第十一章算法初步
高考导航
考试要求重难点击命题展望
1.了解算法的含义,了解算法的思想.
2.理解程序框图的三种基本逻辑结构:顺序结构、条件结构、循环结构.
3.理解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句的含义.
4.了解几个古代的算法案例,能用辗转相除法及更相减损术求最大公约数;用秦九韶算法求多项式的值;了解进位制,会进行不同进位制之间的转化.本章重点:1.算法的三种基本逻辑结构即顺序结构、条件结构和循环结构;2.输入语句、输出语句、赋值语句、条件语句、循环语句(两种形式)的结构、作用与功能及各种语句的格式要求.
本章难点:1.用自然语言表示算法和运用程序框图表示算法;2.用算法的基本思想编写程序解决简单问题.弄清三种基本逻辑结构的区别,把握程序语言中所包含的一些基本语句结构.算法初步作为数学新增部分,在高考中一定会体现出它的重要性和实用性.
高考中将重点考查对变量赋值的理解和掌握、对条件结构和循环结构的灵活运用,学会根据要求画出程序框图;预计高考中,将考查程序框图、循环结构和算法思想,并结合函数与数列考查逻辑思维能力.因此算法知识与其他知识的结合将是高考的重点,这也恰恰体现了算法的普遍性、工具性,当然难度不会太大,重在考查算法的概念及其思想.
1.以选择题、填空题为主,重点考查算法的含义、程序框图、基本算法语句以及算法案例等内容.
2.解答题中可要求学生设计一个计算的程序并画出程序框图,能很好地考查学生分析问题、解决问题的能力.
知识网络
11.1算法的含义与程序框图
典例精析
题型一算法的含义
【例1】已知球的表面积是16π,要求球的体积,写出解决该问题的一个算法.
【解析】算法如下:
第一步,s=16π.
第二步,计算R=s4π.
第三步,计算V=4πR33.
第四步,输出V.
【点拨】给出一个问题,设计算法应该注意:
(1)认真分析问题,联系解决此问题的一般数学方法,此问题涉及到的各种情况;
(2)将此问题分成若干个步骤;
(3)用简练的语句将各步表述出来.
【变式训练1】设计一个计算1×3×5×7×9×11×13的算法.图中给出程序的一部分,则在横线①上不能填入的数是()
A.13
B.13.5
C.14
D.14.5
【解析】当I<13成立时,只能运算
1×3×5×7×9×11.故选A.
题型二程序框图
【例2】图一是某县参加2010年高考的学生身高条形统计图,从左到右的各条形表示的学生人数依次记为A1,A2,…,A10(如A2表示身高(单位:cm)在[150,155)内的学生人数).图二是统计图一中身高在一定范围内学生人数的一个算法流程图.现要统计身高在160~180cm(含160cm,不含180cm)的学生人数,那么在流程图中的判断框内应填写的条件是()
A.i<6?B.i<7?C.i<8?D.i<9?
图一
【解析】根据题意可知,i的初始值为4,输出结果应该是A4+A5+A6+A7,因此判断框中应填写i<8?,选C.
【点拨】本题的命题角度较为新颖,信息量较大,以条形统计图为知识点进行铺垫,介绍了算法流程图中各个数据的引入来源,其考查点集中于循环结构的终止条件的判断,考查了学生合理地进行推理与迅速作出判断的解题能力,解本题的过程中不少考生误选A,实质上本题中的数据并不大,考生完全可以直接从头开始限次按流程图循环观察,依次写出每次循环后的变量的赋值,即可得解.
【变式训练2】(2009辽宁)某店一个月的收入和支出,总共记录了N个数据a1,a2,…,aN.其中收入记为正数,支出记为负数,该店用如图所示的程序框图计算月总收入S和月净盈利V,那么在图中空白的判断框和处理框中,应分别填入下列四个选项中的()
A.A>0?,V=S-T
B.A<0?,V=S-T
C.A>0?,V=S+T
D.A<0?,V=S+T
【解析】选C.
题型三算法的条件结构
【例3】某快递公司规定甲、乙两地之间物品的托运费用根据下列方法计算:
f=
其中f(单位:元)为托运费,ω为托运物品的重量(单位:千克),试写出一个计算费用f的算法,并画出相应的程序框图.
【解析】算法如下:
第一步,输入物品重量ω.
第二步,如果ω≤50,那么f=0.53ω,
否则,f=50×0.53+(ω-50)×0.85.
第三步,输出托运费f.
程序框图如图所示.
【点拨】求分段函数值的算法应用到条件结构,因此在程序框图的画法中需要引入判断框,要根据题目的要求引入判断框的个数,而判断框内的条件不同,对应的框图中的内容或操作就相应地进行变化.
【变式训练3】(2010天津)阅读如图的程序框图,若输出s的值为-7,则判断框内可填写()
A.i<3?
B.i<4?
C.i<5?
D.i<6?
【解析】i=1,s=2-1=1;
i=3,s=1-3=-2;
i=5,s=-2-5=-7.所以选D.
