88教案网

第十五章复数(高中数学竞赛标准教材)

第十五章复数
一、基础知识
1.复数的定义:设i为方程x2=-1的根,i称为虚数单位,由i与实数进行加、减、乘、除等运算。便产生形如a+bi(a,b∈R)的数,称为复数。所有复数构成的集合称复数集。通常用C来表示。
2.复数的几种形式。对任意复数z=a+bi(a,b∈R),a称实部记作Re(z),b称虚部记作Im(z).z=ai称为代数形式,它由实部、虚部两部分构成;若将(a,b)作为坐标平面内点的坐标,那么z与坐标平面唯一一个点相对应,从而可以建立复数集与坐标平面内所有的点构成的集合之间的一一映射。因此复数可以用点来表示,表示复数的平面称为复平面,x轴称为实轴,y轴去掉原点称为虚轴,点称为复数的几何形式;如果将(a,b)作为向量的坐标,复数z又对应唯一一个向量。因此坐标平面内的向量也是复数的一种表示形式,称为向量形式;另外设z对应复平面内的点Z,见图15-1,连接OZ,设∠xOZ=θ,|OZ|=r,则a=rcosθ,b=rsinθ,所以z=r(cosθ+isinθ),这种形式叫做三角形式。若z=r(cosθ+isinθ),则θ称为z的辐角。若0≤θ2π,则θ称为z的辐角主值,记作θ=Arg(z).r称为z的模,也记作|z|,由勾股定理知|z|=.如果用eiθ表示cosθ+isinθ,则z=reiθ,称为复数的指数形式。
3.共轭与模,若z=a+bi,(a,b∈R),则a-bi称为z的共轭复数。模与共轭的性质有:(1);(2);(3);(4);(5);(6);(7)||z1|-|z2||≤|z1±z2|≤|z1|+|z2|;(8)|z1+z2|2+|z1-z2|2=2|z1|2+2|z2|2;(9)若|z|=1,则。
4.复数的运算法则:(1)按代数形式运算加、减、乘、除运算法则与实数范围内一致,运算结果可以通过乘以共轭复数将分母分为实数;(2)按向量形式,加、减法满足平行四边形和三角形法则;(3)按三角形式,若z1=r1(cosθ1+isinθ1),z2=r2(cosθ2+isinθ2),则z1z2=r1r2[cos(θ1+θ2)+isin(θ1+θ2)];若[cos(θ1-θ2)+isin(θ1-θ2)],用指数形式记为z1z2=r1r2ei(θ1+θ2),
5.棣莫弗定理:[r(cosθ+isinθ)]n=rn(cosnθ+isinnθ).
6.开方:若r(cosθ+isinθ),则,k=0,1,2,…,n-1。
7.单位根:若wn=1,则称w为1的一个n次单位根,简称单位根,记Z1=,则全部单位根可表示为1,,.单位根的基本性质有(这里记,k=1,2,…,n-1):(1)对任意整数k,若k=nq+r,q∈Z,0≤r≤n-1,有Znq+r=Zr;(2)对任意整数m,当n≥2时,有=特别1+Z1+Z2+…+Zn-1=0;(3)xn-1+xn-2+…+x+1=(x-Z1)(x-Z2)…(x-Zn-1)=(x-Z1)(x-)…(x-).
8.复数相等的充要条件:(1)两个复数实部和虚部分别对应相等;(2)两个复数的模和辐角主值分别相等。
9.复数z是实数的充要条件是z=;z是纯虚数的充要条件是:z+=0(且z≠0).
10.代数基本定理:在复数范围内,一元n次方程至少有一个根。
11.实系数方程虚根成对定理:实系数一元n次方程的虚根成对出现,即若z=a+bi(b≠0)是方程的一个根,则=a-bi也是一个根。
12.若a,b,c∈R,a≠0,则关于x的方程ax2+bx+c=0,当Δ=b2-4ac0时方程的根为
二、方法与例题
1.模的应用。
例1求证:当n∈N+时,方程(z+1)2n+(z-1)2n=0只有纯虚根。
[证明]若z是方程的根,则(z+1)2n=-(z-1)2n,所以|(z+1)2n|=|-(z-1)2n|,即|z+1|2=|z-1|2,即(z+1)(+1)=(z-1)(-1),化简得z+=0,又z=0不是方程的根,所以z是纯虚数。
例2设f(z)=z2+az+b,a,b为复数,对一切|z|=1,有|f(z)|=1,求a,b的值。
[解]因为4=(1+a+b)+(1-a+b)-(-1+ai+b)-(-1-ai+b)
=|f(1)+f(-1)-f(i)-f(-i)|

≥|f(1)|+|f(-1)|+|f(i)|+|f(-i)|=4,其中等号成立。
所以f(1),f(-1),-f(i),-f(-i)四个向量方向相同,且模相等。
所以f(1)=f(-1)=-f(i)=-f(-i),解得a=b=0.
2.复数相等。
例3设λ∈R,若二次方程(1-i)x2+(λ+i)x+1+λi=0有两个虚根,求λ满足的充要条件。
[解]若方程有实根,则方程组有实根,由方程组得(λ+1)x+λ+1=0.若λ=-1,则方程x2-x+1=0中Δ0无实根,所以λ≠-1。所以x=-1,λ=2.所以当λ≠2时,方程无实根。所以方程有两个虚根的充要条件为λ≠2。
3.三角形式的应用。
例4设n≤2000,n∈N,且存在θ满足(sinθ+icosθ)n=sinnθ+icosnθ,那么这样的n有多少个?
[解]由题设得
,所以n=4k+1.又因为0≤n≤2000,所以1≤k≤500,所以这样的n有500个。
4.二项式定理的应用。
例5计算:(1);(2)
[解](1+i)100=[(1+i)2]50=(2i)50=-250,由二项式定理(1+i)100==)+()i,比较实部和虚部,得=-250,=0。
5.复数乘法的几何意义。
例6以定长线段BC为一边任作ΔABC,分别以AB,AC为腰,B,C为直角顶点向外作等腰直角ΔABM、等腰直角ΔACN。求证:MN的中点为定点。
[证明]设|BC|=2a,以BC中点O为原点,BC为x轴,建立直角坐标系,确定复平面,则B,C对应的复数为-a,a,点A,M,N对应的复数为z1,z2,z3,,由复数乘法的几何意义得:,①,②由①+②得z2+z3=i(z1+a)-i(z1-a)=2ai.设MN的中点为P,对应的复数z=,为定值,所以MN的中点P为定点。
例7设A,B,C,D为平面上任意四点,求证:ABAD+BCAD≥ACBD。
[证明]用A,B,C,D表示它们对应的复数,则(A-B)(C-D)+(B-C)(A-D)=(A-C)(B-D),因为|A-B||C-D|+|B-C||A-D|≥(A-B)(C-D)+(B-C)(A-D).
所以|A-B||C-D|+|B-C||A-D|≥|A-C||B-D|,“=”成立当且仅当,即=π,即A,B,C,D共圆时成立。不等式得证。
6.复数与轨迹。
例8ΔABC的顶点A表示的复数为3i,底边BC在实轴上滑动,且|BC|=2,求ΔABC的外心轨迹。
[解]设外心M对应的复数为z=x+yi(x,y∈R),B,C点对应的复数分别是b,b+2.因为外心M是三边垂直平分线的交点,而AB的垂直平分线方程为|z-b|=|z-3i|,BC的垂直平分线的方程为|z-b|=|z-b-2|,所以点M对应的复数z满足|z-b|=|z-3i|=|z-b-2|,消去b解得
所以ΔABC的外心轨迹是轨物线。
7.复数与三角。
例9已知cosα+cosβ+cosγ=sinα+sinβ+sinγ=0,求证:cos2α+cos2β+cos2γ=0。
[证明]令z1=cosα+isinα,z2=cosβ+isinβ,z3=cosγ+isinγ,则
z1+z2+z3=0。所以又因为|zi|=1,i=1,2,3.
所以zi=1,即
由z1+z2+z3=0得①

