88教案网

均值不等式教案

一名优秀的教师在教学方面无论做什么事都有计划和准备,作为高中教师准备好教案是必不可少的一步。教案可以保证学生们在上课时能够更好的听课,帮助授课经验少的高中教师教学。那么如何写好我们的高中教案呢?经过搜索和整理,小编为大家呈现“均值不等式教案”,大家不妨来参考。希望您能喜欢!

教学设计
3.2均值不等式
整体设计
教学分析
均值不等式也称基本不等式.本节主要目标是使学生了解均值不等式的代数意义,几何的直观解释以及均值不等式的证明和应用.本节教材上一开始就开门见山地给出均值不等式及证明,在思考与讨论过渡下,给出均值不等式的一个几何直观解释,以加深学生对均值不等式的理解.教材用作差配方法证明均值不等式.作差配方法是证明不等式的基本方法,在整个不等式的教学中都要贯彻这一重要方法.在解题中要让学生注意使用均值不等式的条件,并掌握基本技能.一般说来,“见和想积,拆低次,凑积为定值,则和有最小值;见积想和,拆高次,凑和为定值,则积有最大值”.
本节的《新课标》要求是:探索并了解均值不等式的证明过程;会用均值不等式解决简单的最大(小)问题.从历年的高考来看,均值不等式是重点考查的内容之一,它的应用范围几乎涉及高中数学的所有章节,且常考常新,大多是大小判断、求最值、求取值范围等.不等式的证明是将来进入大学不可缺少的技能,同时也是高中数学的一个难点,题型广泛,涉及面广,证法灵活,备受命题者的青睐,因而成为历届高考中的热点.几乎所有地区的高考题都能觅到它的踪影.书中练习A、B和习题都是基本题,要求全做.
鉴于均值不等式的特殊作用,因此本节设计为2课时完成,但仅限于基本方法和基本技能的掌握,不涉及高难度的技巧.第一课时重在均值不等式的探究,第二课时重在均值不等式的灵活运用.且在教学中,将本节教材中的思考与讨论一起拿到课堂上来,让学生通过思考与讨论建立均值不等式与不等式a2+b2≥2ab的联系.

三维目标
1.通过本节探究,使学生学会推导并掌握均值不等式,理解这个均值不等式的几何意义,掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等.
2.通过对均值不等式的不同形式应用的研究,渗透“转化”的数学思想,提高学生运算能力和逻辑推理能力.引发学生学习和使用数学知识的兴趣,发展创新精神,培养实事求是、理论与实际相结合的科学态度和科学道德.
3.通过本节学习,使学生体会数学来源于生活,帮助学生养成良好的学习习惯,形成积极探索的态度,逐步养成严谨的科学态度及良好的思维习惯.
重点难点
教学重点:用数形结合的思想理解均值不等式,并从不同角度探索不等式a+b2≥ab的证明过程;用不等式求某些函数的最值及解决一些简单的实际问题.
教学难点:用均值不等式求最大值和最小值,均值不等式a+b2≥ab等号成立条件的运用,应用均值不等式解决实际问题.
课时安排
2课时
教学过程
第1课时
导入新课
思路1.(直接引入)像教材那样,直接给出均值定理,然后引导学生利用上节课的基本性质来探究它的证明方法.因为有了上两节的不等式的探究学习,因此这样引入虽然直白却也是顺其自然.
思路2.(情境导入)教师自制风车,让学生把教师自制的风车转起来,这是学生小时候玩过的得意玩具;手持风车把手,来了一个360°的旋转,不但风车转得漂亮,课堂气氛也活跃,学生在紧张的课堂氛围中马上变得自然和谐,情境引入达到高潮,此时教师再提出问题.
推进新课
新知探究
提出问题
1均值定理的内容是什么?怎样进行证明?2你能证明a2+b2≥2ab吗?3你能尝试给出均值不等式的一个几何直观解释吗?4均值不等式有哪些变形式?
活动:教师引导学生阅读均值定理的内容,或直接用多媒体给出.点拨学生利用上两节课所学知识进行证明,这点学生会很容易做到,只需作差配方即可.接着让学生明确,这个结论就是均值不等式,也叫基本不等式.其中,任意两个正实数a、b的a+b2叫做数a、b的算术平均值,数ab叫做a、b的几何平均值.均值定理可以表述为:两个正数的算术平均值大于或等于它的几何平均值.强调这个结论的重要性,在证明不等式、求函数的最大值最小值时有着广泛的应用,是高考的一个热点.可以通过反例或特例让学生进一步认识这个结论成立的条件,a、b必须是正数,等号成立当且仅当a=b,以加深学生对此结论的理解,为后面求最值时的“一正二定三相等”打下基础.
利用不等式的性质对均值不等式两边平方,则很容易得到a2+b2≥2ab.这是一个很重要的结论.一般地,如果a、b∈R,那么a2+b2≥2ab(当且仅当a=b时取“=”)也可让学生重新证明这个结论:
∵a2+b2-2ab=(a-b)2,
当a≠b时,有(a-b)2>0.
当a=b时,有(a-b)2=0,所以(a-b)2≥0,即a2+b2≥2ab.
这个不等式对任意实数a,b恒成立,是一个很重要的不等式,应用非常广泛.请同学们注意公式的结构形式,成立的条件是a、b为实数,等号成立的条件是当且仅当a=b时成立.“当且仅当”即指充要条件.
下面我们对均值不等式的几何意义作进一步探究.
如图1,AB是圆的直径,点C是AB上一点,AC=a,BC=b.过点C作垂直于AB的弦DD′,连结AD、BD.你能利用这个图形得出均值不等式的几何解释吗?
图1
(本节课开展到这里,学生从均值不等式的证明过程中已体会到证明不等式的常用方法,对均值不等式也已经很熟悉,这就具备了探究这个问题的知识与情感基础)
这个图形是我们在初中非常熟悉的一个重要图形.容易证明△ACD∽△DCB.所以可得CD=ab.或由射影定理也可得到CD=ab.从图中我们可直观地看到ab表示的是半弦长,a+b2表示的是半径长.由于半弦长不大于半径,即CD小于或等于圆的半径,用不等式表示为:
a+b2≥ab.
显然,上述不等式当且仅当点C与圆心重合,即当a=b时,等号成立.
还应让学生熟悉均值不等式的其他变形式.如若a、b∈R+,则ab≤a+b2,当且仅当a=b时,式中等号成立.好多书上就把它称为基本不等式.在同样条件下还可写成:a+b≥2ab或2ab≤a+b等.
讨论结果:
(1)(2)略.
(3)均值不等式的几何解释是:半径不小于半弦长.
(4)若a、b∈R+,则ab≤a+b2,当且仅当a=b时,式中等号成立;
若a、b∈R+,则a+b≥2ab,当且仅当a=b时,式中等号成立;
若a、b∈R,则a2+b2≥2ab,当且仅当a=b时,式中等号成立.
应用示例
例1(教材本节例1)
活动:本例是均值不等式的简单应用,教师点拨学生证明时注意式中成立的条件,本例中的ba和ab相当于均值不等式中的a、b.因此必须有ba,ab∈R+
点评:初用均值不等式,学生往往容易忽视不等式成立的条件,点拨学生注意,只要使用均值定理,马上先想到条件,养成良好的解题习惯.
变式训练
已知a、b、c都是正实数,求证:(a+b)(b+c)(c+a)≥8abc.
证明:∵a>0,b>0,c>0,
∴a+b≥2ab>0,b+c≥2bc>0,c+a≥2ca>0.
∴(a+b)(b+c)(c+a)≥2ab2bc2ac=8abc,
即(a+b)(b+c)(c+a)≥8abc.