题型四算法的循环结构
【例4】设计一个计算10个数的平均数的算法,并画出程序框图.
【解析】算法步骤如下:
第一步,令S=0.
第二步,令I=1.
第三步,输入一个数G.
第四步,令S=S+G.
第五步,令I=I+1.
第六步,若I>10,转到第七步,
若I≤10,转到第三步.
第七步,令A=S/10.
第八步,输出A.
据上述算法步骤,程序框图如图.
【点拨】(1)引入变量S作为累加变量,引入I为计数变量,对于这种多个数据的处理问题,可通过循环结构来达到;(2)计数变量用于记录循环次数,同时它的取值还用于判断循环是否终止,累加变量用于输出结果.
【变式训练4】设计一个求1×2×3×…×10的程序框图.
【解析】程序框图如下面的图一或图二.
图一图二
总结提高
1.给出一个问题,设计算法时应注意:
(1)认真分析问题,联系解决此问题的一般数学方法;
(2)综合考虑此类问题中可能涉及的各种情况;
(3)借助有关的变量或参数对算法加以表述;
(4)将解决问题的过程划分为若干个步骤;
(5)用简练的语言将各个步骤表示出来.
2.循环结构有两种形式,即当型和直到型,这两种形式的循环结构在执行流程上有所不同,当型循环是当条件满足时执行循环体,不满足时退出循环体;而直到型循环则是当条件不满足时执行循环体,满足时退出循环体.所以判断框内的条件,是由两种循环语句确定的,不得随便更改.
3.条件结构主要用在一些需要依据条件进行判断的算法中.如分段函数的求值,数据的大小关系等问题的算法设计.
11.2基本算法语句
典例精析
题型一输入、输出与赋值语句的应用
【例1】阅读程序框图(如下图),若输入m=4,n=6,则输出a=,i=.
【解析】a=12,i=3.
【点拨】赋值语句是一种重要的基本语句,也是程序必不可少的重要组成部分,使用赋值语句,要注意其格式要求.
【变式训练1】(2010陕西)如图是求样本x1,x2,…,x10的平均数的程序框图,则图中空白框中应填入的内容为()
A.S=S+xnB.S=S+xnnC.S=S+nD.S=S+1n
【解析】因为此步为求和,显然为S=S+xn,故选A.
题型二循环语句的应用
【例2】设计算法求11×2+12×3+13×4+…+199×100的值.要求画出程序框图,写出用基本语句编写的程序.
【解析】这是一个累加求和问题,共99项相加,可设计一个计数变量,一个累加变量,用循环结构实现这一算法.程序框图如下图所示:
程序如下:
s=0
k=1
DO
s=s+1/(k*(k+1))
k=k+1
LOOPUNTILk>99
PRINTs
END
【点拨】(1)在用WHILE语句和UNTIL语句编写程序解决问题时,一定要注意格式和条件的表述方法,WHILE语句是当条件满足时执行循环体,UNTIL语句是当条件不满足时执行循环体.
(2)在解决一些需要反复执行的运算任务,如累加求和、累乘求积等问题中应注意考虑利用循环语句来实现.
(3)在循环语句中,也可以嵌套条件语句,甚至是循环语句,此时需要注意嵌套的这些语句,保证语句的完整性,否则就会造成程序无法执行.
【变式训练2】下图是输出某个有限数列各项的程序框图,则该框图所输出的最后一个数据是.
【解析】由程序框图可知,当N=1时,A=1;N=2时,A=13;N=3时,A=15,…,即输出各个A值的分母是以1为首项以2为公差的等差数列,故当N=50时,A=11+(50-1)×2=199,即为框图最后输出的一个数据.故填199.
题型三算法语句的实际应用
【例3】某电信部门规定:拨打市内电话时,如果通话时间3分钟以内,收取通话费0.2元,如果通话时间超过3分钟,则超过部分以每分钟0.1元收取通话费(通话不足1分钟时按1分钟计算).试设计一个计算通话费用的算法,要求写出算法,编写程序.
【解析】我们用c(单位:元)表示通话费,t(单位:分钟)表示通话时间,
则依题意有
算法步骤如下:
第一步,输入通话时间t.
第二步,如果t≤3,那么c=0.2;否则c=0.2+0.1×[t-2].
第三步,输出通话费用c.
程序如下:
INPUTt
IFt<3THEN
c=0.2
ELSE
c=0.2+0.1*INT(t-2)
ENDIF
PRINTc
END
【点拨】在解决实际问题时,要正确理解其中的算法思想,根据题目写出其关系式,再写出相应的算法步骤,画出程序框图,最后准确地编写出程序,同时要注意结合题意加深对算法的理解.
【变式训练3】(2010江苏)下图是一个算法流程图,则输出S的值是.
【解析】n=1时,S=3;n=2时,S=3+4=7;n=3时,S=7+8=15;n=4时,S=15+24=31;n=5时,S=31+25=63.因为63≥33,所以输出的S值为63.
