88教案网

八年级数学上册知识点:圆的认识

八年级数学上册知识点:圆的认识

圆的定义:
圆是一种几何图形。当一条线段绕着它的一个端点在平面内旋转一周时,它的另一个端点的轨迹叫做圆。
在一个个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。

相关定义:
1在同一平面内,到定点的距离等于定长的点的集合叫做圆。这个定点叫做圆的圆心。图形一周的长度,就是圆的周长。
2连接圆心和圆上的任意一点的线段叫做半径,字母表示为r。
3通过圆心并且两端都在圆上的线段叫做直径,字母表示为d。直径所在的直线是圆的对称轴。
4连接圆上任意两点的线段叫做弦。最长的弦是直径,直径是过圆心的弦。
5圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,优弧是用三个字母表示。小于半圆的弧称为劣弧,劣弧用两个字母表示。半圆既不是优弧,也不是劣弧。优弧是大于180度的弧,劣弧是小于180度的弧。
6由两条半径和一段弧围成的图形叫做扇形。
7由弦和它所对的一段弧围成的图形叫做弓形。
8顶点在圆心上的角叫做圆心角。
9顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。
10圆周长度与圆的直径长度的比值叫做圆周率。它是一个无限不循环小数,通常用π表示,π=3.14159265……在实际应用中,一般取π≈3.14。
11圆周角等于相同弧所对的圆心角的一半。
12圆是一个正n边形(n为无限大的正整数),边长无限接近0但不等于0。
圆的集合定义:
圆是平面内到定点的距离等于定长的点的集合,其中定点是圆心,定长是半径。
圆的字母表示:
以点O为圆心的圆记作“⊙O”,读作O”。
圆—⊙;
半径—r或R(在环形圆中外环半径表示的字母);
弧—⌒;
直径—d;
扇形弧长—L;
周长—C;
面积—S。
圆的性质:
(1)圆是轴对称图形,其对称轴是任意一条通过圆心的直线。
圆也是中心对称图形,其对称中心是圆心。
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。
逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的2条弧。
(2)有关圆周角和圆心角的性质和定理
①在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。
②在同圆或等圆中,相等的弧所对的圆周角等于它所对的圆心角的一半(圆周角与圆心角在弦的同侧)。
直径所对的圆周角是直角。90度的圆周角所对的弦是直径。
圆心角计算公式:θ=(L/2πr)×360°=180°L/πr=L/r(弧度)。
即圆心角的度数等于它所对的弧的度数;圆周角的度数等于它所对的弧的度数的一半。
③如果一条弧的长是另一条弧的2倍,那么其所对的圆周角和圆心角是另一条弧的2倍。
(3)有关外接圆和内切圆的性质和定理
①一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等;
②内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等。
③R=2S△÷L(R:内切圆半径,S:三角形面积,L:三角形周长)。
④两相切圆的连心线过切点。(连心线:两个圆心相连的直线)
⑤圆O中的弦PQ的中点M,过点M任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则M为XY之中点。
(4)如果两圆相交,那么连接两圆圆心的线段(直线也可)垂直平分公共弦。
(5)弦切角的度数等于它所夹的弧的度数的一半。
(6)圆内角的度数等于这个角所对的弧的度数之和的一半。
(7)圆外角的度数等于这个角所截两段弧的度数之差的一半。
(8)周长相等,圆面积比长方形、正方形、三角形的面积大。
点、线、圆与圆的位置关系:
点和圆位置关系
①P在圆O外,则POr。
②P在圆O上,则PO=r。
③P在圆O内,则0≤POr。
反过来也是如此。
直线和圆位置关系
①直线和圆无公共点,称相离。AB与圆O相离,dr。
②直线和圆有两个公共点,称相交,这条直线叫做圆的割线。AB与⊙O相交,dr。
③直线和圆有且只有一公共点,称相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。AB与⊙O相切,d=r。(d为圆心到直线的距离)
圆和圆位置关系
①无公共点,一圆在另一圆之外叫外离,在之内叫内含。
②有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切。
③有两个公共点的叫相交。两圆圆心之间的距离叫做圆心距。
设两圆的半径分别为R和r,且R〉r,圆心距为P,则结论:外离PR+r;外切P=R+r;内含PR-r;
内切P=R-r;相交R-rPR+r。