例2已知(a+b)(x+y)>2(ay+bx),求证:x-ya-b+a-bx-y≥2.
活动:教师引导学生探究题目中的条件与结论.本题结论中,注意x-ya-b与a-bx-y互为倒数,它们的积为1,故此题应从已知条件出发,经过变形,说明x-ya-b与a-bx-y为正数开始证题.
证明:∵(a+b)(x+y)>2(ay+bx),
∴ax+ay+bx+by>2ay+2bx.
∴ax-ay+by-bx>0.
∴(ax-bx)-(ay-by)>0.
∴(a-b)(x-y)>0,
即a-b与x-y同号.
∴x-ya-b与a-bx-y均为正数.
∴x-ya-b+a-bx-y≥2x-ya-ba-bx-y=2(当且仅当x-ya-b=a-bx-y时取“=”).
∴x-ya-b+a-bx-y≥2.
点评:本题通过对已知条件变形,恰当地因式分解,从讨论因式乘积的符号来判断x-ya-b与a-bx-y是正还是负,是我们今后解题中常用的方法.
例3若a>b>1,P=lgalgb,Q=12(lga+lgb),R=lga+b2,则()
A.R<P<QB.P<Q<R
C.Q<P<RD.P<R<Q
活动:这是均值不等式及其变形式的典型应用.根据P、Q、R三个式子的结构特点,应考虑利用均值不等式,再运用函数y=lgx的单调性.
答案:B
解析:∵a>b>1,
∴lga>lgb>0.
∴12(lga+lgb)>122lgalgb,即Q>P.
又∵a+b2>ab,
∴lga+b2>lgab=12(lga+lgb).
∴R>Q.故P<Q<R.
点评:应准确理解均值不等式成立的条件,创造性地应用均值不等式.
例4(教材本节例2)
活动:这是一个实际问题.教师引导学生分析,根据题意在(1)中,矩形的长与宽的积是一个常数,求长与宽的和的两倍的最小值;在(2)中,矩形的长与宽的和的两倍是一个常数,求长与宽的积的最大值.联想到均值不等式的两边恰是两个正数的和与积,因此建立均值不等式的数学模型.
点评:本例也可用函数模型解决,课后可让学生试一试.这里用均值不等式来解,一是说明利用均值不等式求最值的方法,二是说明这种方法的快捷.解完本例后,让学生领悟到:两个正数的积为常数时,它们的和有最小值;两个正数的和为常数时,它们的积有最大值.简单地说就是:在应用这个结论求最值时应把握“一正、二定、三相等”.正是正数,定是定值,相等是能取到等号.
知能训练
1.“a=18”是“对任意的正数x,2x+ax≥1”的()
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件
2.若正数a、b满足ab=a+b+3,则ab的取值范围是________.
答案:
1.A解析:一方面,当a=18时,对任意的正数x,有2x+ax=2x+18x≥1;另一方面,对任意正数x,都有2x+ax≥1,只要2x+ax≥22a≥1,即得a≥18.
2.[9,+∞)解法一:令ab=t(t>0),
由ab=a+b+3≥2ab+3,得t2≥2t+3,
解得t≥3,即ab≥3,故ab≥9.
解法二:由已知得ab-b=a+3,b(a-1)=a+3,
∴b=a+3a-1(a>1).
∴ab=aa+3a-1=[(a-1)+1]a+3a-1=a+3+a+3a-1=a-1+4+a-1+4a-1
=a-1+4a-1+5≥2a-14a-1+5=9.
当且仅当a-1=4a-1时取等号,即a=b=3时,ab的最小值为9.
∴ab的取值范围是[9,+∞).
点评:此题较全面地考查了均值不等式的应用及不等式的解法与运算能力.通过思考a+b与ab的关系联想到均值不等式,或建立在函数思想上,求函数的值域.
由于视角的不同,有多种方法,以上仅是其中的两种解法.
课堂小结
1.由学生自己理顺整合本节都学到了哪些知识方法?有哪些收获?
2.教师强调,本节课,我们学习了重要不等式a2+b2≥2ab;两正数a、b的算术平均数(a+b2),几何平均数(ab)及它们的关系(a+b2≥ab).两关系式成立的条件不同,前者只要求a、b都是实数,而后者要求a、b都是正数.它们既是不等式变形的基本工具,又是求函数最值的重要工具.
作业
习题3—2A组,4,5,6.习题3—2B组,1,2.
设计感想
1.本节设计突出重点.均值不等式的功能在于求最值,这是本节的重点,要牢牢地抓住.但使用均值不等式求函数最值时要注意:①x,y都是正数;②积xy(或和x+y)为定值;③x与y必须能够相等.
2.本节课我们探究了均值不等式,拓展了我们的视野;证明不等式是高中数学的重点,也是难点,在设计中加强了证明不等式的题量,但难度并不大,重在让学生体会方法.将解题思路转化为解题过程,往往不是一帆风顺的,谈思路可能头头是道,具体求解却可能会处处碰壁,消除思路与求解的差异,要靠探究,在探究中不断更新,在探究中逐步完善.
(设计者:郑吉星)
第2课时
导入新课
思路1.(复习导入)让学生回忆上节课我们探究的重要结果:一是如果a,b∈R,那么a2+b2≥2ab(当且仅当a=b时取“=”);二是均值不等式:如果a,b是正数,那么a+b2≥ab(当且仅当a=b时取“=”).在这个不等式中,a+b2为a,b的算术平均数,ab为a,b的几何平均数,这样均值不等式就有了几何意义:半弦长不大于半径.a2+b2≥2ab与a+b2≥ab成立的条件是不同的,前者只要求a,b都是实数,而后者要求a,b都是正数.本节课我们进一步探究均值不等式的应用.由此展开新课.
思路2.(直接导入)通过上节课a2+b2≥2ab(a、b∈R)与a+b2≥ab(a>0,b>0)的探究证明,我们熟悉了不等式的一些证明方法.本节课我们进一步领悟不等式的证明思路、方法,进一步熟悉利用均值不等式解决函数的最值问题的思路.教师打开多媒体课件,从而展开新课.
推进新课
新知探究
提出问题
1回忆上节课探究的均值不等式,怎样理解均值不等式的意义?都有哪些变形?2均值不等式都有哪些方面的应用?3在应用均值不等式求最值时,应注意什么问题?
活动:教师引导学生回忆上节课我们共同探究的均值不等式,以及均值不等式与a2+b2≥2ab的联系.给出了均值不等式的一个几何直观解释.均值不等式与a2+b2≥2ab都有着广泛的应用.对这两个重要不等式,要明确它们成立的条件是不同的.后者成立的条件是a与b都为实数,并且a与b都为实数是不等式成立的充分必要条件;而前者成立的条件是a与b都为正实数,并且a与b都为正数是不等式成立的充分不必要条件,如a=0,b=0,仍然能使a+b2≥ab成立.
两个不等式中等号成立的条件都是a=b,故a=b是不等式中等号成立的充要条件.
在使用“和为常数,积有最大值”和“积为常数,和有最小值”这两个结论时,应把握“一正、二定、三相等”.当条件不完全具备时,应创造条件.
本节课我们将进一步探究均值不等式的应用.
讨论结果:
(1)(2)略.
(3)应注意不等式成立的条件,即把握好“一正,二定,三相等”.
应用示例
例1(教材本节例3)
活动:本例是求函数的最值.教师引导学生将f(x)变形,注意观察代数式中可否出现和或积的定值.本例可放手让学生自己探究,教师给予适当点拨.
点评:解完本例后,让学生反思并领悟在求函数最值时,如何使用均值不等式的条件,并掌握基本技能.
变式训练
函数y=loga(x+3)-1(a>0且a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中mn>0,则1m+2n的最小值为________.
答案:8
解析:∵y=loga(x+3)-1恒过点(-2,-1),∴A(-2,-1).
又∵A在直线上,
∴-2m-n+1=0,即2m+n=1.
又∵mn>0,∴m>0,n>0.
而1m+2n=2m+nm+4m+2nn
=2+nm+2+4mn≥4+2×2=8,
当n=12,m=14时取“=”.
∴1m+2n的最小值为8.