总结提高
1.输入、输出语句可以设计提示信息,加引号表示出来,与变量之间用分号隔开.
2.赋值语句的赋值号左边只能是变量而不能是表达式;赋值号左右两边不能对换,不能利用赋值语句进行代数式计算,利用赋值语句可以实现两个变量值的互换,方法是引进第三个变量,用三个赋值语句完成.
3.在某些算法中,根据需要,在条件语句的THEN分支或ELSE分支中又可以包含条件语句.遇到这样的问题,要分清内外条件结构,保证结构的完整性.
4.分清WHILE语句和UNTIL语句的格式,在解决一些需要反复执行的运算任务,如累加求和,累乘求积等问题中应主要考虑利用循环语句来实现,但也要结合其他语句如条件语句.
5.编程的一般步骤:
(1)算法分析;(2)画出程序框图;(3)写出程序.
11.3算法案例
典例精析
题型一求最大公约数
【例1】(1)用辗转相除法求840与1764的最大公约数;
(2)用更相减损术求440与556的最大公约数.
【解析】(1)用辗转相除法求840与1764的最大公约数:
1764=840×2+84,
840=84×10+0.
所以840与1764的最大公约数是84.
(2)用更相减损术求440与556的最大公约数:
556-440=116,
440-116=324,
324-116=208,
208-116=92,
116-92=24,
92-24=68,
68-24=44,
44-24=20,
24-20=4,
20-4=16,
16-4=12,
12-4=8,
8-4=4.
所以440与556的最大公约数是4.
【点拨】(1)辗转相除法与更相减损术是求两个正整数的最大公约数的方法,辗转相除法用较大的数除以较小的数,直到大数被小数除尽结束运算,较小的数就是最大公约数;更相减损术是用两数中较大的数减去较小的数,直到所得的差和较小数相等为止,这个较小数就是这两个数的最大公约数.一般情况下,辗转相除法步骤较少,而更相减损术步骤较多,但运算简易,解题时要灵活运用.
(2)两个以上的数求最大公约数,先求其中两个数的最大公约数,再用所得的公约数与其他各数求最大公约数即可.
【变式训练1】求147,343,133的最大公约数.
【解析】先求147与343的最大公约数.
343-147=196,
196-147=49,
147-49=98,
98-49=49,
所以147与343的最大公约数为49.
再求49与133的最大公约数.
133-49=84,
84-49=35,
49-35=14,
35-14=21,
21-14=7,
14-7=7.
所以147,343,133的最大公约数为7.
题型二秦九韶算法的应用
【例2】用秦九韶算法写出求多项式f(x)=1+x+0.5x2+0.01667x3+0.04167x4+0.00833x5在x=-0.2时的值的过程.
【解析】先把函数整理成f(x)=((((0.00833x+0.04167)x+0.16667)x+0.5)x+1)x+1,
按照从内向外的顺序依次进行.
x=-0.2,
a5=0.00833,v0=a5=0.00833;
a4=0.04167,v1=v0x+a4=0.04;
a3=0.01667,v2=v1x+a3=0.00867;
a2=0.5,v3=v2x+a2=0.49827;
a1=1,v4=v3x+a1=0.90035;
a0=1,v5=v4x+a0=0.81993;
所以f(-0.2)=0.81993.
【点拨】秦九韶算法是多项式求值的最优算法,特点是:
(1)将高次多项式的求值化为一次多项式求值;
(2)减少运算次数,提高效率;
(3)步骤重复实施,能用计算机操作.
【变式训练2】用秦九韶算法求多项式f(x)=8x7+5x6+3x4+2x+1当x=2时的值为.
【解析】1397.
题型三进位制之间的转换
【例3】(1)将101111011(2)转化为十进制的数;
(2)将53(8)转化为二进制的数.
【解析】(1)101111011(2)=1×28+0×27+1×26+1×25+1×24+1×23+0×22+1×21+1=379.
(2)53(8)=5×81+3=43.
所以53(8)=101011(2).
【点拨】将k进制数转换为十进制数,关键是先写成幂的积的形式再求和,将十进制数转换为k进制数,用“除k取余法”,余数的书写是由下往上,顺序不能颠倒,k进制化为m进制(k,m≠10),可以用十进制过渡.
【变式训练3】把十进制数89化为三进制数.
【解析】具体的计算方法如下:
89=3×29+2,
29=3×9+2,
9=3×3+0,
3=3×1+0,
1=3×0+1,
所以89(10)=10022(3).
总结提高
1.辗转相除法和更相减损术都是用来求两个数的最大公约数的方法.其算法不同,但二者的原理却是相似的,主要区别是一个是除法运算,一个是减法运算,实质都是一个递推的过程.用秦九韶算法计算多项式的值,关键是正确的将多项式改写,然后由内向外,依次计算求解.
2.将k进制数转化为十进制数的算法和将十进制数转化为k进制数的算法操作性很强,要掌握算法步骤,并熟练转化;要熟练应用“除基数,倒取余,一直除到商为0”.
