④;⑤;⑥
8.已知0,若,则=____________.
9.已知,p=(x1-)2+(x2-)2+…+(xn-)2,q=(x1-a)2+(x2-a)2+…+(xn-a)2,若,则比较大小:p___________q.
10.已知a0,b0且ab,m=aabb,n=abba,则比较大小:m_________n.
11.已知n∈N+,求证:
12.已知0a1,x2+y=0,求证:loga(ax+ay)≤loga2+.
13.已知x∈R,,求证:
四、高考水平训练题
1.已知A=asin2x+bcos2x,B=acos2x+bsin2x(a,b,x∈R),设m=AB,n=ab,P=A2+B2,q=a2+b2,则下列结论成立的有]__________.(1)m≥n,p≥q;(2)m≤n,p≤q;(3)m+p≥n+q;(4)m+q≥n+p.
2.已知a,b,c,d∈R,M=4(a-b)(c-d),N=(a-b)(c-b)+(d-a)(d-c)+(c-d)(c-b)+(a-b)(a-d),则比较大小:M________N.
3.若R+,且,,将从小到大排列为________.
4.已知△ABC的三边长a,b,c满足b+c≤2a,a+c≤2b,则的取值范围是________.
5.若实数x,y满足|x|+|y|≤1,则z=x2-xy+y2的最大值与最小值的和为________.
6.设函数f(x)=(x∈[-4,2]),则f(x)的值域是________.
7.对x1x20,1a0,记,比较大小:x1x2________y1y2.
8.已知函数的值域是,则实数a的值为________.
9.设a≤bc是直角△ABC的三边长,若不等式恒成立,则M最大值为________.
10.实系数方程x2+ax+2b=0的一个根大于0且小于1,另一个根大于1且小于2,则的取值范围是________.
11.已知a,b,c∈R+且满足a+b+c≥abc,求证:下列三个式子中至少有两个成立:
12.已知a,b∈R+且,求证:对一切n∈N+,(a+b)n-an-bn≥22n-2n+1.
13.已知a,b,c∈R+,求证:
14.设x,y,z是3个不全为零的实数,求的最大值。
五、联赛一试水平训练题
1.已知a1,a2,b1,b2,c1,c∈R,a1c1-=a2c20,P=(a1-a2)(c1-c2),Q=(b1-b2)2,比较大小:P_______Q.
2.已知x2+y2-xy=1,则|x+y-3|+|x+y+2|=__________.
3.二次函数f(x)=x2+ax+b,记M=max{|f(1)|,|f(2)|,|f(3)|},则M的最小值为__________.
4.设实数a,b,c,d满足a≤b≤c≤d或者a≥b≥c≥d,比较大小:
4(a+c+d)(a+b+d)__________(2a+3d+c)(2a+2b+c+d).
5.已知xi∈R+,i=1,2,…,n且,则x1x2…xn的最小值为__________(这里n1).
6.已知x,y∈R,f(x,y)=x2+6y2-2xy-14x-6y+72的最小值为__________.
7.已知0≤ak≤1(k=1,2,…,2n),记a2n+1=a1,a2n+2=a2,则的最大值为__________.
8.已知0≤x≤1,0≤y≤1,0≤z≤1,则的最大值为__________.
9.已知≤x≤5,求证:
10.对于不全相等的正整数a,b,c,求证:
11.已知ai0(i=1,2,…,n),且=1。又0λ1≤λ2≤…≤λn,求证:≤

六、联赛二试水平训练题
1.设正实数x,y,z满足x+y+z=1,求证:
2.设整数x1,x2,…,xn与y1,y2,…,yn满足1x1x2…xny1y2…ym,x1+x2+…+xny1+y2+…+ym,求证:x1x2xny1y2…ym.
3.设f(x)=x2+a,记f(x),fn(x)=f(fn-1(x))(n=2,3,…),M={a∈R|对所有正整数n,|fn(0)|≤2},求证:。
4.给定正数λ和正整数n(n≥2),求最小的正数M(λ),使得对于所有非负数x1,x2,…,xn,有M(λ)
5.已知x,y,z∈R+,求证:(xy+yz+zx)
6.已知非负实数a,b,c满足a+b+c=1,求证:2≤(1-a2)2+(1-b2)2+(1-c2)2≤(1+a)(1+b)(1+c),并求出等号成立的条件。

文章来源:http://m.jab88.com/j/52377.html

更多

最新更新

更多