所以
所以cos2α+cos2β+cos2γ+i(sin2α+sin2β+sin2γ)=0.
所以cos2α+cos2β+cos2γ=0。
例10求和:S=cos200+2cos400+…+18cos18×200.
[解]令w=cos200+isin200,则w18=1,令P=sin200+2sin400+…+18sin18×200,则S+iP=w+2w2+…+18w18.①由①×w得w(S+iP)=w2+2w3+…+17w18+18w19,②由①-②得(1-w)(S+iP)=w+w2+…+w18-18w19=,所以S+iP=,所以
8.复数与多项式。
例11已知f(z)=c0zn+c1zn-1+…+cn-1z+cn是n次复系数多项式(c0≠0).
求证:一定存在一个复数z0,|z0|≤1,并且|f(z0)|≥|c0|+|cn|.
[证明]记c0zn+c1zn-1+…+cn-1z=g(z),令=Arg(cn)-Arg(z0),则方程g(Z)-c0eiθ=0为n次方程,其必有n个根,设为z1,z2,…,zn,从而g(z)-c0eiθ=(z-z1)(z-z2)…(z-zn)c0,令z=0得-c0eiθ=(-1)nz1z2…znc0,取模得|z1z2…zn|=1。所以z1,z2,…,zn中必有一个zi使得|zi|≤1,从而f(zi)=g(zi)+cn=c0eiθ=cn,所以|f(zi)|=|c0eiθ+cn|=|c0|+|cn|.
9.单位根的应用。
例12证明:自⊙O上任意一点p到正多边形A1A2…An各个顶点的距离的平方和为定值。
[证明]取此圆为单位圆,O为原点,射线OAn为实轴正半轴,建立复平面,顶点A1对应复数设为,则顶点A2A3…An对应复数分别为ε2,ε3,…,εn.设点p对应复数z,则|z|=1,且=2n-
=2n-命题得证。
10.复数与几何。
例13如图15-2所示,在四边形ABCD内存在一点P,使得ΔPAB,ΔPCD都是以P为直角顶点的等腰直角三角形。求证:必存在另一点Q,使得ΔQBC,ΔQDA也都是以Q为直角顶点的等腰直角三角形。
[证明]以P为原点建立复平面,并用A,B,C,D,P,Q表示它们对应的复数,由题设及复数乘法的几何意义知D=iC,B=iA;取,则C-Q=i(B-Q),则ΔBCQ为等腰直角三角形;又由C-Q=i(B-Q)得,即A-Q=i(D-Q),所以ΔADQ也为等腰直角三角形且以Q为直角顶点。综上命题得证。
例14平面上给定ΔA1A2A3及点p0,定义As=As-3,s≥4,构造点列p0,p1,p2,…,使得pk+1为绕中心Ak+1顺时针旋转1200时pk所到达的位置,k=0,1,2,…,若p1986=p0.证明:ΔA1A2A3为等边三角形。
[证明]令u=,由题设,约定用点同时表示它们对应的复数,取给定平面为复平面,则p1=(1+u)A1-up0,
p2=(1+u)A2-up1,
p3=(1+u)A3-up2,
①×u2+②×(-u)得p3=(1+u)(A3-uA2+u2A1)+p0=w+p0,w为与p0无关的常数。同理得p6=w+p3=2w+p0,…,p1986=662w+p0=p0,所以w=0,从而A3-uA2+u2A1=0.由u2=u-1得A3-A1=(A2-A1)u,这说明ΔA1A2A3为正三角形。
三、基础训练题
1.满足(2x2+5x+2)+(y2-y-2)i=0的有序实数对(x,y)有__________组。
2.若z∈C且z2=8+6i,且z3-16z-=__________。
3.复数z满足|z|=5,且(3+4i)z是纯虚数,则__________。
4.已知,则1+z+z2+…+z1992=__________。
5.设复数z使得的一个辐角的绝对值为,则z辐角主值的取值范围是__________。
6.设z,w,λ∈C,|λ|≠1,则关于z的方程-Λz=w的解为z=__________。
7.设0x1,则2arctan__________。
8.若α,β是方程ax2+bx+c=0(a,b,c∈R)的两个虚根且,则__________。
9.若a,b,c∈C,则a2+b2c2是a2+b2-c20成立的__________条件。
10.已知关于x的实系数方程x2-2x+2=0和x2+2mx+1=0的四个不同的根在复平面上对应的点共圆,则m取值的集合是__________。
11.二次方程ax2+x+1=0的两根的模都小于2,求实数a的取值范围。
12.复平面上定点Z0,动点Z1对应的复数分别为z0,z1,其中z0≠0,且满足方程|z1-z0|=|z1|,①另一个动点Z对应的复数z满足z1z=-1,②求点Z的轨迹,并指出它在复平面上的形状和位置。
13.N个复数z1,z2,…,zn成等比数列,其中|z1|≠1,公比为q,|q|=1且q≠±1,复数w1,w2,…,wn满足条件:wk=zk++h,其中k=1,2,…,n,h为已知实数,求证:复平面内表示w1,w2,…,wn的点p1,p2,…,pn都在一个焦距为4的椭圆上。
四、高考水平训练题
1.复数z和cosθ+isinθ对应的点关于直线|iz+1|=|z+i|对称,则z=__________。
2.设复数z满足z+|z|=2+i,那么z=__________。
3.有一个人在草原上漫步,开始时从O出发,向东行走,每走1千米后,便向左转角度,他走过n千米后,首次回到原出发点,则n=__________。
4.若,则|z|=__________。
5.若ak≥0,k=1,2,…,n,并规定an+1=a1,使不等式恒成立的实数λ的最大值为__________。
6.已知点P为椭圆上任意一点,以OP为边逆时针作正方形OPQR,则动点R的轨迹方程为__________。
7.已知P为直线x-y+1=0上的动点,以OP为边作正ΔOPQ(O,P,Q按顺时针方向排列)。则点Q的轨迹方程为__________。
8.已知z∈C,则命题“z是纯虚数”是命题“”的__________条件。
9.若n∈N,且n≥3,则方程zn+1+zn-1=0的模为1的虚根的个数为__________。
10.设(x2006+x2008+3)2007=a0+a1x+a2x2+…+anxn,则+…+a3k-__________。
11.设复数z1,z2满足z1,其中A≠0,A∈C。证明:
(1)|z1+A||z2+A|=|A|2;(2)
12.若z∈C,且|z|=1,u=z4-z3-3z2i-z+1.求|u|的最大值和最小值,并求取得最大值、最小值时的复数z.
13.给定实数a,b,c,已知复数z1,z2,z3满足求
|az1+bz2+cz3|的值。
三、联赛一试水平训练题
1.已知复数z满足则z的辐角主值的取值范围是__________。
2.设复数z=cosθ+isinθ(0≤θ≤π),复数z,(1+i)z,2在复平面上对应的三个点分别是P,Q,R,当P,Q,R不共线时,以PQ,PR为两边的平行四边形第四个顶点为S,则S到原点距离的最大值为__________。
3.设复平面上单位圆内接正20边形的20个顶点所对应的复数依次为z1,z2,…,z20,则复数所对应的不同点的个数是__________。
4.已知复数z满足|z|=1,则|z+iz+1|的最小值为__________。
5.设,z1=w-z,z2=w+z,z1,z2对应复平面上的点A,B,点O为原点,∠AOB=900,|AO|=|BO|,则ΔOAB面积是__________。
6.设,则(x-w)(x-w3)(x-w7)(x-w9)的展开式为__________。
7.已知()m=(1+i)n(m,n∈N+),则mn的最小值是__________。
8.复平面上,非零复数z1,z2在以i为圆心,1为半径的圆上,z2的实部为零,z1的辐角主值为,则z2=__________。
9.当n∈N,且1≤n≤100时,的值中有实数__________个。
10.已知复数z1,z2满足,且,,,则的值是__________。
11.集合A={z|z18=1},B={w|w48=1},C={zw|z∈A,w∈B},问:集合C中有多少个不同的元素?
12.证明:如果复数A的模为1,那么方程的所有根都是不相等的实根(n∈N+).
13.对于适合|z|≤1的每一个复数z,要使0|αz+β|2总能成立,试问:复数α,β应满足什么条件?
六、联赛二试水平训练题
1.设非零复数a1,a2,a3,a4,a5满足
其中S为实数且|S|≤2,求证:复数a1,a2,a3,a4,a5在复平面上所对应的点位于同一圆周上。
2.求证:。
3.已知p(z)=zn+c1zn-1+c2zn-2+…+cn是复变量z的实系数多项式,且|p(i)|1,求证:存在实数a,b,使得p(a+bi)=0且(a2+b2+1)24b2+1.
4.运用复数证明:任给8个非零实数a1,a2,…,a8,证明六个数a1a3+a2a4,a1a5+a2a6,a1a7+a2a8,a3a5+a4a6,a3a7+a4a8,a5a7+a6a8中至少有一个是非负数。
5.已知复数z满足11z10+10iz9+10iz-11=0,求证:|z|=1.
6.设z1,z2,z3为复数,求证:
|z1|+|z2|+|z3|+|z1+z2+z3|≥|z1+z2|+|z2+z3|+|z3+z1|。

精选阅读

高中数学竞赛标准教材(第五章数列)


第五章数列

一、基础知识
定义1数列,按顺序给出的一列数,例如1,2,3,…,n,….数列分有穷数列和无穷数列两种,数列{an}的一般形式通常记作a1,a2,a3,…,an或a1,a2,a3,…,an…。其中a1叫做数列的首项,an是关于n的具体表达式,称为数列的通项。
定理1若Sn表示{an}的前n项和,则S1=a1,当n1时,an=Sn-Sn-1.
定义2等差数列,如果对任意的正整数n,都有an+1-an=d(常数),则{an}称为等差数列,d叫做公差。若三个数a,b,c成等差数列,即2b=a+c,则称b为a和c的等差中项,若公差为d,则a=b-d,c=b+d.
定理2等差数列的性质:1)通项公式an=a1+(n-1)d;2)前n项和公式:Sn=;3)an-am=(n-m)d,其中n,m为正整数;4)若n+m=p+q,则an+am=ap+aq;5)对任意正整数p,q,恒有ap-aq=(p-q)(a2-a1);6)若A,B至少有一个不为零,则{an}是等差数列的充要条件是Sn=An2+Bn.
定义3等比数列,若对任意的正整数n,都有,则{an}称为等比数列,q叫做公比。
定理3等比数列的性质:1)an=a1qn-1;2)前n项和Sn,当q1时,Sn=;当q=1时,Sn=na1;3)如果a,b,c成等比数列,即b2=ac(b0),则b叫做a,c的等比中项;4)若m+n=p+q,则aman=apaq。
定义4极限,给定数列{an}和实数A,若对任意的0,存在M,对任意的nM(n∈N),都有|an-A|,则称A为n→+∞时数列{an}的极限,记作
定义5无穷递缩等比数列,若等比数列{an}的公比q满足|q|1,则称之为无穷递增等比数列,其前n项和Sn的极限(即其所有项的和)为(由极限的定义可得)。
定理3第一数学归纳法:给定命题p(n),若:(1)p(n0)成立;(2)当p(n)时n=k成立时能推出p(n)对n=k+1成立,则由(1),(2)可得命题p(n)对一切自然数n≥n0成立。

竞赛常用定理
定理4第二数学归纳法:给定命题p(n),若:(1)p(n0)成立;(2)当p(n)对一切n≤k的自然数n都成立时(k≥n0)可推出p(k+1)成立,则由(1),(2)可得命题p(n)对一切自然数n≥n0成立。
定理5对于齐次二阶线性递归数列xn=axn-1+bxn-2,设它的特征方程x2=ax+b的两个根为α,β:(1)若αβ,则xn=c1an-1+c2βn-1,其中c1,c2由初始条件x1,x2的值确定;(2)若α=β,则xn=(c1n+c2)αn-1,其中c1,c2的值由x1,x2的值确定。
二、方法与例题
1.不完全归纳法。
这种方法是从特殊情况出发去总结更一般的规律,当然结论未必都是正确的,但却是人类探索未知世界的普遍方式。通常解题方式为:特殊→猜想→数学归纳法证明。
例1试给出以下几个数列的通项(不要求证明);1)0,3,8,15,24,35,…;2)1,5,19,65,…;3)-1,0,3,8,15,…。
【解】1)an=n2-1;2)an=3n-2n;3)an=n2-2n.
例2已知数列{an}满足a1=,a1+a2+…+an=n2an,n≥1,求通项an.
【解】因为a1=,又a1+a2=22a2,
所以a2=,a3=,猜想(n≥1).
证明;1)当n=1时,a1=,猜想正确。2)假设当n≤k时猜想成立。
当n=k+1时,由归纳假设及题设,a1+a1+…+a1=[(k+1)2-1]ak+1,,
所以=k(k+2)ak+1,
即=k(k+2)ak+1,
所以=k(k+2)ak+1,所以ak+1=
由数学归纳法可得猜想成立,所以
例3设0a1,数列{an}满足an=1+a,an-1=a+,求证:对任意n∈N+,有an1.
【证明】证明更强的结论:1an≤1+a.
1)当n=1时,1a1=1+a,①式成立;
2)假设n=k时,①式成立,即1an≤1+a,则当n=k+1时,有
由数学归纳法可得①式成立,所以原命题得证。
2.迭代法。
数列的通项an或前n项和Sn中的n通常是对任意n∈N成立,因此可将其中的n换成n+1或n-1等,这种办法通常称迭代或递推。
例4数列{an}满足an+pan-1+qan-2=0,n≥3,q0,求证:存在常数c,使得an+
【证明】an+1+(pan+1+an+2)+=an+2(-qan)+=
+an(pqn+1+qan)]=q().
若=0,则对任意n,+=0,取c=0即可.
若0,则{+}是首项为,公式为q的等比数列。
所以+=qn.
取即可.
综上,结论成立。
例5已知a1=0,an+1=5an+,求证:an都是整数,n∈N+.
【证明】因为a1=0,a2=1,所以由题设知当n≥1时an+1an.
又由an+1=5an+移项、平方得

当n≥2时,把①式中的n换成n-1得,即

因为an-1an+1,所以①式和②式说明an-1,an+1是方程x2-10anx+-1=0的两个不等根。由韦达定理得an+1+an-1=10an(n≥2).
再由a1=0,a2=1及③式可知,当n∈N+时,an都是整数。
3.数列求和法。
数列求和法主要有倒写相加、裂项求和法、错项相消法等。
例6已知an=(n=1,2,…),求S99=a1+a2+…+a99.
【解】因为an+a100-n=+=,
所以S99=
例7求和:+…+
【解】一般地,

所以Sn=

例8已知数列{an}满足a1=a2=1,an+2=an+1+an,Sn为数列的前n项和,求证:Sn2。
【证明】由递推公式可知,数列{an}前几项为1,1,2,3,5,8,13。
因为,①
所以。②
由①-②得,
所以。
又因为Sn-2Sn且0,
所以Sn,所以,
所以Sn2,得证。
4.特征方程法。
例9已知数列{an}满足a1=3,a2=6,an+2=4n+1-4an,求an.
【解】由特征方程x2=4x-4得x1=x2=2.
故设an=(α+βn)2n-1,其中,
所以α=3,β=0,
所以an=32n-1.
例10已知数列{an}满足a1=3,a2=6,an+2=2an+1+3an,求通项an.
【解】由特征方程x2=2x+3得x1=3,x2=-1,
所以an=α3n+β(-1)n,其中,
解得α=,β,
所以3]。
5.构造等差或等比数列。
例11正数列a0,a1,…,an,…满足=2an-1(n≥2)且a0=a1=1,求通项。
【解】由得=1,