第十四章推理与证明
高考导航
考试要求重难点击命题展望
1.了解合情推理的含义.
2.能利用归纳与类比等进行简单的推理.
3.体会并认识合情推理在数学发现中的作用.
4.了解演绎推理的重要性.
5.掌握演绎推理的基本模式:“三段论”.
6.能运用演绎推理进行简单的推理.
7.了解演绎推理、合情推理的联系与区别.
8.了解直接证明的两种基本方法:分析法与综合法.
9.了解分析法与综合法的思维过程、特点.
10.了解反证法是间接证明的一种基本方法及反证法的思维过程、特点.
11.了解数学归纳法的原理.
12.能用数学归纳法证明一些简单的与自然数有关的数学命题.本章重点:1.利用归纳与类比进行推理;2.利用“三段论”进行推理与证明;3.运用直接证明(分析法、综合法)与间接证明(反证法)的方法证明一些简单的命题;4.数学归纳法的基本思想与证明步骤;运用数学归纳法证明与自然数n(n∈N*)有关的数学命题.
本章难点:1.利用归纳与类比的推理来发现结论并形成猜想命题;2.根据综合法、分析法及反证法的思维过程与特点选取适当的证明方法证明命题;3.理解数学归纳法的思维实质,特别是在第二个步骤要根据归纳假设进行推理与证明.“推理与证明”是数学的基本思维过程,也是人们学习和生活中经常使用的思维方式.本章要求考生通过对已有知识的回顾与总结,进一步体会直观感知、观察发现、归纳类比、空间想象、抽象概括、符号表示、运算求解、数据处理、演绎证明、反思与建构等数学思维过程以及合情推理、演绎推理之间的联系与差异,体会数学证明的特点,了解数学证明的基本方法.
本章是新课程考纲中新增的内容,考查的范围宽,内容多,涉及数学知识的方方面面,与旧考纲相比,增加了合情推理等知识点,这为创新性试题的命制提供了空间.
知识网络
14.1合情推理与演绎推理
典例精析
题型一运用归纳推理发现一般性结论
【例1】通过观察下列等式,猜想出一个一般性的结论,并证明结论的真假.
sin215°+sin275°+sin2135°=32;
sin230°+sin290°+sin2150°=32;
sin245°+sin2105°+sin2165°=32;
sin260°+sin2120°+sin2180°=32.
【解析】猜想:sin2(α-60°)+sin2α+sin2(α+60°)=32.
左边=(sinαcos60°-cosαsin60°)2+sin2α+(sinαcos60°+cosαsin60°)2=32(sin2α+cos2α)=32=右边.
【点拨】先猜后证是一种常见题型;归纳推理的一些常见形式:一是“具有共同特征型”,二是“递推型”,三是“循环型”(周期性).
【变式训练1】设直角三角形的两直角边的长分别为a,b,斜边长为c,斜边上的高为h,则有a+b<c+h成立,某同学通过类比得到如下四个结论:
①a2+b2>c2+h2;②a3+b3<c3+h3;③a4+b4<c4+h4;④a5+b5>c5+h5.
其中正确结论的序号是;
进一步类比得到的一般结论是.
【解析】②③;an+bn<cn+hn(n∈N*).
题型二运用类比推理拓展新知识
【例2】请用类比推理完成下表:
平面空间
三角形两边之和大于第三边三棱锥任意三个面的面积之和大于第四个面的面积
三角形的面积等于任意一边的长度与这边上的高的乘积的一半三棱锥的体积等于任意一个底面的面积与该底面上的高的乘积的三分之一
三角形的面积等于其内切圆半径与三角形周长的乘积的一半
【解析】本题由已知的前两组类比可得到如下信息:
①平面中的三角形与空间中的三棱锥是类比对象;②三角形各边的边长与三棱锥各面的面积是类比对象;③三角形边上的高与三棱锥面上的高是类比对象;④三角形的面积与三棱锥的体积是类比对象;⑤三角形的面积公式中的“二分之一”与三棱锥的体积公式中的“三分之一”是类比对象.
由以上分析可知:
故第三行空格应填:三棱锥的体积等于其内切球半径与三棱锥表面积的乘积的三分之一.
本题结论可以用等体积法,将三棱锥分割成四个小的三棱锥去证明,此处从略.
【点拨】类比推理的关键是找到合适的类比对象.平面几何中的一些定理、公式、结论等,可以类比到立体几何中,得到类似的结论.一般平面中的一些元素与空间中的一些元素的类比列表如下:
平面空间
点线
线面
圆球
三角形三棱锥
角二面角
面积体积
周长表面积
……
【变式训练2】面积为S的平面凸四边形的第i条边的边长记为ai(i=1,2,3,4),此四边形内任一点P到第i条边的距离为hi(i=1,2,3,4),(1)若a11=a22=a33=a44=k,则=;(2)类比以上性质,体积为V的三棱锥的第i个面的面积记为Si(i=1,2,3,4),此三棱锥内任一点Q到第i个面的距离记为Hi(i=1,2,3,4),若S11=S22=S33=S44=K,则=.