例2(1)已知x<54,求函数y=4x-2+14x-5的最大值;
(2)已知a、b为实数,求函数y=(x-a)2+(x-b)2的最小值.
活动:(1)因为4x-5<0,所以首先要“调整”符号.又(4x-2)14x-5不是常数,所以应对4x-2进行拆(添)项“配凑”.(2)从函数解析式的特点看,本题可化为关于x的二次函数,再通过配方法求其最小值.但若注意到(x-a)+(b-x)为定值,则用变形不等式m2+n22≥(m+n2)2更简捷.
解:(1)∵x<54,∴5-4x>0.
∴y=4x-2+14x-5=-(5-4x+15-4x)+3≤-2+3=1.
当且仅当5-4x=15-4x,即x=1时,上式等号成立.
∴当x=1时,ymax=1.
(2)∵y=(x-a)2+(x-b)2=(x-a)2+(b-x)2
≥2[x-a+b-x2]2=a-b22,
当且仅当x-a=b-x,即x=a+b2时,上式等号成立.
∴当x=a+b2时,ymin=a-b22.
点评:若x、y∈R+,x+y=s,xy=p.若p为定值,则当且仅当x=y时,s的值最小;如果s为定值,则当且仅当x=y时,p的值最大.简称“和定积最大,积定和最小”.从本例的解答可以看出,求最值时往往需要拆(添)项,其目的是创设应用均值不等式的情境和使等号成立的条件,即满足“一正,二定,三相等”的要求.
变式训练
已知在△ABC中,∠ACB=90°,BC=3,AC=4,P是AB上的点,则点P到AC、BC的距离乘积的最大值是__________.
答案:3
解析:方法一:以CA、CB所在直线为坐标轴建立平面直角坐标系,则直线AB方程为x4+y3=1,设P(a,b),则a4+b3=1(a>0,b>0).
∴ab=12a4b3≤12(a4+b32)2=3,
当且仅当“a=4b3”时等号成立.
方法二:设P到BC的距离为a,到AC的距离为b.
由相似三角形易得a4=PB5,b3=PA5,
∴a4+b3=PB+PA5=1.以下解法同一.