令bn=+1,则{bn}是首项为+1=2,公比为2的等比数列,
所以bn=+1=2n,所以=(2n-1)2,
所以an=…a0=
注:C1C2…Cn.
例12已知数列{xn}满足x1=2,xn+1=,n∈N+,求通项。
【解】考虑函数f(x)=的不动点,由=x得x=
因为x1=2,xn+1=,可知{xn}的每项均为正数。
又+2≥,所以xn+1≥(n≥1)。又
Xn+1-==,①
Xn+1+==,②
由①÷②得。③
又0,
由③可知对任意n∈N+,0且,
所以是首项为,公比为2的等比数列。
所以,所以,
解得。
注:本例解法是借助于不动点,具有普遍意义。
三、基础训练题
1.数列{xn}满足x1=2,xn+1=Sn+(n+1),其中Sn为{xn}前n项和,当n≥2时,xn=_________.
2.数列{xn}满足x1=,xn+1=,则{xn}的通项xn=_________.
3.数列{xn}满足x1=1,xn=+2n-1(n≥2),则{xn}的通项xn=_________.
4.等差数列{an}满足3a8=5a13,且a10,Sn为前n项之和,则当Sn最大时,n=_________.
5.等比数列{an}前n项之和记为Sn,若S10=10,S30=70,则S40=_________.
6.数列{xn}满足xn+1=xn-xn-1(n≥2),x1=a,x2=b,Sn=x1+x2+…+xn,则S100=_________.
7.数列{an}中,Sn=a1+a2+…+an=n2-4n+1则|a1|+|a2|+…+|a10|=_________.
8.若,并且x1+x2+…+xn=8,则x1=_________.
9.等差数列{an},{bn}的前n项和分别为Sn和Tn,若,则=_________.
10.若n!=n(n-1)…21,则=_________.
11.若{an}是无穷等比数列,an为正整数,且满足a5+a6=48,log2a2log2a3+log2a2log2a5+log2a2log2a6+log2a5log2a6=36,求的通项。
12.已知数列{an}是公差不为零的等差数列,数列{}是公比为q的等比数列,且b1=1,b2=5,b3=17,求:(1)q的值;(2)数列{bn}的前n项和Sn。

四、高考水平训练题
1.已知函数f(x)=,若数列{an}满足a1=,an+1=f(an)(n∈N+),则a2006=_____________.
2.已知数列{an}满足a1=1,an=a1+2a2+3a3+…+(n-1)an-1(n≥2),则{an}的通项an=.
3.若an=n2+,且{an}是递增数列,则实数的取值范围是__________.
4.设正项等比数列{an}的首项a1=,前n项和为Sn,且210S30-(210+1)S20+S10=0,则an=_____________.
5.已知,则a的取值范围是______________.
6.数列{an}满足an+1=3an+n(n∈N+),存在_________个a1值,使{an}成等差数列;存在________个a1值,使{an}成等比数列。
7.已知(n∈N+),则在数列{an}的前50项中,最大项与最小项分别是____________.
8.有4个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和中16,第二个数与第三个数的和是12,则这四个数分别为____________.
9.设{an}是由正数组成的数列,对于所有自然数n,an与2的等差中项等于Sn与2的等比中项,则an=____________.
10.在公比大于1的等比数列中,最多连续有__________项是在100与1000之间的整数.
11.已知数列{an}中,an0,求证:数列{an}成等差数列的充要条件是
(n≥2)①恒成立。
12.已知数列{an}和{bn}中有an=an-1bn,bn=(n≥2),当a1=p,b1=q(p0,q0)且p+q=1时,(1)求证:an0,bn0且an+bn=1(n∈N);(2)求证:an+1=;(3)求数列
13.是否存在常数a,b,c,使题设等式
122+232+…+n(n+1)2=(an2+bn+c)
对于一切自然数n都成立?证明你的结论。
五、联赛一试水平训练题
1.设等差数列的首项及公差均为非负整数,项数不少于3,且各项和为972,这样的数列共有_________个。
2.设数列{xn}满足x1=1,xn=,则通项xn=__________.
3.设数列{an}满足a1=3,an0,且,则通项an=__________.
4.已知数列a0,a1,a2,…,an,…满足关系式(3-an+1)(6+an)=18,且a0=3,则=__________.
5.等比数列a+log23,a+log43,a+log83的公比为=__________.
6.各项均为实数的等差数列的公差为4,其首项的平方与其余各项之和不超过100,这样的数列至多有__________项.
7.数列{an}满足a1=2,a2=6,且=2,则
________.
8.数列{an}称为等差比数列,当且仅当此数列满足a0=0,{an+1-qan}构成公比为q的等比数列,q称为此等差比数列的差比。那么,由100以内的自然数构成等差比数列而差比大于1时,项数最多有__________项.
9.设h∈N+,数列{an}定义为:a0=1,an+1=。问:对于怎样的h,存在大于0的整数n,使得an=1?
10.设{ak}k≥1为一非负整数列,且对任意k≥1,满足ak≥a2k+a2k+1,(1)求证:对任意正整数n,数列中存在n个连续项为0;(2)求出一个满足以上条件,且其存在无限个非零项的数列。
11.求证:存在唯一的正整数数列a1,a2,…,使得
a1=1,a21,an+1(an+1-1)=

六、联赛二试水平训练题
1.设an为下述自然数N的个数:N的各位数字之和为n且每位数字只能取1,3或4,求证:a2n是完全平方数,这里n=1,2,….
2.设a1,a2,…,an表示整数1,2,…,n的任一排列,f(n)是这些排列中满足如下性质的排列数目:①a1=1;②|ai-ai+1|≤2,i=1,2,…,n-1。
试问f(2007)能否被3整除?
3.设数列{an}和{bn}满足a0=1,b0=0,且
求证:an(n=0,1,2,…)是完全平方数。
4.无穷正实数数列{xn}具有以下性质:x0=1,xi+1xi(i=0,1,2,…),
(1)求证:对具有上述性质的任一数列,总能找到一个n≥1,使≥3.999均成立;
(2)寻求这样的一个数列使不等式4对任一n均成立。
5.设x1,x2,…,xn是各项都不大于M的正整数序列且满足xk=|xk-1-xk-2|(k=3,4,…,n)①.试问这样的序列最多有多少项?
6.设a1=a2=,且当n=3,4,5,…时,an=,
(ⅰ)求数列{an}的通项公式;(ⅱ)求证:是整数的平方。
7.整数列u0,u1,u2,u3,…满足u0=1,且对每个正整数n,un+1un-1=kuu,这里k是某个固定的正整数。如果u2000=2000,求k的所有可能的值。
8.求证:存在无穷有界数列{xn},使得对任何不同的m,k,有|xm-xk|≥
9.已知n个正整数a0,a1,…,an和实数q,其中0q1,求证:n个实数b0,b1,…,bn和满足:(1)akbk(k=1,2,…,n);
(2)q(k=1,2,…,n);
(3)b1+b2+…+bn(a0+a1+…+an).

第三章函数(高中数学竞赛标准教材)


第三章函数

一、基础知识
定义1映射,对于任意两个集合A,B,依对应法则f,若对A中的任意一个元素x,在B中都有唯一一个元素与之对应,则称f:A→B为一个映射。
定义2单射,若f:A→B是一个映射且对任意x,y∈A,xy,都有f(x)f(y)则称之为单射。
定义3满射,若f:A→B是映射且对任意y∈B,都有一个x∈A使得f(x)=y,则称f:A→B是A到B上的满射。
定义4一一映射,若f:A→B既是单射又是满射,则叫做一一映射,只有一一映射存在逆映射,即从B到A由相反的对应法则f-1构成的映射,记作f-1:A→B。
定义5函数,映射f:A→B中,若A,B都是非空数集,则这个映射为函数。A称为它的定义域,若x∈A,y∈B,且f(x)=y(即x对应B中的y),则y叫做x的象,x叫y的原象。集合{f(x)|x∈A}叫函数的值域。通常函数由解析式给出,此时函数定义域就是使解析式有意义的未知数的取值范围,如函数y=3-1的定义域为{x|x≥0,x∈R}.
定义6反函数,若函数f:A→B(通常记作y=f(x))是一一映射,则它的逆映射f-1:A→B叫原函数的反函数,通常写作y=f-1(x).这里求反函数的过程是:在解析式y=f(x)中反解x得x=f-1(y),然后将x,y互换得y=f-1(x),最后指出反函数的定义域即原函数的值域。例如:函数y=的反函数是y=1-(x0).
定理1互为反函数的两个函数的图象关于直线y=x对称。
定理2在定义域上为增(减)函数的函数,其反函数必为增(减)函数。
定义7函数的性质。
(1)单调性:设函数f(x)在区间I上满足对任意的x1,x2∈I并且x1x2,总有f(x1)f(x2)(f(x)f(x2)),则称f(x)在区间I上是增(减)函数,区间I称为单调增(减)区间。
(2)奇偶性:设函数y=f(x)的定义域为D,且D是关于原点对称的数集,若对于任意的x∈D,都有f(-x)=-f(x),则称f(x)是奇函数;若对任意的x∈D,都有f(-x)=f(x),则称f(x)是偶函数。奇函数的图象关于原点对称,偶函数的图象关于y轴对称。
(3)周期性:对于函数f(x),如果存在一个不为零的常数T,使得当x取定义域内每一个数时,f(x+T)=f(x)总成立,则称f(x)为周期函数,T称为这个函数的周期,如果周期中存在最小的正数T0,则这个正数叫做函数f(x)的最小正周期。
定义8如果实数ab,则数集{x|axb,x∈R}叫做开区间,记作(a,b),集合{x|a≤x≤b,x∈R}记作闭区间[a,b],集合{x|ax≤b}记作半开半闭区间(a,b],集合{x|a≤xb}记作半闭半开区间[a,b),集合{x|xa}记作开区间(a,+∞),集合{x|x≤a}记作半开半闭区间(-∞,a].
定义9函数的图象,点集{(x,y)|y=f(x),x∈D}称为函数y=f(x)的图象,其中D为f(x)的定义域。通过画图不难得出函数y=f(x)的图象与其他函数图象之间的关系(a,b0);(1)向右平移a个单位得到y=f(x-a)的图象;(2)向左平移a个单位得到y=f(x+a)的图象;(3)向下平移b个单位得到y=f(x)-b的图象;(4)与函数y=f(-x)的图象关于y轴对称;(5)与函数y=-f(-x)的图象关于原点成中心对称;(6)与函数y=f-1(x)的图象关于直线y=x对称;(7)与函数y=-f(x)的图象关于x轴对称。
定理3复合函数y=f[g(x)]的单调性,记住四个字:“同增异减”。例如y=,u=2-x在(-∞,2)上是减函数,y=在(0,+∞)上是减函数,所以y=在(-∞,2)上是增函数。
注:复合函数单调性的判断方法为同增异减。这里不做严格论证,求导之后是显然的。
二、方法与例题
1.数形结合法。
例1求方程|x-1|=的正根的个数.
【解】分别画出y=|x-1|和y=的图象,由图象可知两者有唯一交点,所以方程有一个正根。