【解析】2Sk;3VK.
题型三运用“三段论”进行演绎推理
【例3】已知函数f(x)=lnax-x-ax(a≠0).
(1)求此函数的单调区间及最值;
(2)求证:对于任意正整数n,均有1+12+13+…+1n≥lnenn!.
【解析】(1)由题意f′(x)=x-ax2.
当a>0时,函数f(x)的定义域为(0,+∞),
此时函数在(0,a)上是减函数,在(a,+∞)上是增函数,
fmin(x)=f(a)=lna2,无最大值.
当a<0时,函数f(x)的定义域为(-∞,0),
此时函数在(-∞,a)上是减函数,在(a,0)上是增函数,
fmin(x)=f(a)=lna2,无最大值.
(2)取a=1,由(1)知,f(x)=lnx-x-1x≥f(1)=0,
故1x≥1-lnx=lnex,
取x=1,2,3,…,n,则1+12+13+…+1n≥lne+lne2+…+lnen=lnenn!.
【点拨】演绎推理是推理证明的主要途径,而“三段论”是演绎推理的一种重要的推理形式,在高考中以证明题出现的频率较大.
【变式训练3】已知函数f(x)=eg(x),g(x)=kx-1x+1(e是自然对数的底数),
(1)若对任意的x>0,都有f(x)<x+1,求满足条件的最大整数k的值;
(2)求证:ln(1+1×2)+ln(1+2×3)+…+ln[1+n(n+1)]>2n-3(n∈N*).
【解析】(1)由条件得到f(1)<2<2k<2ln2+1<3,猜测最大整数k=2,
现在证明<x+1对任意x>0恒成立:
<x+1等价于2-3x+1<ln(x+1)ln(x+1)+3x+1>2,
设h(x)=ln(x+1)+3x+1,则h′(x)=1x+1-3(x+1)2=x-2(x+1)2.
故x∈(0,2)时,h′(x)<0,当x∈(2,+∞)时,h′(x)>0.
所以对任意的x>0都有h(x)≥h(2)=ln3+1>2,即<x+1对任意x>0恒成立,
所以整数k的最大值为2.
(2)由(1)得到不等式2-3x+1<ln(x+1),
所以ln[1+k(k+1)]>2-3k(k+1)+1>2-3k(k+1),
ln(1+1×2)+ln(1+2×3)+…+ln[1+n(n+1)]>(2-31×2)+(2-32×3)+…+[2-3n(n+1)]=2n-3[11×2+12×3+…+1n(n+1)]=2n-3+3n+1>2n-3,
所以原不等式成立.
总结提高
合情推理与演绎推理是两种基本的思维推理方式.尽管合情推理(归纳、类比)得到的结论未必正确,但归纳推理与类比推理具有猜想和发现新结论、探索和提供证明的新思路的重要作用,特别在数学学习中,我们可以由熟悉的、已知的知识领域运用归纳、类比思维获取发现和创造的灵感去探索陌生的、未知的知识领域.演绎推理是数学逻辑思维的主要形式,担负着判断命题真假的重要使命.如果说合情推理是以感性思维为主,只需有感而发;那么演绎推理则是以理性思维为主,要求言必有据.在近几年高考中一道合情推理的试题往往会成为一套高考试题的特色与亮点,以彰显数学思维的魅力.其中数列的通项公式、求和公式的归纳、等差数列与等比数列、平面与空间、圆锥曲线与圆、杨辉三角等的类比的考查频率较大.而演绎推理的考查则可以渗透到每一道试题中.
14.2直接证明与间接证明
典例精析
题型一运用综合法证明
【例1】设a>0,b>0,a+b=1,求证:1a+1b+1ab≥8.
【证明】因为a+b=1,
所以1a+1b+1ab=a+ba+a+bb+a+bab=1+ba+1+ab+a+bab≥2++a+b(a+b2)2=2+2+4=8,当且仅当a=b=12时等号成立.
【点拨】在用综合法证明命题时,必须首先找到正确的出发点,也就是能想到从哪里起步,我们一般的处理方法是广泛地联想已知条件所具备的各种性质,逐层推进,从已知逐渐引出结论.
【变式训练1】设a,b,c>0,求证:a2b+b2c+c2a≥a+b+c.
【证明】因为a,b,c>0,根据基本不等式,
有a2b+b≥2a,b2c+c≥2b,c2a+a≥2c.
三式相加:a2b+b2c+c2a+a+b+c≥2(a+b+c).
即a2b+b2c+c2a≥a+b+c.
题型二运用分析法证明
【例2】设a、b、c为任意三角形三边长,I=a+b+c,S=ab+bc+ca.求证:I2<4S.
【证明】由I2=(a+b+c)2=a2+b2+c2+2(ab+bc+ac)=a2+b2+c2+2S,
故要证I2<4S,只需证a2+b2+c2+2S<4S,即a2+b2+c2<2S.