延伸阅读

八年级数学上册知识点:投影


教案课件是老师工作中的一部分,大家应该开始写教案课件了。将教案课件的工作计划制定好,才能使接下来的工作更加有序!那么到底适合教案课件的范文有哪些?急您所急,小编为朋友们了收集和编辑了“八年级数学上册知识点:投影”,欢迎大家阅读,希望对大家有所帮助。

八年级数学上册知识点:投影

知识点总结
一、投影:
1.平行投影:太阳光线可以看成平行光线,像这样的光线所形成的投影称为平行投影。
平行投影的特征:(1)点的投影仍是点;(2)直线的投影一般仍是直线;(3)一点在某直线上,则该点的投影一定在该直线的投影上;(4)直线上两线段之比,等于其影长之比;
(5)两直线平行,其投影平行或在同一直线上。
2.中心投影:灯光的光线可以看成是从同一点发出的(即为点光源),像这样的光线所形成的投影称为中心投影。
中心投影的特征:(1)对应点连线都经过一点,这一点就是光源的位置;(2)物体的投影的大小,是随着光源距离物体的远近而变化的,或者是随物体离投影面的远近而变化的;
(3)中心投影不能反映原物体的真实形状和大小。
3.正投影:投影线垂直于投影面时产生的投影叫做正投影。
正投影的特征:(1)当平面图形平行于投影面时,它的正投影是与它全等的平面几何图形(点的正投影仍是一个点);(2)当平面图形垂直于投影面时,它的正投影是一条线段(线段垂直于投影面时的正投影是一个点);(3)当平面图形位于投影面上时,它的正投影是它本身。
二、太阳光与影子:
物体在太阳光线照射的不同时刻,不仅影子的长短在变化,而且影子的方向也改变,根据不同时刻影长的变换规律,以及太阳东升西落的自然规律,可以判断时间的先后顺序。
三、灯光与影子:
在某确定灯光下固定物体的影子与方向是一定的,对灯而言,移动的物体离灯越近,影子越短,离灯越远,影子越长。
四、视点、视线、盲区:
眼睛的位置称为视点,由视点发出的线称为视线,看不到的区域称为盲区。

常见考法
把投影与相似形、三角函数等知识结合,求物长或影长。
误区提醒
误认为中心投影下,两个物体的高不可能同时与影长相等。
【典型例题】(2010年浙江杭州)四个直立在地面上的字母广告牌在不同情况下,在地面上的投影(阴影部分)效果如图.则在字母“L”、“K”、“C”的投影中,与字母“N”属同一种投影的有()

A.“L”、“K”B.“C”C.“K”D.“L”、“K”、“C”
【解析】“L”、“K”是平行投影,C是正投影。故本题选A.

投影的产生:物体在光线的照射下,就会在地面或墙壁上出现物体的影子。投射线通过物体,向选定的面投射,并在该面上得到图形的方法称为投影法。
投影规律:
主视图和俯视图都反映物体的长度,且长对正。
主视图和左视图都反映物体的高度,且高平齐。
俯视图和左视图都反映物体的宽度,且宽一致。
练习
1.下面四幅图是两个物体不同时刻在太阳光下的影子,按照时间的先后顺序正确的是()

(A)A→B→C→D(B)D→B→C→A(C)C→D→A→B(D)A→C→B→D
2.球的正投影是()
(A)圆面(B)椭圆面(C)点(D)圆环
3.在同一时刻,两根长度不等的竿子置于阳光之下,但看到它们的影长相等,那么这两根竿子的相对位置是()
(A)两竿都垂直于地面(B)两竿平行斜插在地上
(C)两根竿子不平行(D)一根竿倒在地上
4.平行投影中的光线是()
(A)平行的(B)聚成一点的(C)不平行的(D)向四面发散的
5.两个不同长度的的物体在同一时刻同一地点的太阳光下得到的投影是()
(A)相等(B)长的较长(C)短的较长(D)不能确定