例2求函数f(x)=的最大值。
【解】f(x)=,记点P(x,x2),A(3,2),B(0,1),则f(x)表示动点P到点A和B距离的差。
因为|PA|-|PA|≤|AB|=,当且仅当P为AB延长线与抛物线y=x2的交点时等号成立。
所以f(x)max=
2.函数性质的应用。
例3设x,y∈R,且满足,求x+y.
【解】设f(t)=t3+1997t,先证f(t)在(-∞,+∞)上递增。事实上,若ab,则f(b)-f(a)=b3-a3+1997(b-a)=(b-a)(b2+ba+a2+1997)0,所以f(t)递增。
由题设f(x-1)=-1=f(1-y),所以x-1=1-y,所以x+y=2.
例4奇函数f(x)在定义域(-1,1)内是减函数,又f(1-a)+f(1-a2)0,求a的取值范围。
【解】因为f(x)是奇函数,所以f(1-a2)=-f(a2-1),由题设f(1-a)f(a2-1)。
又f(x)在定义域(-1,1)上递减,所以-11-aa2-11,解得0a1。
例5设f(x)是定义在(-∞,+∞)上以2为周期的函数,对k∈Z,用Ik表示区间(2k-1,2k+1],已知当x∈I0时,f(x)=x2,求f(x)在Ik上的解析式。
【解】设x∈Ik,则2k-1x≤2k+1,
所以f(x-2k)=(x-2k)2.
又因为f(x)是以2为周期的函数,
所以当x∈Ik时,f(x)=f(x-2k)=(x-2k)2.
例6解方程:(3x-1)()+(2x-3)(+1)=0.
【解】令m=3x-1,n=2x-3,方程化为
m(+1)+n(+1)=0.①
若m=0,则由①得n=0,但m,n不同时为0,所以m0,n0.
ⅰ)若m0,则由①得n0,设f(t)=t(+1),则f(t)在(0,+∞)上是增函数。又f(m)=f(-n),所以m=-n,所以3x-1+2x-3=0,所以x=
ⅱ)若m0,且n0。同理有m+n=0,x=,但与m0矛盾。
综上,方程有唯一实数解x=
3.配方法。
例7求函数y=x+的值域。
【解】y=x+=[2x+1+2+1]-1
=(+1)-1≥-1=-.
当x=-时,y取最小值-,所以函数值域是[-,+∞)。
4.换元法。
例8求函数y=(++2)(+1),x∈[0,1]的值域。
【解】令+=u,因为x∈[0,1],所以2≤u2=2+2≤4,所以≤u≤2,所以≤≤2,1≤≤2,所以y=,u2∈[+2,8]。
所以该函数值域为[2+,8]。
5.判别式法。
例9求函数y=的值域。
【解】由函数解析式得(y-1)x2+3(y+1)x+4y-4=0.①
当y1时,①式是关于x的方程有实根。
所以△=9(y+1)2-16(y-1)2≥0,解得≤y≤1.
又当y=1时,存在x=0使解析式成立,
所以函数值域为[,7]。
6.关于反函数。
例10若函数y=f(x)定义域、值域均为R,且存在反函数。若f(x)在(-∞,+∞)上递增,求证:y=f-1(x)在(-∞,+∞)上也是增函数。
【证明】设x1x2,且y1=f-1(x1),y2=f-1(x2),则x1=f(y1),x2=f(y2),若y1≥y2,则因为f(x)在(-∞,+∞)上递增,所以x1≥x2与假设矛盾,所以y1y2。
即y=f-1(x)在(-∞,+∞)递增。
例11设函数f(x)=,解方程:f(x)=f-1(x).
【解】首先f(x)定义域为(-∞,-)∪[-,+∞);其次,设x1,x2是定义域内变量,且x1x2-;=0,
所以f(x)在(-∞,-)上递增,同理f(x)在[-,+∞)上递增。
在方程f(x)=f-1(x)中,记f(x)=f-1(x)=y,则y≥0,又由f-1(x)=y得f(y)=x,所以x≥0,所以x,y∈[-,+∞).
若xy,设xy,则f(x)=yf(y)=x,矛盾。
同理若xy也可得出矛盾。所以x=y.
即f(x)=x,化简得3x5+2x4-4x-1=0,
即(x-1)(3x4+5x3+5x2+5x+1)=0,
因为x≥0,所以3x4+5x3+5x2+5x+10,所以x=1.
三、基础训练题
1.已知X={-1,0,1},Y={-2,-1,0,1,2},映射f:X→Y满足:对任意的x∈X,它在Y中的象f(x)使得x+f(x)为偶数,这样的映射有_______个。
2.给定A={1,2,3},B={-1,0,1}和映射f:X→Y,若f为单射,则f有_______个;若f为满射,则f有_______个;满足f[f(x)]=f(x)的映射有_______个。
3.若直线y=k(x-2)与函数y=x2+2x图象相交于点(-1,-1),则图象与直线一共有_______个交点。
4.函数y=f(x)的值域为[],则函数g(x)=f(x)+的值域为_______。
5.已知f(x)=,则函数g(x)=f[f(x)]的值域为_______。
6.已知f(x)=|x+a|,当x≥3时f(x)为增函数,则a的取值范围是_______。
7.设y=f(x)在定义域(,2)内是增函数,则y=f(x2-1)的单调递减区间为_______。
8.若函数y=(x)存在反函数y=-1(x),则y=-1(x)的图象与y=-(-x)的图象关于直线_______对称。
9.函数f(x)满足=1-,则f()=_______。
10.函数y=,x∈(1,+∞)的反函数是_______。
11.求下列函数的值域:(1)y=;(2)y=;(3)y=x+2;(4)y=
12.已知定义在R上,对任意x∈R,f(x)=f(x+2),且f(x)是偶函数,又当x∈[2,3]时,f(x)=x,则当x∈[-2,0]时,求f(x)的解析式。
四、高考水平训练题
1.已知a∈,f(x)定义域是(0,1],则g(x)=f(x+a)+f(x-a)+f(x)的定义域为_______。
2.设0≤a1时,f(x)=(a-1)x2-6ax+a+1恒为正值。则f(x)定义域为_______。
3.映射f:{a,b,c,d}→{1,2,3}满足10f(a)f(b)f(c)f(d)20,这样的映射f有_______个。
4.设函数y=f(x)(x∈R)的值域为R,且为增函数,若方程f(x)=x解集为P,f[f(x)]=x解集为Q,则P,Q的关系为:P_______Q(填=、、)。
5.下列函数是否为奇函数:(1)f(x)=(x-1);(2)g(x)=|2x+1|-|2x-1|;(3)(x)=;(4)y=
6.设函数y=f(x)(x∈R且x0),对任意非零实数x1,x2满足f(x1x2)=f(x1)+f(x2),又f(x)在(0,+∞)是增函数,则不等式f(x)+f(x-)≤0的解集为_______。
7.函数f(x)=,其中P,M为R的两个非空子集,又规定f(P)={y|y=f(x),x∈P},f(M)={y|y=f(x),x∈M},给出如下判断:①若P∩M=,则f(P)∩f(M)=;②若P∩M,则f(P)∩f(M);③若P∪M=R,则f(P)∪f(M)=R;④若P∪MR,则f(P)∪f(M)R.其中正确的判断是_______。
8.函数y=f(x+1)的反函数是y=f-1(x+1),并且f(1)=3997,则f(1998)=_______。
9.已知y=f(x)是定义域为[-6,6]的奇函数,且当x∈[0,3]时是一次函数,当x∈[3,6]时是二次函数,又f(6)=2,当x∈[3,6]时,f(x)≤f(5)=3。求f(x)的解析式。
10.设a0,函数f(x)定义域为R,且f(x+a)=,求证:f(x)为周期函数。
11.设关于x的方程2x2-tx-2=0的两根为α,β(αβ),已知函数f(x)=,(1)求f(α)、f(β);(2)求证:f(x)在[α,β]上是增函数;(3)对任意正数x1,x2,求证:2|α-β|.

五、联赛一试水平训练题
1.奇函数f(x)存在函数f-1(x),若把y=f(x)的图象向上平移3个单位,然后向右平移2个单位后,再关于直线y=-x对称,得到的曲线所对应的函数是________.
2.若a0,a1,F(x)是奇函数,则G(x)=F(x)是________(奇偶性).
3.若=x,则下列等式中正确的有________.①F(-2-x)=-2-F(x);②F(-x)=;③F(x-1)=F(x);④F(F(x))=-x.
4.设函数f:R→R满足f(0)=1,且对任意x,y∈R,都有f(xy+1)=f(x)f(y)-f(y)-x+2,则f(x)=________.
5.已知f(x)是定义在R上的函数,f(1)=1,且对任意x∈R都有f(x+5)≥f(x)+5,f(x+1)≤f(x)+1。若g(x)=f(x)+1-x,则g(2002)=________.
6.函数f(x)=的单调递增区间是________.
7.函数f(x)=的奇偶性是:________奇函数,________偶函数(填是,非)。
8.函数y=x+的值域为________.
9.设f(x)=,
对任意的a∈R,记V(a)=max{f(x)-ax|x∈[1,3]}-min{f(x)-ax|x∈[1,3]},试求V(a)的最小值。
10.解方程组:(在实数范围内)
11.设k∈N+,f:N+→N+满足:(1)f(x)严格递增;(2)对任意n∈N+,有f[f(n)]=kn,求证:对任意n∈N+,都有n≤f(n)≤
六、联赛二试水平训练题
1.求证:恰有一个定义在所有非零实数上的函数f,满足:(1)对任意x≠0,f(x)=xf;(2)对所有的x≠-y且xy≠0,有f(x)+f(y)=1+f(x+y).
2.设f(x)对一切x0有定义,且满足:(ⅰ)f(x)在(0,+∞)是增函数;(ⅱ)任意x0,f(x)f=1,试求f(1).
3.f:[0,1]→R满足:(1)任意x∈[0,1],f(x)≥0;(2)f(1)=1;(3)当x,y,x+y∈[0,1]时,f(x)+f(y)≤f(x+y),试求最小常数c,对满足(1),(2),(3)的函数f(x)都有f(x)≤cx.
4.试求f(x,y)=6(x2+y2)(x+y)-4(x2+xy+y2)-3(x+y)+5(x0,y0)的最小值。
5.对给定的正数p,q∈(0,1),有p+q1≥p2+q2,试求f(x)=(1-x)+在[1-q,p]上的最大值。
6.已知f:(0,1)→R且f(x)=.
当x∈时,试求f(x)的最大值。
7.函数f(x)定义在整数集上,且满足f(n)=,求f(100)的值。
8.函数y=f(x)定义在整个实轴上,它的图象在围绕坐标原点旋转角后不变。(1)求证:方程f(x)=x恰有一个解;(2)试给出一个具有上述性质的函数。
9.设Q+是正有理数的集合,试构造一个函数f:Q+→Q+,满足这样的条件:f(xf(y))=x,y∈Q+.

高中数学竞赛标准教材(第十一章圆锥曲线)


一名优秀的教师在每次教学前有自己的事先计划,作为高中教师就要根据教学内容制定合适的教案。教案可以让学生更好的吸收课堂上所讲的知识点,帮助高中教师缓解教学的压力,提高教学质量。那么如何写好我们的高中教案呢?下面是小编为大家整理的“高中数学竞赛标准教材(第十一章圆锥曲线)”,欢迎阅读,希望您能够喜欢并分享!

第十一章圆锥曲线

一、基础知识
1.椭圆的定义,第一定义:平面上到两个定点的距离之和等于定长(大于两个定点之间的距离)的点的轨迹,即|PF1|+|PF2|=2a(2a|F1F2|=2c).
第二定义:平面上到一个定点的距离与到一条定直线的距离之比为同一个常数e(0e1)的点的轨迹(其中定点不在定直线上),即
(0e1).
第三定义:在直角坐标平面内给定两圆c1:x2+y2=a2,c2:x2+y2=b2,a,b∈R+且a≠b。从原点出发的射线交圆c1于P,交圆c2于Q,过P引y轴的平行线,过Q引x轴的平行线,两条线的交点的轨迹即为椭圆。
2.椭圆的方程,如果以椭圆的中心为原点,焦点所在的直线为坐标轴建立坐标系,由定义可求得它的标准方程,若焦点在x轴上,列标准方程为
(ab0),
参数方程为(为参数)。
若焦点在y轴上,列标准方程为
(ab0)。
3.椭圆中的相关概念,对于中心在原点,焦点在x轴上的椭圆

a称半长轴长,b称半短轴长,c称为半焦距,长轴端点、短轴端点、两个焦点的坐标分别为(±a,0),(0,±b),(±c,0);与左焦点对应的准线(即第二定义中的定直线)为,与右焦点对应的准线为;定义中的比e称为离心率,且,由c2+b2=a2知0e1.
椭圆有两条对称轴,分别是长轴、短轴。
4.椭圆的焦半径公式:对于椭圆1(ab0),F1(-c,0),F2(c,0)是它的两焦点。若P(x,y)是椭圆上的任意一点,则|PF1|=a+ex,|PF2|=a-ex.
5.几个常用结论:1)过椭圆上一点P(x0,y0)的切线方程为

2)斜率为k的切线方程为;
3)过焦点F2(c,0)倾斜角为θ的弦的长为

6.双曲线的定义,第一定义:
满足||PF1|-|PF2||=2a(2a2c=|F1F2|,a0)的点P的轨迹;
第二定义:到定点的距离与到定直线距离之比为常数e(1)的点的轨迹。
7.双曲线的方程:中心在原点,焦点在x轴上的双曲线方程为