欲证上式,只需证a2+b2+c2-2ab-2bc-2ca<0,
即证(a2-ab-ac)+(b2-bc-ba)+(c2-ca-cb)<0,
只需证三括号中的式子均为负值即可,
即证a2<ab+ac,b2<bc+ba,c2<ca+cb,
即a<b+c,b<a+c,c<a+b,
显然成立,因为三角形任意一边小于其他两边之和.
故I2<4S.
【点拨】(1)应用分析法易于找到思路的起始点,可探求解题途径.
(2)应用分析法证明问题时要注意:严格按分析法的语言表达;下一步是上一步的充分条件.
【变式训练2】已知a>0,求证:a2+1a2-2≥a+1a-2.
【证明】要证a2+1a2-2≥a+1a-2,
只要证a2+1a2+2≥a+1a+2.
因为a>0,故只要证(a2+1a2+2)2≥(a+1a+2)2,
即a2+1a2+4a2+1a2+4≥a2+2+1a2+22(a+1a)+2,
从而只要证2a2+1a2≥2(a+1a),
只要证4(a2+1a2)≥2(a2+2+1a2),即a2+1a2≥2,
而该不等式显然成立,故原不等式成立.
题型三运用反证法证明
【例3】若x,y都是正实数,且x+y>2.求证:1+xy<2或1+yx<2中至少有一个成立.
【证明】假设1+xy<2和1+yx<2都不成立.则1+xy≥2,1+yx≥2同时成立.
因为x>0且y>0,所以1+x≥2y且1+y≥2x,
两式相加得2+x+y≥2x+2y,所以x+y≤2,这与已知条件x+y>2相矛盾.
因此1+xy<2与1+yx<2中至少有一个成立.
【点拨】一般以下题型用反证法:①当“结论”的反面比“结论”本身更简单、更具体、更明确;②否定命题,唯一性命题,存在性命题,“至多”“至少”型命题;③有的肯定形式命题,由于已知或结论涉及到无限个元素,用直接证明形式比较困难因而往往采用反证法.
【变式训练3】已知下列三个方程:x2+4ax-4a+3=0;x2+(a-1)x+a2=0;x2+2ax-2a=0,若至少有一个方程有实根,求实数a的取值范围.
【解析】假设三个方程均无实根,则有
由(4a)2-4(-4a+3)<0,得4a2+4a-3<0,即-32<a<12;
由(a-1)2-4a2<0,得(a+1)(3a-1)>0,即a<-1或a>13;
由(2a)2-4(-2a)<0,得a(a+2)<0,即-2<a<0.
以上三部分取交集得M={a|-32<a<-1},则三个方程至少有一个方程有实根的实数a的取值范围为RM,即{a|a≤-32或a≥-1}.
总结提高
分析法与综合法各有其优缺点:分析法是执果索因,比较容易寻求解题思路,但叙述繁琐;综合法叙述简洁,但常常思路阻塞.因此在实际解题时,需将两者结合起来运用,先用分析法寻求解题思路,再用综合法简洁地叙述解题过程.从逻辑思维的角度看,原命题“pq”与逆否命题“qp”是等价的,而反证法是相当于由“q”推出“p”成立,从而证明了原命题正确.因此在运用反证法的证明过程中要特别注意条件“q”的推理作用.综合法与分析法在新课标中第一次成为独立的显性的课题,预测可能有显性的相关考试命题.反证法证明的关键是在正确的推理下得出矛盾,这个矛盾可以是与已知矛盾,或与假设矛盾或与定义、公理、公式事实矛盾等.
14.3数学归纳法
典例精析
题型一用数学归纳法证明恒等式
【例1】是否存在常数a、b、c,使等式12+22+32+…+n2+(n-1)2+…+22+12=an(bn2+c)对于一切n∈N*都成立?若存在,求出a、b、c并证明;若不存在,试说明理由.
【解析】假设存在a、b、c使12+22+32+…+n2+(n-1)2+…+22+12=an(bn2+c)对于一切n∈N*都成立.
当n=1时,a(b+c)=1;
当n=2时,2a(4b+c)=6;
当n=3时,3a(9b+c)=19.
解方程组解得
证明如下:
当n=1时,显然成立;
假设n=k(k∈N*,k≥1)时等式成立,
即12+22+32+…+k2+(k-1)2+…+22+12=13k(2k2+1);
则当n=k+1时,
12+22+32+…+k2+(k+1)2+k2+(k-1)2+…+22+12=13k(2k2+1)+(k+1)2+k2
=13k(2k2+3k+1)+(k+1)2=13k(2k+1)(k+1)+(k+1)2
=13(k+1)(2k2+4k+3)=13(k+1)[2(k+1)2+1].
因此存在a=13,b=2,c=1,使等式对一切n∈N*都成立.
【点拨】用数学归纳法证明与正整数n有关的恒等式时要弄清等式两边的项的构成规律:由n=k到n=k+1时等式左右各如何增减,发生了怎样的变化.
【变式训练1】用数学归纳法证明:
当n∈N*时,11×3+13×5+…+1(2n-1)(2n+1)=n2n+1.