八年级数学上册知识点:倒数


教案课件是老师需要精心准备的,到写教案课件的时候了。在写好了教案课件计划后,才能够使以后的工作更有目标性!有没有好的范文是适合教案课件?以下是小编收集整理的“八年级数学上册知识点:倒数”,希望能为您提供更多的参考。

八年级数学上册知识点:倒数

倒数就是指数学上设一个数x与其相乘的积为1的数,记为1/x或x。
倒数
1.求一个分数的倒数,例如3/4,我们只须把3/4这个分数的分子和分母交换位置,即得3/4的倒数为4/3。
2.求一个整数的倒数,只须把这个整数看成是分母为1的分数,然后再按求分数倒数的方法即可得到。
如12,即12/1,再把12/1这个分数的分子和分母交换位置,把分子做分母,分母做分子,则有1/12。
即12倒数是1/12。
说明:倒数是本身的数是1和-1。(0没有倒数)
把0.25化成分数,即1/4
再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子.则是4/1
再把4/1化成整数,即4
所以0.25是4的倒数。也可以说4是0.25的倒数
也可以用1去除以这个数,例如0.25
1/0.25等于4
所以0.25的倒数4.
因为乘积是1的两个数互为倒数。
分数、整数也都使用这种规律。
求倒数的约分问题在求倒数过程中,当然要约分,如14/35
约分以后成2/5
最后按照求倒数的方法求出14/35的倒数。
数论倒数
而在数论中,还有数论倒数的概念,如果两个数a和b,它们的乘积关于模m余1,那么我们称它们互为关于模m的数论倒数。比如2*3=1(mod5),所以3是2关于5的数论倒数。数论倒数在中国剩余定理中非常重要。而辗转相除法提供了计算数论倒数的方法。
群论中的倒数
近世代数中有群,域,环等概念,其中定义了抽象的乘法运算和单位元。同样的,关于其乘法如果有乘法逆,同样可以看成是倒数。
倒数的特点
倒数的特点:一个正实数(1除外)加上它的倒数一定大于2。理由:a/b,b/a为倒数当ab时a/b一定大于1,可写为1+(a-b)/b因为b/a+(a-b)/a=b*b/a*b+(a*b-b*b)/ab=(a*a-b*b+b*b)/ab=a*a/a*b,又因为ab,所以a*aa*b,所以a*a/a*b1,所以1+(a-b)/b+a*a/a*b2,所以一个正实数加上它的倒数一定大于2。
当ba时也一样。
同理可证,一个负实数(-1除外)加上它的倒数一定小于-2。
在四则混合运算中,有时会用到倒数来解题,正规解起来很麻烦。

倒数:
乘积为1的两个数互为倒数;
注意:0没有倒数;若ab=1a、b互为倒数;若ab=-1a、b互为负倒数.
等于本身的数汇总:
相反数等于本身的数:0
倒数等于本身的数:1,-1
绝对值等于本身的数:正数和0
平方等于本身的数:0,1
立方等于本身的数:0,1,-1.

八年级数学上册知识点:勾股定理


老师工作中的一部分是写教案课件,大家应该要写教案课件了。只有制定教案课件工作计划,可以更好完成工作任务!你们到底知道多少优秀的教案课件呢?小编特地为您收集整理“八年级数学上册知识点:勾股定理”,欢迎阅读,希望您能够喜欢并分享!

八年级数学上册知识点:勾股定理

一、勾股定理:
1.勾股定理内容:如果直角三角形的两直角边长分别为a,斜边长为c,那么a2+b2=c2,即直角三角形两直角边的平方和等于斜边的平方。
2.勾股定理的证明:
勾股定理的证明方法很多,常见的是拼图的方法
用拼图的方法验证勾股定理的思路是:
(1)图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变;
(2)根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。