参数方程为(为参数)。
焦点在y轴上的双曲线的标准方程为

8.双曲线的相关概念,中心在原点,焦点在x轴上的双曲线
(a,b0),
a称半实轴长,b称为半虚轴长,c为半焦距,实轴的两个端点为(-a,0),(a,0).左、右焦点为F1(-c,0),F2(c,0),对应的左、右准线方程分别为离心率,由a2+b2=c2知e1。两条渐近线方程为,双曲线与有相同的渐近线,它们的四个焦点在同一个圆上。若a=b,则称为等轴双曲线。
9.双曲线的常用结论,1)焦半径公式,对于双曲线,F1(-c,0),F2(c,0)是它的两个焦点。设P(x,y)是双曲线上的任一点,若P在右支上,则|PF1|=ex+a,|PF2|=ex-a;若P(x,y)在左支上,则|PF1|=-ex-a,|PF2|=-ex+a.
2)过焦点的倾斜角为θ的弦长是。
10.抛物线:平面内与一个定点F和一条定直线l的距离相等的点的轨迹叫做抛物线,点F叫焦点,直线l叫做抛物线的准线。若取经过焦点F且垂直于准线l的直线为x轴,x轴与l相交于K,以线段KF的垂直平分线为y轴,建立直角坐标系,设|KF|=p,则焦点F坐标为,准线方程为,标准方程为y2=2px(p0),离心率e=1.
11.抛物线常用结论:若P(x0,y0)为抛物线上任一点,
1)焦半径|PF|=;
2)过点P的切线方程为y0y=p(x+x0);
3)过焦点倾斜角为θ的弦长为。
12.极坐标系,在平面内取一个定点为极点记为O,从O出发的射线为极轴记为Ox轴,这样就建立了极坐标系,对于平面内任意一点P,记|OP|=ρ,∠xOP=θ,则由(ρ,θ)唯一确定点P的位置,(ρ,θ)称为极坐标。
13.圆锥曲线的统一定义:到定点的距离与到定直线的距离的比为常数e的点P,若0e1,则点P的轨迹为椭圆;若e1,则点P的轨迹为双曲线的一支;若e=1,则点P的轨迹为抛物线。这三种圆锥曲线统一的极坐标方程为。
二、方法与例题
1.与定义有关的问题。
例1已知定点A(2,1),F是椭圆的左焦点,点P为椭圆上的动点,当3|PA|+5|PF|取最小值时,求点P的坐标。
[解]见图11-1,由题设a=5,b=4,c==3,.椭圆左准线的方程为,又因为,所以点A在椭圆内部,又点F坐标为(-3,0),过P作PQ垂直于左准线,垂足为Q。由定义知,则|PF|=|PQ|。
所以3|PA|+5|PF|=3(|PA|+|PF|)=3(|PA|+|PQ|)≥3|AM|(AM左准线于M)。
所以当且仅当P为AM与椭圆的交点时,3|PA|+5|PF|取最小值,把y=1代入椭圆方程得,又x0,所以点P坐标为
例2已知P,为双曲线C:右支上两点,延长线交右准线于K,PF1延长线交双曲线于Q,(F1为右焦点)。求证:∠F1K=∠KF1Q.
[证明]记右准线为l,作PDl于D,于E,因为//PD,则,又由定义,所以,由三角形外角平分线定理知,F1K为∠PF1P的外角平分线,所以∠=∠KF1Q。
2.求轨迹问题。
例3已知一椭圆及焦点F,点A为椭圆上一动点,求线段FA中点P的轨迹方程。
[解法一]利用定义,以椭圆的中心为原点O,焦点所在的直线为x轴,建立直角坐标系,设椭圆方程:=1(ab0).F坐标为(-c,0).设另一焦点为。连结,OP,则。所以|FP|+|PO|=(|FA|+|A|)=a.
所以点P的轨迹是以F,O为两焦点的椭圆(因为a|FO|=c),将此椭圆按向量m=(,0)平移,得到中心在原点的椭圆:。由平移公式知,所求椭圆的方程为
[解法二]相关点法。设点P(x,y),A(x1,y1),则,即x1=2x+c,y1=2y.又因为点A在椭圆上,所以代入得关于点P的方程为。它表示中心为,焦点分别为F和O的椭圆。
例4长为a,b的线段AB,CD分别在x轴,y轴上滑动,且A,B,C,D四点共圆,求此动圆圆心P的轨迹。
[解]设P(x,y)为轨迹上任意一点,A,B,C,D的坐标分别为A(x-,0),B(x+,0),C(0,y-),D(0,y+),记O为原点,由圆幂定理知|OA||OB|=|OC||OD|,用坐标表示为,即
当a=b时,轨迹为两条直线y=x与y=-x;
当ab时,轨迹为焦点在x轴上的两条等轴双曲线;
当ab时,轨迹为焦点在y轴上的两条等轴双曲线。
例5在坐标平面内,∠AOB=,AB边在直线l:x=3上移动,求三角形AOB的外心的轨迹方程。
[解]设∠xOB=θ,并且B在A的上方,则点A,B坐标分别为B(3,3tanθ),A(3,3tan(θ-)),设外心为P(x,y),由中点公式知OB中点为M。
由外心性质知再由得
×tanθ=-1。结合上式有
tanθ=①
又tanθ+=②

所以tanθ-=两边平方,再将①,②代入得。即为所求。
3.定值问题。
例6过双曲线(a0,b0)的右焦点F作B1B2轴,交双曲线于B1,B2两点,B2与左焦点F1连线交双曲线于B点,连结B1B交x轴于H点。求证:H的横坐标为定值。
[证明]设点B,H,F的坐标分别为(asecα,btanα),(x0,0),(c,0),则F1,B1,B2的坐标分别为(-c,0),(c,),(c,),因为F1,H分别是直线B2F,BB1与x轴的交点,所以

所以

由①得
代入上式得
即(定值)。
注:本例也可借助梅涅劳斯定理证明,读者不妨一试。
例7设抛物线y2=2px(p0)的焦点为F,经过点F的直线交抛物线于A,B两点,点C在准线上,且BC//x轴。证明:直线AC经过定点。
[证明]设,则,焦点为,所以,,,。由于,所以y2-y1=0,即=0。因为,所以。所以,即。所以,即直线AC经过原点。
例8椭圆上有两点A,B,满足OAOB,O为原点,求证:为定值。
[证明]设|OA|=r1,|OB|=r2,且∠xOA=θ,∠xOB=,则点A,B的坐标分别为A(r1cosθ,r1sinθ),B(-r2sinθ,r2cosθ)。由A,B在椭圆上有
即①