【证明】(1)当n=1时,左边=11×3=13,右边=12×1+1=13,
左边=右边,所以等式成立.
(2)假设当n=k(k∈N*)时等式成立,即有11×3+13×5+…+1(2k-1)(2k+1)=k2k+1,
则当n=k+1时,
11×3+13×5+…+1(2k-1)(2k+1)+1(2k+1)(2k+3)=k2k+1+1(2k+1)(2k+3)
=k(2k+3)+1(2k+1)(2k+3)=2k2+3k+1(2k+1)(2k+3)=k+12k+3=k+12(k+1)+1,
所以当n=k+1时,等式也成立.
由(1)(2)可知,对一切n∈N*等式都成立.
题型二用数学归纳法证明整除性问题
【例2】已知f(n)=(2n+7)3n+9,是否存在自然数m使得任意的n∈N*,都有m整除f(n)?若存在,求出最大的m值,并证明你的结论;若不存在,请说明理由.
【解析】由f(1)=36,f(2)=108,f(3)=360,猜想:f(n)能被36整除,下面用数学归纳法证明.
(1)当n=1时,结论显然成立;
(2)假设当n=k(k≥1,k∈N*)时结论成立,即f(k)=(2k+7)3k+9能被36整除.
则当n=k+1时,f(k+1)=(2k+9)3k+1+9=3[(2k+7)3k+9]+18(3k-1-1),
由假设知3[(2k+7)3k+9]能被36整除,又3k-1-1是偶数,
故18(3k-1-1)也能被36整除.即n=k+1时结论也成立.
故由(1)(2)可知,对任意正整数n都有f(n)能被36整除.
由f(1)=36知36是整除f(n)的最大值.
【点拨】与正整数n有关的整除性问题也可考虑用数学归纳法证明.在证明n=k+1结论也成立时,要注意“凑形”,即凑出归纳假设的形式,以便于充分利用归纳假设的条件.
【变式训练2】求证:当n为正整数时,f(n)=32n+2-8n-9能被64整除.
【证明】方法一:①当n=1时,f(1)=34-8-9=64,命题显然成立.
②假设当n=k(k≥1,k∈N*)时结论成立,即f(k)=32k+2-8k-9能被64整除.
由于32(k+1)+2-8(k+1)-9=9(32k+2-8k-9)+98k+99-8(k+1)-9=9(32k+2-8k-9)+64(k+1),即f(k+1)=9f(k)+64(k+1),
所以n=k+1时命题也成立.
根据①②可知,对任意的n∈N*,命题都成立.
方法二:①当n=1时,f(1)=34-8-9=64,命题显然成立.
②假设当n=k(k≥1,k∈N*)时,f(k)=32k+2-8k-9能被64整除.由归纳假设,设32k+2-8k-9=64m(m为大于1的自然数),将32k+2=64m+8k+9代入到f(k+1)中得
f(k+1)=9(64m+8k+9)-8(k+1)-9=64(9m+k+1),所以n=k+1时命题也成立.
根据①②可知,对任意的n∈N*,命题都成立.
题型三数学归纳法在函数、数列、不等式证明中的运用
【例3】(2009山东)等比数列{an}的前n项和为Sn,已知对任意的n∈N*,点(n,Sn)均在函数y=bx+r(b>0且b≠1,b,r均为常数)的图象上.
(1)求r的值;
(2)当b=2时,记bn=2(log2an+1)(n∈N*),求证:对任意的n∈N*,不等式b1+1b1
b2+1b2…bn+1bn>n+1成立.
【解析】(1)因为点(n,Sn)均在函数y=bx+r(b>0且b≠1,b,r均为常数)的图象上,
所以Sn=bn+r(b>0且b≠1,b,r均为常数).
当n=1时,a1=S1=b+r;当n≥2时,an=Sn-Sn-1=bn+r-bn-1-r=(b-1)bn-1.
又数列{an}为等比数列,故r=-1且公比为b.
(2)当b=2时,an=2n-1,
所以bn=2(log2an+1)=2(log22n-1+1)=2n(n∈N*),
所以bn+1bn=2n+12n,
于是要证明的不等式为3254…2n+12n>n+1对任意的n∈N*成立.
下面用数学归纳法证明.
当n=1时,32>2显然成立.
假设当n=k时不等式成立,即3254…2k+12k>k+1.
则当n=k+1时,3254…2k+12k2k+32k+2>k+12k+32k+2=k+1(2k+32k+2)2=(2k+3)24(k+1)
=[2(k+1)+1]24(k+1)=4(k+1)2+4(k+1)+14(k+1)=(k+1)+1+14(k+1)>(k+1)+1,
即当n=k+1时不等式成立,所以原不等式对任意n∈N*成立.
【点拨】运用归纳推理得到的结论不一定正确,需进行证明.用数学归纳法证明不等式时必须要利用归纳假设的条件,并且灵活运用放缩法、基本不等式等数学方法.
【变式训练3】设函数f(x)=ex-1+ax(a∈R).