例3当x>-1时,求函数f(x)=x2-3x+1x+1的值域.
活动:教师引导学生观察函数f(x)的分子、分母特点,可作如下变形:f(x)=x2-3x+1x+1=x+12-5x+1+5x+1=x+1+5x+1-5.
这样就可以应用均值不等式了.
解:∵x>-1,
∴x+1>0.
∴f(x)=x2-3x+1x+1=x+12-5x+1+5x+1=x+1+5x+1-5≥2x+15x+1-5=25-5,当且仅当(x+1)2=5时,即x=5-1时取“=”.
另一解x=-5-1<-1(舍去),故函数值域为[25-5,+∞).
点评:本题解法具有典型性,解后教师引导学生领悟反思.这种求值域的题目,在“函数”一章中我们接触较多,其常用方法有单调性、图象法,还有判别式法.利用判别式法不仅计算量大,而且极易因忽视某些条件而出错.本例给出了用均值不等式法求值域的方法,既简单又不易出错.但提醒学生一定要注意必须满足的三个条件:①各项均为正数;②和或积有一个为定值;③等号一定取到,这三个条件缺一不可.
变式训练
已知x1x2x3…x2006=1,且x1、x2、x3、…、x2006都是正数,则(1+x1)(1+x2)…(1+x2006)的最小值是__________.
答案:22006
解析:∵x1>0,则1+x1≥2x1,
同理,1+x2≥2x2,
……
1+x2006≥2x2006,
各式相乘,得
(1+x1)(1+x2)…(1+x2006)≥22006x1x2x3…x2006=22006.
取“=”的条件为x1=x2=x3=…=x2006=1,
∴所求最小值为22006.