①+②得(定值)。
4.最值问题。
例9设A,B是椭圆x2+3y2=1上的两个动点,且OAOB(O为原点),求|AB|的最大值与最小值。
[解]由题设a=1,b=,记|OA|=r1,|OB|=r2,,参考例8可得=4。设m=|AB|2=,
因为,且a2b2,所以,所以b≤r1≤a,同理b≤r2≤a.所以。又函数f(x)=x+在上单调递减,在上单调递增,所以当t=1即|OA|=|OB|时,|AB|取最小值1;当或时,|AB|取最大值。
例10设一椭圆中心为原点,长轴在x轴上,离心率为,若圆C:1上点与这椭圆上点的最大距离为,试求这个椭圆的方程。
[解]设A,B分别为圆C和椭圆上动点。由题设圆心C坐标为,半径|CA|=1,因为|AB|≤|BC|+|CA|=|BC|+1,所以当且仅当A,B,C共线,且|BC|取最大值时,|AB|取最大值,所以|BC|最大值为
因为;所以可设椭圆半长轴、半焦距、半短轴长分别为2t,,t,椭圆方程为,并设点B坐标为B(2tcosθ,tsinθ),则|BC|2=(2tcosθ)2+=3t2sin2θ-3tsinθ++4t2=-3(tsinθ+)2+3+4t2.
若,则当sinθ=-1时,|BC|2取最大值t2+3t+,与题设不符。
若t,则当sinθ=时,|BC|2取最大值3+4t2,由3+4t2=7得t=1.
所以椭圆方程为。
5.直线与二次曲线。
例11若抛物线y=ax2-1上存在关于直线x+y=0成轴对称的两点,试求a的取值范围。
[解]抛物线y=ax2-1的顶点为(0,-1),对称轴为y轴,存在关于直线x+y=0对称两点的条件是存在一对点P(x1,y1),(-y1,-x1),满足y1=a且-x1=a(-y1)2-1,相减得x1+y1=a(),因为P不在直线x+y=0上,所以x1+y1≠0,所以1=a(x1-y1),即x1=y1+
所以此方程有不等实根,所以,求得,即为所求。
例12若直线y=2x+b与椭圆相交,(1)求b的范围;(2)当截得弦长最大时,求b的值。
[解]二方程联立得17x2+16bx+4(b2-1)=0.由Δ0,得b;设两交点为P(x1,y1),Q(x2,y2),由韦达定理得|PQ|=。所以当b=0时,|PQ|最大。
三、基础训练题
1.A为半径是R的定圆⊙O上一定点,B为⊙O上任一点,点P是A关于B的对称点,则点P的轨迹是________.
2.一动点到两相交直线的距离的平方和为定值m2(0),则动点的轨迹是________.
3.椭圆上有一点P,它到左准线的距离是10,它到右焦点的距离是________.
4.双曲线方程,则k的取值范围是________.
5.椭圆,焦点为F1,F2,椭圆上的点P满足∠F1PF2=600,则ΔF1PF2的面积是________.
6.直线l被双曲线所截的线段MN恰被点A(3,-1)平分,则l的方程为________.
7.ΔABC的三个顶点都在抛物线y2=32x上,点A(2,8),且ΔABC的重心与这条抛物线的焦点重合,则直线BC的斜率为________.
8.已知双曲线的两条渐近线方程为3x-4y-2=0和3x+4y-10=0,一条准线方程为5y+4=0,则双曲线方程为________.
9.已知曲线y2=ax,与其关于点(1,1)对称的曲线有两个不同的交点,如果过这两个交点的直线的倾斜角为450,那么a=________.
10.P为等轴双曲线x2-y2=a2上一点,的取值范围是________.
11.已知椭圆与双曲线有公共的焦点F1,F2,设P是它们的一个焦点,求∠F1PF2和ΔPF1F2的面积。
12.已知(i)半圆的直径AB长为2r;(ii)半圆外的直线l与BA的延长线垂直,垂足为T,设|AT|=2a(2a);(iii)半圆上有相异两点M,N,它们与直线l的距离|MP|,|NQ|满足求证:|AM|+|AN|=|AB|。
13.给定双曲线过点A(2,1)的直线l与所给的双曲线交于点P1和P2,求线段P1P2的中点的轨迹方程。
四、高考水平测试题
1.双曲线与椭圆x2+4y2=64共焦点,它的一条渐近线方程是=0,则此双曲线的标准方程是_________.
2.过抛物线焦点F的直线与抛物线相交于A,B两点,若A,B在抛物线准线上的射影分别是A1,B1,则∠A1FB1=_________.
3.双曲线的一个焦点为F1,顶点为A1,A2,P是双曲线上任一点,以|PF1|为直径的圆与以|A1A2|为直径的圆的位置关系为_________.
4.椭圆的中心在原点,离心率,一条准线方程为x=11,椭圆上有一点M横坐标为-1,M到此准线异侧的焦点F1的距离为_________.
5.4a2+b2=1是直线y=2x+1与椭圆恰有一个公共点的_________条件.
6.若参数方程(t为参数)表示的抛物线焦点总在一条定直线上,这条直线的方程是_________.
7.如果直线y=kx+1与焦点在x轴上的椭圆总有公共点,则m的范围是_________.
8.过双曲线的左焦点,且被双曲线截得线段长为6的直线有_________条.
9.过坐标原点的直线l与椭圆相交于A,B两点,若以AB为直径的圆恰好通过椭圆的右焦点F,则直线l的倾斜角为_________.
10.以椭圆x2+a2y2=a2(a1)的一个顶点C(0,1)为直角顶点作此椭圆的内接等腰直角三角形ABC,这样的三角形最多可作_________个.
11.求椭圆上任一点的两条焦半径夹角θ的正弦的最大值。
12.设F,O分别为椭圆的左焦点和中心,对于过点F的椭圆的任意弦AB,点O都在以AB为直径的圆内,求椭圆离心率e的取值范围。
13.已知双曲线C1:(a0),抛物线C2的顶点在原点O,C2的焦点是C1的左焦点F1。
(1)求证:C1,C2总有两个不同的交点。
(2)问:是否存在过C2的焦点F1的弦AB,使ΔAOB的面积有最大值或最小值?若存在,求直线AB的方程与SΔAOB的最值,若不存在,说明理由。
五、联赛一试水平训练题
1.在平面直角坐标系中,若方程m(x2+y2+2y+1)=(x-2y+3)2表示的曲线为椭圆,则m的取值范围是_________.
2.设O为抛物线的顶点,F为焦点,且PQ为过F的弦,已知|OF|=a,|PQ|=b,ΔOPQ面积为_________.
3.给定椭圆,如果存在过左焦点F的直线交椭圆于P,Q两点,且OPOQ,则离心率e的取值范围是_________.
4.设F1,F2分别是双曲线(ab0)的左、右焦点,P为双曲线上的动点,过F1作∠F1PF2平分线的垂线,垂足为M,则M的轨迹为_________.
5.ΔABC一边的两顶点坐标为B(0,)和C(0,),另两边斜率的乘积为,若点T坐标为(t,0)(t∈R+),则|AT|的最小值为_________.
6.长为l(l1)的线段AB的两端点在抛物线y=x2上滑动,则线段AB的中点M到x轴的最短距离等于_________.
7.已知抛物线y2=2px及定点A(a,b),B(-a,0),ab≠0,b2≠2pa,M是抛物线上的点,设直线AM,BM与抛物线的另一个交点分别为M1,M2,当M变动时,直线M1M2恒过一个定点,此定点坐标为_________.
8.已知点P(1,2)既在椭圆内部(含边界),又在圆x2+y2=外部(含边界),若a,b∈R+,则a+b的最小值为_________.
9.已知椭圆的内接ΔABC的边AB,AC分别过左、右焦点F1,F2,椭圆的左、右顶点分别为D,E,直线DB与直线CE交于点P,当点A在椭圆上变动时,试求点P的轨迹。
10.设曲线C1:(a为正常数)与C2:y2=2(x+m)在x轴上方有一个公共点P。(1)求实数m的取值范围(用a表示);
(2)O为原点,若C1与x轴的负半轴交于点A,当0a时,试求ΔOAP面积的最大值(用a表示)。
11.已知直线l过原点,抛物线C的顶点在原点,焦点在x轴正半轴上,若点A(-1,0)和B(0,8)关于l的对称点都在C上,求直线l和抛物线的方程。
六、联赛二试水平训练题
1.在四边形ABCD中,对角线AC平分∠BAD,在CD上取一点E,BE与AC相交于F,延长DF交BC于G,求证:∠GAC=∠EAC。
2.求证:在坐标平面上不存在一条具有奇数个顶点,每段长都为1的闭折线,它的每个顶点坐标都是有理数。
3.以B0和B1为焦点的椭圆与ΔAB0B1的边ABi交于Ci(i=0,1),在AB0的延长线上任取点P0,以B0为圆心,B0P0为半径作圆弧交C1B0的延长线于Q0;以C1为圆心,C1Q0为半径作圆弧Q0P1交B1A的延长线于P1;B1为圆心,B1P1为半径作圆弧P1Q1交B1C0的延长线于Q1;以C0为圆心,C0Q1为半径作圆弧Q1,交AB0的延长线于。求证:(1)点与点P0重合,且圆弧P0Q0与P0Q1相内切于P0;(2)P0,Q0,P1,Q1共圆。
4.在坐标平面内,从原点出发以同一初速度v0和不同发射角(即发射方向与x轴正向之间的夹角)α(α∈[0,π],α≠)射出的质点,在重力的作用下运动轨迹是抛物线,所有这些抛物线组成一个抛物线族,若两条抛物线在同一个交点处的切线互相垂直,则称这个交点为正交点。证明:此抛物线族的所有正交点的集合是一段椭圆弧,并求此椭圆弧的方程(确定变量取值范围)。
5.直角ΔABC斜边为AB,内切圆切BC,CA,AB分别于D,E,F点,AD交内切圆于P点。若CPBP,求证:PD=AE+AP。
6.已知BCCD,点A为BD中点,点Q在BC上,AC=CQ,又在BQ上找一点R,使BR=2RQ,CQ上找一点S,使QS=RQ,求证:∠ASB=2∠DRC。
答案:
基础训练题
1.圆。设AO交圆于另一点是A关于的对称点。则因为AB,所以P在以为直径的圆上。
2.圆或椭圆。设给定直线为y=±kx(k0),P(x,y)为轨迹上任一点,则。化简为2k2x2+2y2=m2(1+k2).
当k≠1时,表示椭圆;当k=1时,表示圆。
3.12.由题设a=10,b=6,c=8,从而P到左焦点距离为10e=10×=8,所以P到右焦点的距离为20-8=12。
4.-2k2或k5.由(|k|-2)(5-k)0解得k5或-2k2.
5.设两条焦半径分别为m,n,则因为|F1F2|=12,m+n=20.由余弦定理得122=m2+n2-2mncos600,即(m+n)2-3mn=144.所以,
6.3x+4y-5=0.设M(x1,y1),N(x2,y2),则两式相减得-(y1+y2)(y1-y2)=0.由,得。故方程y+1=(x-3).
7.-4.设B(x1,y1),C(x2,y2),则=0,所以y1+y2=-8,故直线BC的斜率为
8.=1。由渐近线交点为双曲线中心,解方程组得中心为(2,1),又准线为,知其实轴平行于y轴,设其方程为=1。其渐近线方程为=0。所以y-1=(x-1).由题设,将双曲线沿向量m=(-2,-1)平移后中心在原点,其标准方程为=1。由平移公式平移后准线为,再结合,解得a2=9,b2=16,故双曲线为=1。
9.2.曲线y2=ax关于点(1,1)的对称曲线为(2-y)2=a(2-x),
由得y2-2y+2-a=0,故y1+y2=2,从而=
=1,所以a=2.
10.(2,]。设P(x1,y1)及,由|PF1|=ex1+a
,|PF2|=ex1-a,|PF1|+|PF2|=2ex1,所以,即。因,所以,所以即2t≤2.
11.解:由对称性,不妨设点P在第一象限,由题设|F1F2|2=4=4c2,又根据椭圆与双曲线定义
解得|PF1|=a1+a2,|PF2|=a1-a2.
在ΔF1PF2中,由余弦定理
从而
又sin∠F1PF2=
所以
12.解:以直线AB为x轴,AT的中垂线为y轴建立直角坐标系,则由定义知M,N两点既在抛物线y2=4ax上,又在圆[x-(a+r)]2+y2=r2上,两方程联立得x2+(2a-2r)x+2ra+a2=0,设点M,N坐标分别为(x1,y1),(x2,y2),则x1+x2=2r-2a.又|AM|=|MP|=x1+a,|AN|=|NP|=x2+a.|AB|=2r,所以
|AM|+|AN|=x1+x2+2a=2r=|AB|.
得证。
13.解:若直线l垂直于x轴,因其过点A(2,1),根据对称性,P1P2的中点为(2,0)。
若l不垂直于x轴,设l的方程为y-1=k(x-2),即
y=kx+1-2k.①
将①代入双曲线方程消元y得
(2-k2)x2+2k(2k-1)x-(4k2-4k+3)=0.②
这里且Δ=[2k(2k-1)]2+4(2-k)2(4k2-4k+3)=8(3k2-4k+3)0,
设x1,x2是方程②的两根,由韦达定理

由①,③得y1+y2=kx1+(1-2k)+kx2+(1-2k)
=k(x1+x2)+2(1-2k)=④
设P1P2的中点P坐标(x,y),由中点公式及③,④得
消去k得
点(2,0)满足此方程,故这就是点P的轨迹方程。
高考水平测试题
1.由椭圆方程得焦点为,设双曲线方程,渐近线为由题设,所以a2=3b2,又,c2=a2+b2.所以b2=12,a2=36.
2.900。见图1,由定义得|FA|=|AA1|,|FB|=|BB1|,有∠1=∠BFB1,∠2=∠AFA1,又∠1=∠3,∠2=∠4,所以∠3+∠4=∠BFB1+∠AFA1=900。
3.相切,若P(x,y)在左支上,设F1为左焦点,F2为右焦点,M为PF1中点,则|MO|=|PF2|=(a-ex),又|PF1|=-a-ex,所以两圆半径之和(-a-ex)+a=(a-ex)=|MO|,所以两圆外切。当P(x,y)在右支上时,同理得两圆内切。
4.与F1对应的另一条准线为x=-11,因|MF1|与M到直线x=-11距离d1之比为e,且d1=|xm+11|=10.所以,所以|MF1|=
5.充要。将y=2x+1代入椭圆方程得(b2+4a2)x2+4a2x+a2(1-b2)=0.①
若Δ=(4a2)2-4(b2+4a2)a2(1-b2)=0,则直线与椭圆仅有一个公共点,即b2+4a2=1;反之,4a2+b2=1,直线与椭圆有一个公共点。
6.y=2(x-1)。消去参数得(y-2m)2=4(x-m),焦点为它在直线y=2(x-1)上。
7.1≤m5。直线过定点(0,1),所以0≤1.又因为焦点在x轴上,所以5m,所以1≤m5。
8.3.双曲线实轴长为6,通径为4,故线段端点在异支上一条,在同支上有二条,一共有三条。
9.或。设直线l:y=kx与椭圆交于A(x1,y1),B(x2,y2),把y=kx代入椭圆方程得(1+3k2)x2-6x+3=0,由韦达定理得


因F(1,0),AFBF,所以(x1-1)(x2-1)+y1y2=0,即
x1x2-(x1+x2)+1+k2x1x2=0.③
把①,②代入③得,所以倾斜角为或
10.3.首先这样的三角形一定存在,不妨设A,B分别位于y轴左、右两侧,设CA斜率为k(k0),CA的直线方程为y=kx+1,代入椭圆方程为(a2k2+1)x2+2a2kx=0,得x=0或,于是,|CA|=
由题设,同理可得|CB|=,利用|CA|=|CB|可得
(k-1)[k2-(a2-1)k+1]=0,
解得k=1或k2-(a2-1)k+1]=0。①
对于①,当1a时,①无解;当时,k=1;当a时,①有两个不等实根,故最多有3个。
11.解设焦点为F1,F2,椭圆上任一点为P(x0,y0),∠F1PF2=θ,根据余弦定理得
|F1F2|2=|PF1|2+|PF2|2-2|PF1||PF2|cosθ,
又|PF1|+|PF2|=2a,则4c2=(2a)2-2|PF1||PF2|(1+cosθ),再将|PF1|=a+ex0,|PF2|=a-ex0及a2=b2+c2代入得4b2=2(a2-e2)(1+cosθ).
于是有
由0,得,所以。因θ∈[0,π],所以cosθ为减函数,故0
当2b2a2即时,,arccos,sinθ为增函数,sinθ取最大值;当2b2≤a2时,arccos,θ∈[0,π],则sinθ最大值为1。
12.解设A(x1,y1),B(x2,y2),若AB斜率不为0,设为k,直线AB方程为y=k(x+c),代入椭圆方程并化简得
(b2+a2k2)x2+2a2k2cx+a2(k2c2-b2)=0.①
则x1,x2为方程①的两根,由韦达定理得


因为y1y2=k2(x1+c)(x2+c),再由②,③得
所以=x1x2+y1y2=,O点在以AB为直径的圆内,等价0,即k2(a2c2-b4)-a2b20对任意k∈R成立,等价于a2c2-b2≤0,即ac-b2≤0,即e2+e-1≤0.所以0e≤
若斜率不存在,问题等价于即,综上
13.解(1)由双曲线方程得,所以F1(,0),抛物线焦点到准线的距离,抛物线