4.勾股定理的适用范围:
勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征。
二、勾股定理的逆定理
1.逆定理的内容:如果三角形三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形,其中c为斜边。
说明:(1)勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和与较长边的平方作比较,若它们相等时,以a,b,c为三边的三角形是直角三角形;
(2)定理中a,b,c及a2+b2=c2只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,c满足a2+b2=c,那么以a,b,c为三边的三角形是直角三角形,但此时的斜边是b.
2.利用勾股定理的逆定理判断一个三角形是否为直角三角形的一般步骤:
(1)确定最大边;
(2)算出最大边的平方与另两边的平方和;
(3)比较最大边的平方与别两边的平方和是否相等,若相等,则说明是直角三角形。
三、勾股数
能够构成直角三角形的三边长的三个正整数称为勾股数.
四、一个重要结论:
由直角三角形三边为边长所构成的三个正方形满足“两个较小面积和等于较大面积”。
五、勾股定理及其逆定理的应用
解决圆柱侧面两点间的距离问题、航海问题,折叠问题、梯子下滑问题等,常直接间接运用勾股定理及其逆定理的应用。
常见考法
(1)直接考查勾股定理及其逆定理;(2)应用勾股定理建立方程;(3)实际问题中应用勾股定理及其逆定理。
误区提醒
(1)忽略勾股定理的适用范围;(2)误以为直角三角形中的一定是斜边。
【典型例题】(2010湖北孝感)
[问题情境]
勾股定理是一条古老的数学定理,它有很多种证明方法,我国汉代数学家赵爽根据弦图,利用面积法进行证明,著名数学家华罗庚曾提出把“数形关系”(勾股定理)带到其他星球,作为地球人与其他星球“人”进行第一次“谈话”的语言。
[定理表述]
请你根据图1中的直角三角形叙述勾股定理(用文字及符号语言叙述);
[尝试证明]
以图1中的直角三角形为基础,可以构造出以a、b为底,以a+b为高的直角梯形(如图2),请你利用图2,验证勾股定理;
[知识拓展]

勾股定理
一、勾股定理概述
直角三角形中,两直边的平方和等于斜边的平方。
即令直角三角形ABC中,其中角C=90°,直边BC的长度为a,AC的长度为b,斜边AB的长度为c,则有a+b=c
①勾股定理应用的前提是这个三角函数必须是直角三角形,解题时,只能是同一直角三角形中时,才能利用它求第三边边长
②在式子a+b=c中,a、b代表直角三角形的两条直角边,c代表斜边,它们之间的关系不能弄错
③遇到直角三角形中线段求值问题(知识点详解见解直角三角形),要首先向到勾股定理,勾股定理把“数”与“形”有机结合起来,把直角三角形这一“形”与三边关系这一“数”结合起来,是属性结合思想方法的典型。
④勾股定理的变式
在Rt△ABC中,其中角C=90°,直边BC的长度为a,AC的长度为b,斜边AB的长度为c,则
c=a+b
a=c-b=(c-b)(c+b)
b=c-a=(c-a)(c=a)
c=根号下(a+b)
a=根号下(c-b)
b=根号下(c-a)
二、勾股定理证明方法
1.面积法
一个直角梯形由2个直角边分别为a、b,斜边为c的直角三角形和1个直角边为c的等腰直角三角形拼成。因为三个直角三角形的面积之和等于梯形的面积,所以可以列出等式
1/2c2+2*1/2ab=(a+b)(b+a)/2,化简c2=a2+b2
2.赵爽证明法
以a、b为直角边(ba),以c为斜边作四个全等的直角三角形,则每个直角三角形的面积等于1/2ab.把这四个直角三角形拼成如图所示形状.
∵RtΔDAH≌RtΔABE,
∴∠HDA=∠EAB.
∵∠HAD+∠HAD=90,
∴∠EAB+∠HAD=90,
∴ABCD是一个边长为c的正方形,它的面积等于c2.
∵EF=FG=GH=HE=b―a,∠HEF=90.
∴EFGH是一个边长为b―a的正方形,它的面积等于(b-a)2.
∴4*1/2ab+(b-a)2=c2
∴a2+b2=c2
三、勾股定理的逆定理
如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形。最长边所对的角为直角。
勾股定理的逆定理是识别一个三角形是直角三角形的一种理论依据,它通过数形结合来确定三角形的形状,在运用这一定理时,可以用两短边的平方和a+b与较长边的平方c做比较,如果a+b=c,则此三角形为直角三角形,若a+b>c,此三角形为锐角三角形,若a+b<c,则此三角形为钝角三角形

文章来源://m.jab88.com/j/56641.html

更多

猜你喜欢

更多

最新更新

更多