例4设0<x<2,求函数f(x)=3x8-3x的最大值,并求相应的x值.试问0<x<43时,原函数f(x)有没有最大值?0<x≤1时,f(x)有没有最大值?若有,请你求出来;若没有,请你说明理由.
活动:对本例中的函数可变形为f(x)=24x-9x2,根号内是我们熟悉的二次函数,完全可以用二次函数的知识方法解决,这种方法学生很熟悉.教师可引导学生利用均值不等式求解,让学生自己探究,教师可适时地点拨.
解:∵0<x<2,∴8-3x>0.
∴f(x)=3x8-3x≤3x+8-3x22=4,
当且仅当3x=8-3x,即x=43时取“=”.
∴函数f(x)的最大值为4,此时x=43.
又f(x)=-9x2+24x=-3x-42+16,
∴当0<x<43时,f(x)递增;当x>43时,f(x)递减.
∴当0<x<43时,原函数f(x)没有最大值.
当0<x≤1时,有最大值f(1),即f(1)=15
点评:通过本例再次加深对均值不等式条件的理解.体会不等式的功能在于“和与积”的互化,构造均值不等式,解题的技巧是拆(添)项或配凑因式.
知能训练
1.函数f(x)=xx+1的最大值为()
A.25B.12C.22D.1
2.求函数y=x+1x(x>0)的最小值,以及此时x的值.
3.已知x、y∈R+,且2x+8y-xy=0,求x+y的最小值.
答案:
1.B解析:当x=0时,f(x)=0;当x>0时,f(x)=xx+1=1x+1x≤12,当且仅当x=1x,即x=1时取等号.
2.解:∵x>0,∴x+1x≥2x1x=2,
当且仅当x=1x,即x=1时取等号.
∴当x=1时,x+1x的值最小,最小值是2.
3.解:由2x+8y-xy=0得y(x-8)=2x.
∵x>0,y>0,∴x-8>0.
∴x+y=2xx-8+x=x-8+16x-8+10≥2x-816x-8+10=18,
当且仅当x-8=16x-8,即x=12时,x+y取最小值18.
课堂小结
1.由学生归纳整合本节课所用到的知识、思想方法,回顾本节课解决了哪些问题?应注意些什么?
2.教师点拨,本节课我们用均值不等式解决了函数的一些最值问题,在用均值不等式求函数的最值时,应注意考查下列三个条件:(1)函数的解析式中,各项均为正数;(2)函数的解析式中,含变数的各项的和或积必须有一个为定值;(3)函数的解析式中,含变数的各项均相等,取得最值.即用均值不等式求某些函数的最值时,应具备三个条件:一正、二定、三相等.在利用均值不等式证明一些不等式时,也应注意均值不等式成立的条件及构建均值不等式结构.
作业
习题3—2A组2、3、7、8、9;习题3—2B组3、4.
设计感想
1.本节设计意在体现均值不等式的应用,因此用不等式求解函数的最值与证明不等式是穿插进行的,且强调一题多解的训练.
2.本节设计关注了教学进程的和谐发展.整个设计给人自然流畅的感觉,没有教师过分自我展示的味道,能使学生的思维得到充分的锻炼,能力得到很大的提高.
3.本节设计重视了学生的主体地位,从例题到变式训练,从新课导入到课堂小结,都注意了学生的主动思维活动,充分让学生占据思维的时空,这是提高学生思维能力的有效良方.
备课资料
一、算术平均数不小于几何平均数的一种证明方法(局部调整法)
(1)设a1,a2,a3,…,an为正实数,这n个数的算术平均值记为A,几何平均值记为G,即A=a1+a2+…+ann,G=na1a2…an,即A≥G,当且仅当a1=a2=…=an时,A=G.特别地,当n=2时,a+b2≥ab;当n=3时,a+b+c3≥3abc.
(2)用局部调整法证明均值不等式A≥G.设这n个正数不全相等.不失一般性,设0<a1≤a2≤…≤an,易证a1<A<an,且a1<G<an.在这n个数中去掉一个最小数a1,将a1换成A,再去掉一个最大数an,将an换成a1+an-A,其余各数不变,于是得到第二组正数:A,a2,a3,…,an-1,a1+an-A.这一代换具有下列性质:①两组数的算术平均值不变,设第二组数的算术平均值为A1,那么A1=A+a2+a3+…+an-1+a1+an-An=A,②第二组数的几何平均值最大.设第二组数的几何平均值为G1,则G1=nAa2a3…an-1a1+an-A,
∵A(a1+an-A)-a1an=(A-a1)(an-A),由a1<A<an,得(A-a1)(an-A)>0,则A(a1+an-A)>a1an.∴Aa2a3…an-1(a1+an-A)>a1a2…an-1an,即G1>G.
二、备用习题
1.已知a≥0,b≥0,且a+b=2,则()
A.ab≤12B.ab≥12C.a2+b2≥2D.a2+b2≤3
2.若a、b、c、d、x、y是正实数,且P=ab+cd,Q=ax+cybx+dy,则()
A.P=QB.P<QC.P≤QD.P≥Q
3.若函数y=f(x)的值域是[12,3],则函数F(x)=f(x)+1fx的值域是()
A.[12,3]B.[2,103]
C.[52,103]D.[3,103]
4.某公司一年购买某种货物400吨,每次都购买x吨,运费为4万元/次,一年的总存储费用为4x万元,要使一年的总运费与总存储费用之和最小,则x=__________吨.
5.直线l过点M(2,1)且分别交x轴,y轴正半轴于点A,B,O为坐标原点,求△AOB面积最小时l的方程.
6.经过长期观测得到:在交通繁忙的时段内,某公路汽车的车流量y(千辆/时)与汽车的平均速度v(千米/时)之间的函数关系为y=920vv2+3v+1600(v>0).
(1)在该时段内,当汽车的平均速度v为多少时,车流量最大?最大车流量为多少?(精确到0.1千辆/时)
(2)若要求在该时段内车流量超过10千辆/时,则汽车的平均速度应在什么范围内?
参考答案:
1.C解析:对于选项C:a2+b2=a2+b2+a2+b22≥a2+b2+2ab2=a+b22=2.故C正确.
2.C解析:∵a、b、c、d、x、y是正实数,
∴Q=ax+cybx+dy
=ab+cd+adxy+bcyx
≥ab+cd+2abcd
=ab+cd=P.
3.B解析:令t=f(x),则t∈[12,3].
∴F(x)=G(t)=t+1t.该函数在t=1处取得最小值2,在t=3处取得最大值103.
故选B.
4.20解析:设一年总费用为y万元,则y=4400x+4x=1600x+4x≥21600x4x=160,当且仅当1600x=4x,即x=20时,等号成立.
5.解:设直线l的方程为y-1=k(x-2),即y=kx+1-2k(k<0).
令x=0,得y=1-2k;
令y=0,得x=2k-1k=2-1k.
∴S△AOB=12(1-2k)(2-1k)=2+1-2k+(-2k).
∵k<0,∴-2k>0.
∴S△AOB≥2+2=4,当且仅当-12k=-2k,即k=-12时取等号.
此时l的方程为y=-12x+2.
6.解:(1)依题意,得y=9203+v+1600v≤9203+21600=92083,
当且仅当v=1600v,即v=40时,上式等号成立,
所以ymax=92083≈11.1(千辆/时).
(2)由条件得920vv2+3v+1600>10,
整理,得v2-89v+1600<0,
即(v-25)(v-64)<0,
解得25<v<64.
答:当v=40千米/时时,车流量最大,最大车流量约为11.1千辆/时.如果要求在该时段内车流量超过10千辆/时,则汽车的平均速度应大于25千米/时且小于64千米/时.