把①代入C1方程得

Δ=64a20,所以方程②必有两个不同实根,设为x1,x2,由韦达定理得x1x2=-a20,所以②必有一个负根设为x1,把x1代入①得y2=,所以(因为x1≠0),所以C1,C2总有两个不同交点。
(2)设过F1(,0)的直线AB为my=(x+a),由得y2+4may-12a2=0,因为Δ=48m2a2+48a20,设y1,y2分别为A,B的纵坐标,则y1+y2=,y1y2=-12a2.所以(y1-y2)2=48a2(m2+1).所以SΔAOB=|y1-y2||OF1|=aa,当且仅当m=0时,SΔAOB的面积取最小值;当m→+∞时,SΔAOB→+∞,无最大值。所以存在过F的直线x=使ΔAOB面积有最小值6a2.
联赛一试水平训练题
1.m5.由已知得,说明(x,y)到定点(0,-1)与到定直线x-2y+3=0的距离比为常数,由椭圆定义1,所以m5.
2.因为b=|PQ|=|PF|+|QF|=,所以。所以SΔOPQ=absinθ=.
3.。设点P坐标为(r1cosθ,r1sinθ),点Q坐标为(-r2sinθ,r2cosθ),因为P,Q在椭圆上,可得,RtΔOPQ斜边上的高为≤|OF|=c.所以a2b2≤c2(a2+b2),解得≤e1.
4.以O为圆心,a为半径的圆。延长F1M交PF2延长线于N,则F2N,而|F2N|=|PN|-|PF2|=|PF1|-|PF2|=2a,所以|OM|=a.
5.t∈(0,1]时|AT|min=,t1时|AT|min=|t-2|.由题设kABkAC=-,设A(x,y),则(x≠0),整理得=1(x≠0),所以|AT|2=(x-t)2+y2=(x-t)2+(x-2t)2+2-t2.因为|x|≤2,所以当t∈(0,1]时取x=2t,|AT|取最小值。当t1时,取x=2,|AT|取最小值|t-2|.
6.设点M(x0,y0),直线AB倾斜角为θ,并设A(x0-),B(x0+),因为A,B在抛物线上,所以


由①,②得2x0cosθ=sinθ.③
所以
因为l21,所以函数f(x)=.在(0,1]在递减,
所以。当cosθ=1即l平行于x轴时,距离取最小值
7.设,由A,M,M1共线得y1=,同理B,M,M2共线得,设(x,y)是直线M1M2上的点,则y1y2=y(y1+y2)-2px,将以上三式中消去y1,y2得
y02(2px-by)+y02pb(a-x)+2pa(by-2pa)=0.
当x=a,y=时上式恒成立,即定点为
8.。由题设且a2+2b2≤15,解得5≤b2≤6.
所以a+b≥(t=b2-4∈[1,2]),而
,又t≤2可得上式成立。
9.解设A(2cosθ,),B(2cosα,sinα),C(2cosβ,sinβ),这里α≠β,则过A,B的直线为lAB:,由于直线AB过点F1(-1,0),代入有(sinθ-sinα)(1+2cosθ)=2sinθ(cosθ-cosα),即2sin(α-θ)=sinθ-sinα=2,故,即。又lBD:(x+2)=,同理得。lCE:(x-2)=
(x-2).
两直线方程联立,得P点坐标为,消去得点P(x,y)在椭圆上(除去点(-2,0),(2,0)).
10.解(1)由消去y得x2+2a2x+2a2m-a2=0,①设f(x)=x2+2a2x+2a2m-a2,问题(1)转化为方程①在x∈(-a,a)上有唯一解或等根。只需讨论以下三种情况:
10.Δ=0,得,此时xp=-a2,当且仅当-a-a2a即0a1时适合;20。f(a)f(-a)0,当且仅当-ama时适合;30。f(-a)=0得m=a,此时xp=a-2a2,当且仅当-aa-2a2a即0a1时适合。令f(a)=0得m=-a,此时xp=-a-2a2.由于-a-2a2-a,从而m≠-a.综上当0a1时,或-am≤a;当a≥1时,-ama.
(2)ΔOAP的面积因为0a,故当-am≤a时,0-a2+,由唯一性得xp=-a2+.当m=a时,xp取最小值。由于xp0,从而时取值最大,此时,故;当时,xp=-a2,yp=,此时以下比较与的大小。令,得,故当0a≤时,,此时;当时,有,此时
11.解:设A,B关于l的对称点分别为A1(x2,y2),B1(x1,y1),则AA1中点在l上,
所以y2=k(x2-1)①
又lAA1,所以

由①,②得
同理,由BB1中点在l上,且lBB1,解得
设抛物线方程为y2=2px,将A1,B1坐标代入并消去p得k2-k-1=0.
所以,由题设k0,所以,从而
所以直线l的方程为,抛物线C的方程为
联赛二试水平训练题
1.以A为原点,直线AC为x轴,建立直角坐标系,设C(c,0),F(f,0),D(xD,kxD),B(xB,-kxB),则直线DF的方程为

直线BC的方程为②
c×①-f×②得
(c-f)x+③
③表示一条直线,它过原点,也过DF与BC的交点G,因而③就是直线AG的方程。
同理
,直线AE的方程为
(c-f)x+④
③,④的斜率互为相反数,所以∠GAC=∠EAC。
2.证明假设这样的闭折线存在,不妨设坐标原点是其中一个顶点,记它为A0,其他顶点坐标为:,…,,其中都是既约分数,并记An+1=A0.若p与q奇偶性相同,则记p≡q,否则记p≠q,下面用数学归纳法证明。
bk≡1,dk≡1(k=1,2,…,n),ak+ck≠ak-1+ck-1(k=1,2,…,n,n+1)。
当k=1时,由,得,因为a1,b1互质,所以d1被b1整除,反之亦然(即b1被d1整除)。
因此b1=±d1,从而不可能都是偶数(否则b1也是偶数,与互质矛盾);不可能都是奇数,因为两个奇数的平方和模8余2不是4的倍数,也不可能是完全平方数,因此,a1≠c1,b1≡d1≡1,并且a1+c1≠0=a0+c0.
设结论对k=1,2,…,m-1≤n都成立,令
这里是既约分数,因为每一段的长为1,所以=1,与k=1情况类似:a≡c,d≡b≡1,又因为,分数既约,所以bm是bbm-1的一个因子,bm≡1.
同理可知dm≡1,又am≡abm-1+bam-1(同理cm≡cdm-1+dcm-1).
因此(am+cm-am-1-cm-1)≡(abm-1+bam-1+cdm-1+dcm-1-am-1-cm-1)≡am-1(b-1)+abm-1+cm-1(d-1)+cdm-1≡a+c≡1.
所以am+cm≠am-1+cm-1,结论成立,于是在顶点数n+1为奇数时,an+1+cn+1≠a0+c0,故折线不可能是闭的。
3.证明(1)由已知B0P0=B0Q0,并由圆弧P0Q0和Q0P0,Q0P1和P1Q1,P1Q1和Q1P1分别相内切于点Q0,P1,Q1,得C1B0+B0Q0=C1P1,B1C1+C1P1=B1C0+C0Q1以及C0Q1=C0B0+,四式相加,利用B1C1+C1B0=B1C0+C0B0,以及。在B0P0或其延长线上,有B0P0=B0,从而可知点与点P0重合。由于圆弧Q1P0的圆心C0,圆弧P0Q0的圆心B0以及P0在同一直线上,所以圆弧Q1P0和P0Q0相内切于点P0。
(2)现分别过点P0和P1引上述相应相切圆弧的公切线P0T和P1T交于点T。又过点Q1引相应相切圆弧的公切线R1S1,分别交P0T和P1T于点R1和S1,连接P0Q1和P1Q1,得等腰ΔP0Q1R1和ΔP1Q1S1,由此得∠P0Q1P1=π-∠P0Q1P1-∠P1Q1S1=π-(∠P1P0T-∠Q1P0P)-(∠P0P1T-∠Q1P1P0),而π-∠P0Q1P1=∠Q1P0P1+∠Q1P1P0,代入上式后,即得∠P0Q1P1=π-(∠P0B0Q0+∠P1C1Q0).
同理得∠P0Q0P1=π-(∠P0B0Q0+∠P1C1Q0),所以P0,Q0,Q1,P1共圆。
4.证明引理:抛物线y=ax2+bx+c(a≠0)在(x0,y0)处的切线斜率是2ax0+b.
引理的证明:设(x0,y0)处的切线方程为y-y0=k(x-x0),代入抛物线方程得
ax2+(b-k)x+c+kx0-y0=0.①

故①可化简成(x-x0)[a(x+x0)+b-k]=0,②
因为②只有一个实根,所以k=2ax0+b.引理得证。
设P(x0,y0)为任一正交点,则它是由线y=xtanx2与y=xtanx2的交点,则两条切线的斜率分别为(由引理)
又由题设k1k2=-1,所以

又因为P(x0,y0)在两条抛物线上,所以代入③式得
(※)
又因为tanα1,tanα2是方程t2-t+=0的两根,所以
tanα1+tanα2=④
tanα1tanα2=。⑤
把④,⑤代入(※)式得
,即
5.证明以C为原点,CB所在直线为x轴,建立直角坐标系,设∠ADC=θ,|PD|=r.各点坐标分别为D(x1,0),E(0,x1),A(0,x1tanθ),B(x0,0),P(x1-rcosθ,rsinθ).
则lAB方程为,即x1x+x0cotθy-x1x0=0,因为lAB与圆相切,可得x1=x0x1cotθ-x1x0|,约去x1,再两边平方得
,所以x1.①
又因为点P在圆上,所以(rcos)2+(x1-rsin)2=,化简得r=2x1sin.②
要证DP=AP+AE2DP=AD+AE2r=+x1tan-x11+sin-cos=4sincos.③
又因为,所以
因为=(x1-x0-rcosθ,rsinθ),=(x1-rcosθ,rsinθ),
所以(x1-rcosθ)(x1-rcosθ-x0)+r2sin2θ=0.④
把②代入④化简得

由①得x0=x1
代入⑤并约去x1,化简得4sin22-3sin2=0,因为sin2≠0,所以sin2=,又因为sin==cos,所以sin-cos0.
所以sin-cos=,所以1+sin-cos==4sincos,即③成立。所以DP=AP+AE。
6.证明设BC=d,CD=b,BD=c,则AC=CQ=,取BC中点M,则AMBC,以M为原点,直线BC为x轴建立直角坐标系,则各点坐标分别为,,,,,因为,所以点,所以
因为0∠DRC,0∠ASQπ,所以只需证tan∠ASQ=tan2∠DRC,即,化简得9d2-9c2-9b2=0即d2=b2+c2,显然成立。所以命题得证。

第十四章极限与导数(高中数学竞赛标准教材)