相关阅读

不等式证明


题目第六章不等式不等式的证明
高考要求
1.通过复习不等式的性质及常用的证明方法(比较法、分析法、综合法、数学归纳法等),使学生较灵活的运用常规方法(即通性通法)证明不等式的有关问题;
2.掌握用“分析法”证明不等式;理解反证法、换元法、判别式法、放缩法证明不等式的步骤及应用范围
3.搞清分析法证题的理论依据,掌握分析法的证题格式和要求搞清各种证明方法的理论依据和具体证明方法和步骤
4通过证明不等式的过程,培养自觉运用数形结合、函数等基本数学思想方法证明不等式的能力;能较灵活的应用不等式的基本知识、基本方法,解决有关不等式的问题
知识点归纳
不等式的证明方法
(1)比较法:作差比较:
作差比较的步骤:
①作差:对要比较大小的两个数(或式)作差
②变形:对差进行因式分解或配方成几个数(或式)的完全平方和
③判断差的符号:结合变形的结果及题设条件判断差的符号
注意:若两个正数作差比较有困难,可以通过它们的平方差来比较大小
(2)综合法:由因导果
(3)分析法:执果索因基本步骤:要证……只需证……,只需证……
①“分析法”证题的理论依据:寻找结论成立的充分条件或者是充要条件
②“分析法”证题是一个非常好的方法,但是书写不是太方便,所以我们可以利用分析法寻找证题的途径,然后用“综合法”进行表达
(4)反证法:正难则反
(5)放缩法:将不等式一侧适当的放大或缩小以达证题目的
放缩法的方法有:
①添加或舍去一些项,如:;;
②将分子或分母放大(或缩小)
③利用基本不等式,
如:;
④利用常用结论:
Ⅰ、;
Ⅱ、;(程度大)
Ⅲ、;(程度小)
(6)换元法:换元的目的就是减少不等式中变量,以使问题化难为易,化繁为简,常用的换元有三角换元和代数换元如:
已知,可设;
已知,可设();
已知,可设;
已知,可设;
(7)构造法:通过构造函数、方程、数列、向量或不等式来证明不等式;
证明不等式的方法灵活多样,但比较法、综合法、分析法和数学归纳法仍是证明不等式的最基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.
数学归纳法法证明不等式将在数学归纳法中专门研究
题型讲解
例1若水杯中的b克糖水里含有a克糖,假如再添上m克糖,糖水会变得更甜,试将这一事实用数学关系式反映出来,并证明之
分析:本例反映的事实质上是化学问题,由浓度概念(糖水加糖甜更甜)可知
解:由题意得
证法一:(比较法)
,,
证法二:(放缩法)

证法三:(数形结合法)如图,在RtABC及RtADF中,
AB=a,AC=b,BD=m,作CE∥BD

例2已知a,b∈R,且a+b=1
求证:
证法一:(比较法)
即(当且仅当时,取等号)
证法二:(分析法)
因为显然成立,所以原不等式成立
点评:分析法是基本的数学方法,使用时,要保证“后一步”是“前一步”的充分条件
证法三:(综合法)由上分析法逆推获证(略)
证法四:(反证法)假设,

由a+b=1,得,于是有
所以,
这与矛盾
所以
证法五:(放缩法)∵
∴左边=
=右边
点评:根据欲证不等式左边是平方和及a+b=1这个特点,选用基本不等式
证法六:(均值换元法)∵,
所以可设,,
∴左边=
=右边
当且仅当t=0时,等号成立
点评:形如a+b=1结构式的条件,一般可以采用均值换元
证法七:(利用一元二次方程根的判别式法)
设y=(a+2)2+(b+2)2,
由a+b=1,有,
所以,
因为,所以,即

例3设实数x,y满足y+x2=0,0a1求证:
证明:(分析法)要证,
,只要证:,
又,
只需证:
∴只需证,
即证,此式显然成立
∴原不等式成立
例4设m等于,和1中最大的一个,当时,求证:
分析:本题的关键是将题设条件中的文字语言“m等于,和1中最大的一个”翻译为符号语言“,,”,从而知
证明:(综合法),
例5已知
的单调区间;
(2)求证:
(3)若求证:
解:(1)对已知函数进行降次分项变形,得,
(2)∵




点评:函数与不等式证明的综合题在高考中常考常新,是既考知识又考能力的好题型,在高考备考中有较高的训练价值
小结:
1.掌握好不等式的证明,不等式的证明内容甚广,证明不但用到不等式的性质,不等式证明的技能、技巧,还要注意到横向结合内容的方方面面如与数列的结合,与“二次曲线”的结合,与“三角函数”的结合,与“一元二次方程,一元二次不等式、二次函数”这“三个二次”间的互相联系、互相渗透和互相制约,这些也是近年命题的重点
2在不等式证明中还要注意数学方法,如比较法(包括比差和比商)、分析法、综合法、反证法、数学归纳法等,还要注意一些数学技巧,如数形结合、放缩、分类讨论等
3比较法是证明不等式最常用最基本的方法当欲证的不等式两端是多项式或分式时,常用差值比较法当欲证的不等式两端是乘积的形式或幂指不等式时常用商值比较法,即欲证
4基本思想、基本方法:
⑴用分析法和综合法证明不等式常要用等价转化的数学思想的换元的基本方法
⑵用分析法探索证明的途径,然后用综合法的形式写出证明过程,这是解决数学问题的一种重要的数学思想方法
⑶“分析法”证明不等式就是“执果索因”,从所证的不等式出发,不断利用充分条件或者充要条件替换前面的不等式,直至找到显然成立的不等式,书写方法习惯上用“”来表达分析法是数学解题的两个重要策略原则的具体运用,两个重要策略原则是:
正难则反原则:若从正面考虑问题比较难入手时,则可考虑从相反方向去探索解决问题的方法,即我们常说的逆向思维,由结论向条件追溯
简单化原则:寻求解题思路与途径,常把较复杂的问题转化为较简单的问题,在证明较复杂的不等式时,可以考虑将这个不等式不断地进行变换转化,得到一个较易证明的不等式
⑷凡是“至少”、“唯一”或含有否定词的命题适宜用反证法
⑸换元法(主要指三角代换法)多用于条件不等式的证明,此法若运用恰当,可沟通三角与代数的联系,将复杂的代数问题转化成简单的三角问题
⑹含有两上字母的不等式,若可化成一边为零,而另一边是关于某字母的二次式时,这时可考虑判别式法,并注意根的取值范围和题目的限制条件
⑺有些不等式若恰当地运用放缩法可以很快得证,放缩时要看准目标,做到有的放矢,注意放缩适度
学生练习
1设,求证:
证明:
=
=
=
,则
故原不等式成立
点评:(1)三元因式分解因式,可以排列成一个元的降幂形式:
(2)用比较法证不等式,关键在于作差(或商)后结式了进行变形,常见的变形是通分、因式分解或配方
2己知都是正数,且成等比数列,
求证:
证明:
成等比数列,
都是正数,
点评:两边相减能消去一部分、两边相除能约去一部分是运用比较法的外部特征,除了通分、因式分解或配方法,局部运用基本不等式,也是用比较法证不等式时的一种常用手段
3己知函数,当满足时,证明:对于任意实数都成立的充要条件是
证明:
(1)若,则
(2)当时,
故原命题成立
4.比较的大小(其中0x1)
解:-=0(比差)
5
6
证明:
7.若,求证ab与不能都大于
证明:假设ab,(1-a)(1-b)都大于
8.已知:a3+b3=2,求证:a+b
证明:假设a+b2则b2-a
a3+b3a3+(2-a)3=8-12a+6a2=6(a-1)2+2
与已知相矛盾,所以,a+b
9
10
11
13设都正数,求证:
证明:

14设且,求证:
证法1若,,
这与矛盾,
同理可证
证法2由知
15有甲、乙两个粮食经销商每次在同一粮食生产基地以相同价格购进粮食,他们共购粮三次,各次的粮食价格不同,甲每次购粮10000千克,乙每次购粮10000元三次后统计,谁购的粮食平均价低?为什么?
解:设第一、二、三次的粮食价格分别为元/千克、元/千克、元/千克,,则甲三次购粮的平均价格为,乙三次购粮的平均价格为,因为
所以乙购的粮食价格低
说明“各次的粮食价格不同”,必须用字母表示,这样就能把粮食平均价格用式子表示出来我们应该从式的特征联想到用基本不等式进行变换

课前后备注

超越不等式


一名合格的教师要充分考虑学习的趣味性,教师要准备好教案,这是教师需要精心准备的。教案可以让学生能够在课堂积极的参与互动,帮助教师能够更轻松的上课教学。怎么才能让教案写的更加全面呢?下面是小编精心为您整理的“超越不等式”,欢迎大家阅读,希望对大家有所帮助。

超越不等式
一,理论知识汇总
(一),分式不等式
1,注意通分合并
2,注意等价转化
f(x)g(x)0f(x)g(x)0

f(x)g(x)0f(x)g(x)0

f(x)g(x)≥0f(x)g(x)≥0且g(x)≠0

f(x)g(x)≤0f(x)g(x)≤0且g(x)≠0

例:解关于x的不等式ax-1x+10.
解原不等式等价于(ax-1)(x+1)0
(1)当a=0时,原不等式为-(x+1)0解得x-1;
(2)当a0时,得1a0解得x-1或x1a
(3)当a0时,原不等式可化为(x-1a)(x+1)0
①若a=-1时,不等式无解;②若a-1时,1a-1,解得-1x1a;
③若-1a0时,1a-1解得1ax-1
综上所述:当a=0时,解集为(-∞,-1);当a0时,解集为(-∞,-1)∪(1a,+∞);
当a=-1时,解集为;当a-1时,解集为(-1,1a);当-1a0时,解集为(1a,-1).
(二),高次不等式
方法:先因式分解,再使用穿线法.
注意:(1)因式分解后,整理成每个因式中未知数的系数为正.
(2)恒正因式,可直接去掉.
(3)穿线法的使用对象及使用方法
使用对象:二次不等式、分式不等式及高次不等式.
使用方法:
①在数轴上标出化简后各因式的根,使等号成立的根,标为实点,等号不成立的根要标虚点.
②自右向左自上而下穿线,遇偶次重根不穿透,遇奇次重根要穿透(叫奇透偶不透).
③数轴上方曲线对应区域使“”成立,下方曲线对应区域使“”成立.
例:解不等式x2-4x+13x2-7x+2≤1
解:变形为(2x-1)(x-1)(3x-1)(x-2)≥0
根据穿线法如图

不等式解集为:{xx13或12≤x≤1或x2}.
(三)指数不等式?
通过同底法或换元法转化为同解的代数不等式求解.?
a1时,af(x)ag(x)f(x)g(x);
0a1时,af(x)ag(x)f(x)g(x).
(四)对数不等式?
通过同底法或换元法转化为同解的代数不等式求解.
a1时,logaf(x)logag(xf(x)g(x)0;
0a1时,logaf(x)logag(x)0f(x)g(x).
(五)三角不等式?
①形如:sinx≥a,sinx≤b及a≤sinx≤b的不等式,除了使用单位圆求解之外,还可以用“图像法”求解,两者比较,“图像法”易于操作,操作程序如下:?
在同一坐标系中同时作出两个函数y1=sinx(0≤x≤2π)及y2=a(或b)(0≤x≤2π)图,得出满足x∈[0,2π]的不等式的解,然后利用函数的周期性,得出原不等式的解.?
②形如:cosx≥a,cosx≤b及a≤cosx≤b的不等式,除了使用单位圆求解之外,
还可以用“图像法”求解,两者比较,“图像法”易于掌握,求解程序如下:?
在同一坐标系中同时作出两个函y1=cosx及y2=a(或y3=b),的图像,先得出满足条件x∈的不等式的解,然后利用函数的周期性得出原不等式的解.?
③形如:tanx≥a,tanx≤b及a≤tanx≤b的不等式,有直接的结论可用:?
tanx≥a的解集是:.
tanx≤b的解集是:.
a≤tanx≤b的解集是:[kπ+arctana,kπ+arctanb],k∈Z.
练习:
1.不等式的解集是()?
?A.(,1)∪(1,10)B.(,1)∪(2,10)C.(,10)D.(1,+∞)
2.已知不等式对一切实数x都成立,则实数a的取值范围是?A.aB.a?C.0aD.a1?
3.不等式解集是()?
?A.(2,4)B.(-2,4)C.(-4,2)D.(-4,-2)?
4.不等式lg(x2+2x+2)1的解集是()?
?A.(2,4)B.(-2,4)?C.(-4,2)?D.(-4,-2)?
5.若α∈(0,),则不等式的解集是()?
?A.(-1,)B.(,)?C.(-1,)D.(,1)
6.设A={x|lg(x-1)},B={x|≤lg(x-1)},则A∪B等于()?
?A.R?B.(1,+∞)?C.(1,)?D.(1,)
7.不等式1的解集为()?
?A.(0,)B.(,+∞)?C.(,1)?D.(0,)∪(1,+∞)
8.不等式的解集为()?
?A.(3,+∞)?B.(1,5)?C.(1,4)∪(4,5)?D.(3,4)∪(4,5)
9.若不等式x2-logmx0在(0,)范围内恒成立,则实数m的取值范围是()
A.?B.?C.?D.
10.不等式5x-3的解集是.
11.当0a1时,不等式:的解集为.
12.不等式sinx≤-的解集为.
13.不等式tan(x-)≥的解集为.
14,解不等式(1)(x+4)(x+5)2(2-x)30(2)x2-4x+13x2-7x+2≤1
15.解下列指数不等式:?
(1);(2)|2x-3|+4x-30.

16.解对数不等式:logx5-2logx3.?

17.解关于x的不等式:

18.解不等式:

不等式与不等关系


一名优秀的教师在每次教学前有自己的事先计划,作为高中教师就要在上课前做好适合自己的教案。教案可以让学生更容易听懂所讲的内容,帮助高中教师提高自己的教学质量。那么一篇好的高中教案要怎么才能写好呢?考虑到您的需要,小编特地编辑了“不等式与不等关系”,仅供参考,欢迎大家阅读。

§3.1不等式与不等关系(第2课时)
【学习目标】
1.知识与技能:掌握不等式的基本性质,会用不等式的性质证明简单的不等式;
2.过程与方法:通过解决具体问题,学会依据具体问题的实际背景分析问题、解决问题的方法;
3.情态与价值:通过讲练结合,培养学生转化的数学思想和逻辑推理能力.
【学习重点】掌握不等式的性质和利用不等式的性质证明简单的不等式;
【学习难点】利用不等式的性质证明简单的不等式。
一.知识归纳
1.性质:
2.请试着对上式的(6),(7),(8)进行证明。

二.典例分析.
例1、已知求证:

例2、已知求的取值范围

例3、比较下列两个代数式值或者实数的大小。
(1)与(2)与
三.课堂检测
1.若a,b是任意实数,且ab,则()
A.B.C.D.
2.设,则下列不等式中恒成立的是()
A.B.C.D.
3.若则的值为()
A.大于0B.等于0C.小于0D.符号不能确定
4.设,则a与b的大小关系是()
AabBabCa=bD与x的值有关
5.若2a3,-4b-3,则的取值范围是,的取值范围是.
6.当时,给出以下三个结论:①②③其中正确命题的序号是。
7.若则中最小的是。
8.已知2a3,-2b-1,求2a+b,3a-2b,ab,的取值范围

不等式


一名优秀的教师在教学方面无论做什么事都有计划和准备,高中教师在教学前就要准备好教案,做好充分的准备。教案可以让讲的知识能够轻松被学生吸收,帮助高中教师能够井然有序的进行教学。你知道怎么写具体的高中教案内容吗?以下是小编收集整理的“不等式”,供大家参考,希望能帮助到有需要的朋友。

第三章不等式
第一教时
教材:不等式、不等式的综合性质
目的:首先让学生掌握不等式的一个等价关系,了解并会证明不等式的基本性质ⅠⅡ。
过程:
一、引入新课
1.世界上所有的事物不等是绝对的,相等是相对的。
2.过去我们已经接触过许多不等式从而提出课题
二、几个与不等式有关的名称(例略)
1.“同向不等式与异向不等式”
2.“绝对不等式与矛盾不等式”
三、不等式的一个等价关系(充要条件)
1.从实数与数轴上的点一一对应谈起
2.应用:例一比较与的大小
解:(取差)

例二已知0,比较与的大小
解:(取差)
∵∴从而
小结:步骤:作差—变形—判断—结论
例三比较大小1.和
解:∵


2.和
解:(取差)∵
∴当时;当时=;当时
3.设且,比较与的大小
解:∴
当时≤;当时≥
四、不等式的性质
1.性质1:如果,那么;如果,那么(对称性)
证:∵∴由正数的相反数是负数
2.性质2:如果,那么(传递性)
证:∵,∴,
∵两个正数的和仍是正数∴

由对称性、性质2可以表示为如果且那么
五、小结:1.不等式的概念2.一个充要条件
3.性质1、2
补充题:1.若,比较与的大小
解:=……=∴≥
2.比较2sin与sin2的大小(02)
略解:2sinsin2=2sin(1cos)
当(0,)时2sin(1cos)≥02sin≥sin2
当(,2)时2sin(1cos)02sinsin2
3.设且比较与的大小
解:
当时∴
当时∴
∴总有

文章来源:http://m.jab88.com/j/56640.html

更多

最新更新

更多