第十四章极限与导数

一、基础知识
1.极限定义:(1)若数列{un}满足,对任意给定的正数ε,总存在正数m,当nm且n∈N时,恒有|un-A|ε成立(A为常数),则称A为数列un当n趋向于无穷大时的极限,记为,另外=A表示x大于x0且趋向于x0时f(x)极限为A,称右极限。类似地表示x小于x0且趋向于x0时f(x)的左极限。
2.极限的四则运算:如果f(x)=a,g(x)=b,那么[f(x)±g(x)]=a±b,[f(x)g(x)]=ab,
3.连续:如果函数f(x)在x=x0处有定义,且f(x)存在,并且f(x)=f(x0),则称f(x)在x=x0处连续。
4.最大值最小值定理:如果f(x)是闭区间[a,b]上的连续函数,那么f(x)在[a,b]上有最大值和最小值。
5.导数:若函数f(x)在x0附近有定义,当自变量x在x0处取得一个增量Δx时(Δx充分小),因变量y也随之取得增量Δy(Δy=f(x0+Δx)-f(x0)).若存在,则称f(x)在x0处可导,此极限值称为f(x)在点x0处的导数(或变化率),记作(x0)或或,即。由定义知f(x)在点x0连续是f(x)在x0可导的必要条件。若f(x)在区间I上有定义,且在每一点可导,则称它在此敬意上可导。导数的几何意义是:f(x)在点x0处导数(x0)等于曲线y=f(x)在点P(x0,f(x0))处切线的斜率。
6.几个常用函数的导数:(1)=0(c为常数);(2)(a为任意常数);(3)(4);(5);(6);(7);(8)
7.导数的运算法则:若u(x),v(x)在x处可导,且u(x)≠0,则
(1);(2);(3)(c为常数);(4);(5)。
8.复合函数求导法:设函数y=f(u),u=(x),已知(x)在x处可导,f(u)在对应的点u(u=(x))处可导,则复合函数y=f[(x)]在点x处可导,且(f[(x)]=.
9.导数与函数的性质:(1)若f(x)在区间I上可导,则f(x)在I上连续;(2)若对一切x∈(a,b)有,则f(x)在(a,b)单调递增;(3)若对一切x∈(a,b)有,则f(x)在(a,b)单调递减。
10.极值的必要条件:若函数f(x)在x0处可导,且在x0处取得极值,则
11.极值的第一充分条件:设f(x)在x0处连续,在x0邻域(x0-δ,x0+δ)内可导,(1)若当x∈(x-δ,x0)时,当x∈(x0,x0+δ)时,则f(x)在x0处取得极小值;(2)若当x∈(x0-δ,x0)时,当x∈(x0,x0+δ)时,则f(x)在x0处取得极大值。
12.极值的第二充分条件:设f(x)在x0的某领域(x0-δ,x0+δ)内一阶可导,在x=x0处二阶可导,且。(1)若,则f(x)在x0处取得极小值;(2)若,则f(x)在x0处取得极大值。
13.罗尔中值定理:若函数f(x)在[a,b]上连续,在(a,b)上可导,且f(a)=f(b),则存在ξ∈(a,b),使
[证明]若当x∈(a,b),f(x)≡f(a),则对任意x∈(a,b),.若当x∈(a,b)时,f(x)≠f(a),因为f(x)在[a,b]上连续,所以f(x)在[a,b]上有最大值和最小值,必有一个不等于f(a),不妨设最大值mf(a)且f(c)=m,则c∈(a,b),且f(c)为最大值,故,综上得证。
14.Lagrange中值定理:若f(x)在[a,b]上连续,在(a,b)上可导,则存在ξ∈(a,b),使
[证明]令F(x)=f(x)-,则F(x)在[a,b]上连续,在(a,b)上可导,且F(a)=F(b),所以由13知存在ξ∈(a,b)使=0,即
15.曲线凸性的充分条件:设函数f(x)在开区间I内具有二阶导数,(1)如果对任意x∈I,,则曲线y=f(x)在I内是下凸的;(2)如果对任意x∈I,,则y=f(x)在I内是上凸的。通常称上凸函数为凸函数,下凸函数为凹函数。
16.琴生不等式:设α1,α2,…,αn∈R+,α1+α2+…+αn=1。(1)若f(x)是[a,b]上的凸函数,则x1,x2,…,xn∈[a,b]有f(a1x1+a2x2+…+anxn)≤a1f(x1)+a2f(x2)+…+anf(xn).
二、方法与例题
1.极限的求法。
例1求下列极限:(1);(2);(3);(4)
[解](1)=;
(2)当a1时,
当0a1时,
当a=1时,
(3)因为

所以
(4)
例2求下列极限:(1)(1+x)(1+x2)(1+)…(1+)(|x|1);
(2);(3)。
[解](1)(1+x)(1+x2)(1+)…(1+)
=
(2)
=
(3)
=
2.连续性的讨论。
例3设f(x)在(-∞,+∞)内有定义,且恒满足f(x+1)=2f(x),又当x∈[0,1)时,f(x)=x(1-x)2,试讨论f(x)在x=2处的连续性。
[解]当x∈[0,1)时,有f(x)=x(1-x)2,在f(x+1)=2f(x)中令x+1=t,则x=t-1,当x∈[1,2)时,利用f(x+1)=2f(x)有f(t)=2f(t-1),因为t-1∈[0,1),再由f(x)=x(1-x)2得f(t-1)=(t-1)(2-t)2,从而t∈[1,2)时,有f(t)=2(t-1)(2-t)2;同理,当x∈[1,2)时,令x+1=t,则当t∈[2,3)时,有f(t)=2f(t-1)=4(t-2)(3-t)2.从而f(x)=所以
,所以f(x)=f(x)=f(2)=0,所以f(x)在x=2处连续。
3.利用导数的几何意义求曲线的切线方程。
[解]因为点(2,0)不在曲线上,设切点坐标为(x0,y0),则,切线的斜率为,所以切线方程为y-y0=,即。又因为此切线过点(2,0),所以,所以x0=1,所以所求的切线方程为y=-(x-2),即x+y-2=0.
4.导数的计算。
例5求下列函数的导数:(1)y=sin(3x+1);(2);(3)y=ecos2x;(4);(5)y=(1-2x)x(x0且)。
[解](1)3cos(3x+1).
(2)
(3)
(4)
(5)
5.用导数讨论函数的单调性。
例6设a0,求函数f(x)=-ln(x+a)(x∈(0,+∞))的单调区间。
[解],因为x0,a0,所以x2+(2a-4)x+a20;x2+(2a-4)x+a+0.
(1)当a1时,对所有x0,有x2+(2a-4)x+a20,即(x)0,f(x)在(0,+∞)上单调递增;(2)当a=1时,对x≠1,有x2+(2a-4)x+a20,即,所以f(x)在(0,1)内单调递增,在(1,+∞)内递增,又f(x)在x=1处连续,因此f(x)在(0,+∞)内递增;(3)当0a1时,令,即x2+(2a-4)x+a20,解得x2-a-或x2-a+,因此,f(x)在(0,2-a-)内单调递增,在(2-a+,+∞)内也单调递增,而当2-a-x2-a+时,x2+(2a-4)x+a20,即,所以f(x)在(2-a-,2-a+)内单调递减。
6.利用导数证明不等式。
例7设,求证:sinx+tanx2x.
[证明]设f(x)=sinx+tanx-2x,则=cosx+sec2x-2,当时,(因为0cosx1),所以=cosx+sec2x-2=cosx+.又f(x)在上连续,所以f(x)在上单调递增,所以当x∈时,f(x)f(0)=0,即sinx+tanx2x.
7.利用导数讨论极值。
例8设f(x)=alnx+bx2+x在x1=1和x2=2处都取得极值,试求a与b的值,并指出这时f(x)在x1与x2处是取得极大值还是极小值。
[解]因为f(x)在(0,+∞)上连续,可导,又f(x)在x1=1,x2=2处取得极值,所以,又+2bx+1,所以解得
所以.
所以当x∈(0,1)时,,所以f(x)在(0,1]上递减;
当x∈(1,2)时,,所以f(x)在[1,2]上递增;
当x∈(2,+∞)时,,所以f(x)在[2,+∞)上递减。
综上可知f(x)在x1=1处取得极小值,在x2=2处取得极大值。
例9设x∈[0,π],y∈[0,1],试求函数f(x,y)=(2y-1)sinx+(1-y)sin(1-y)x的最小值。
[解]首先,当x∈[0,π],y∈[0,1]时,
f(x,y)=(2y-1)sinx+(1-y)sin(1-y)x=(1-y)2x=(1-y)2x,令g(x)=,
当时,因为cosx0,tanxx,所以;
当时,因为cosx0,tanx0,x-tanx0,所以;
又因为g(x)在(0,π)上连续,所以g(x)在(0,π)上单调递减。
又因为0(1-y)xxπ,所以g[(1-y)x]g(x),即,
又因为,所以当x∈(0,π),y∈(0,1)时,f(x,y)0.
其次,当x=0时,f(x,y)=0;当x=π时,f(x,y)=(1-y)sin(1-y)π≥0.
当y=1时,f(x,y)=-sinx+sinx=0;当y=1时,f(x,y)=sinx≥0.
综上,当且仅当x=0或y=0或x=π且y=1时,f(x,y)取最小值0。
三、基础训练题
1.=_________.
2.已知,则a-b=_________.
3._________.
4._________.
5.计算_________.
6.若f(x)是定义在(-∞,+∞)上的偶函数,且存在,则_________.
7.函数f(x)在(-∞,+∞)上可导,且,则_________.
8.若曲线f(x)=x4-x在点P处的切线平行于直线3x-y=0,则点P坐标为_________.
9.函数f(x)=x-2sinx的单调递增区间是_________.
10.函数的导数为_________.
11.若曲线在点处的切线的斜率为,求实数a.
12.求sin290的近似值。
13.设0ba,求证:
四、高考水平练习题
1.计算=_________.
2.计算_________.
3.函数f(x)=2x3-6x2+7的单调递增区间是_________.。
4.函数的导数是_________.
5.函数f(x)在x0邻域内可导,a,b为实常数,若,则_________.
6.函数f(x)=ex(sinx+cosx),x的值域为_________.
7.过抛物线x2=2py上一点(x0,y0)的切线方程为_________.
8.当x0时,比较大小:ln(x+1)_________x.
9.函数f(x)=x5-5x4+5x3+1,x∈[-1,2]的最大值为_________,最小值为_________.
10.曲线y=e-x(x≥0)在点M(t,e-t)处的切线l与x轴、y轴所围成的三角形面积为S(t),则S(t)的最大值为_________.
11.若x0,求证:(x2-1)lnx≥(x-1)2.
12.函数y=f(x)在区间(0,+∞)内可导。导函数是减函数,且0,x0∈(0,+∞).y=kx+m是曲线y=f(x)在点(x0,f(x0))处的切线方程,另设g(x)=kx+m,(1)用x0,f(x0),表示m;(2)证明:当x∈(0,+∞)时,g(x)≥f(x);(3)若关于x的不等式x2+1≥ax+b≥在(0,+∞)上恒成立,其中a,b为实数,求b的取值范围及a,b所满足的关系。
13.设各项为正的无穷数列{xn}满足lnxn+,证明:xn≤1(n∈N+).
五、联赛一试水平训练题
1.设Mn={(十进制)n位纯小数0只取0或1(i=1,2,…,n-1),an=1},Tn是Mn中元素的个数,Sn是Mn中所有元素的和,则_________.
2.若(1-2x)9展开式的第3项为288,则_________.
3.设f(x),g(x)分别是定义在R上的奇函数和偶函数,当x0时,
,且g(-3)=0,则不等式f(x)g(x)0的解集为_________.
4.曲线与的交点处的切线夹角是_________.
5.已知a∈R+,函数f(x)=x2eax的单调递增区间为_________.
6.已知在(a,3-a2)上有最大值,则a的取值范围是_________.
7.当x∈(1,2]时,f(x)=恒成立,则y=lg(a2-a+3)的最小值为_________.
8.已知f(x)=ln(ex+a)(a0),若对任意x∈[ln(3a),ln(4a)],不等式|m-f-1(x)|+ln[]0恒成立,则实数m取值范围是_________.
9.已知函数f(x)=ln(1+x)-x,g(x)=xlnx,(1)求函数f(x)的最大值;(2)设0ab,证明:0g(a)+g(b)-(b-a)ln2.
10.(1)设函数f(x)=xlog2x+(1-x)log2(1-x)(0x1),求f(x)的最小值;(2)设正数p1,p2,…,满足p1+p2+p3+…+=1,求证:p1log2p1+p2log2p2+…+log2≥-n.
11.若函数gA(x)的定义域A=[a,b),且gA(x)=,其中a,b为任意的正实数,且ab,(1)求gA(x)的最小值;
(2)讨论gA(x)的单调性;
(3)若x1∈Ik=[k2,(k+1)2],x2∈Ik+1=[(k+1)2,(k+2)2],证明:
六、联赛二试水平训练题
1.证明下列不等式:(1);
(2)。
2.当0a≤b≤c≤d时,求f(a,b,c,d)=的最小值。
3.已知x,y∈(0,1)求证:xy+yx1.

文章来源://m.jab88.com/j/56645.html

更多

猜你喜欢

更多

最新更新

更多