(1)若函数f(x)在x=1处有极值,且函数g(x)=f(x)+b在(0,+∞)上有零点,求b的最大值;
(2)若f(x)在(1,2)上为单调函数,求实数a的取值范围;
(3)在(1)的条件下,数列{an}中a1=1,an+1=f(an)-f′(an),求|an+1-an|的最小值.
【解析】(1)f′(x)=ex-1-ax2,又函数f(x)在x=1处有极值,
所以f′(1)=0,即a=1,经检验符合题意.
g′(x)=ex-1-1x2,当x∈(0,1)时,g′(x)<0,g(x)为减函数,当x=1时,g′(x)=0,当x∈(1,+∞)时g′(x)>0,g(x)为增函数.
所以g(x)在x=1时取得极小值g(1)=2+b,依题意g(1)≤0,所以b≤-2,
所以b的最大值为-2.
(2)f′(x)=ex-1-ax2,
当f(x)在(1,2)上单调递增时,ex-1-ax2≥0在[1,2]上恒成立,所以a≤x2ex-1,
令h(x)=x2,则h′(x)=ex-1(x2+2x)>0在[1,2]上恒成立,即h(x)在[1,2]上单调递增,
所以h(x)在[1,2]上的最小值为h(1)=1,所以a≤1;
当f(x)在[1,2]上单调递减时,同理a≥x2ex-1,
h(x)=x2ex-1在[1,2]上的最大值为h(2)=4e,所以a≥4e.
综上实数a的取值范围为a≤1或a≥4e.
(3)由(1)得a=1,所以f(x)-f′(x)=1x+1x2,因此an+1=1an+1a2n,a1=1,所以a2=2,可得0<a2n+1<1,a2n+2>2.用数学归纳法证明如下:
①当n=1时,a3=34,a4=289,结论成立;
②设n=k,k∈N*时结论成立,即0<a2k+1<1,a2k+2>2,
则n=k+1时,a2k+3=1a2k+2+1a22k+2<12+12=1,
所以0<a2k+3<1,a2k+4=1a2k+3+1a22k+3>1+1=2.
所以n=k+1时结论也成立,
根据①②可得0<a2n+1<1,a2n+2>2恒成立,
所以|an+1-an|≥a2-a1=2-1=1,即|an+1-an|的最小值为1.
总结提高
数学归纳法是证明与自然数有关的命题的常用方法,它是在归纳的基础上进行的演绎推理,其大前提是皮亚诺公理(即归纳公理):
设M是正整数集合的子集,且具有如下性质:
①1∈M;
②若k∈M,则k+1∈M,那么必有M=N*成立.
数学归纳法证明的两个步骤体现了递推的数学思想,第一步是递推的基础,第二步是递推的依据,通过对两个命题的证明替代了无限多次的验证,实现了有限与无限的辩证统一.
从近几年的高考试题来看,比较注重于对数学归纳法的思想本质的考查,如“归纳、猜想、证明”是一种常见的命题形式.而涉及的知识内容也是很广泛的,可覆盖代数命题、三角恒等式、不等式、数列、几何命题、整除性命题等.其难点往往在第二步,关键是“凑形”以便运用归纳假设的条件.
一名优秀的教师在教学时都会提前最好准备,教师要准备好教案,这是教师需要精心准备的。教案可以保证学生们在上课时能够更好的听课,帮助教师能够更轻松的上课教学。那么怎么才能写出优秀的教案呢?下面是小编帮大家编辑的《高三理科数学导数及其应用总复习教学案》,仅供参考,欢迎大家阅读。
第三章导数及其应用
高考导航
考试要求重难点击命题展望
1.导数概念及其几何意义
(1)了解导数概念的实际背景;
(2)理解导数的几何意义.
2.导数的运算
(1)能根据导数定义,求函数y=c(c为常数),y=x,y=x2,y=x3,y=,y=的导数;
(2)能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f(ax+b)的复合函数)的导数.
3.导数在研究函数中的应用
(1)了解函数单调性和导数的关系,能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次);
(2)了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).
4.生活中的优化问题
会利用导数解决某些实际问题.
5.定积分与微积分基本定理
(1)了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念;
(2)了解微积分基本定理的含义.本章重点:
1.导数的概念;
2.利用导数求切线的斜率;
3.利用导数判断函数单调性或求单调区间;
4.利用导数求极值或最值;
5.利用导数求实际问题最优解.
本章难点:导数的综合应用.导数与定积分是微积分的核心概念之一,也是中学选学内容中较为重要的知识之一.由于其应用的广泛性,为我们解决有关函数、数列问题提供了更一般、更有效的方法.因此,本章知识在高考题中常在函数、数列等有关最值不等式问题中有所体现,既考查数形结合思想,分类讨论思想,也考查学生灵活运用所学知识和方法的能力.考题可能以选择题或填空题的形式来考查导数与定积分的基本运算与简单的几何意义,而以解答题的形式来综合考查学生的分析问题和解决问题的能力.
知识网络
3.1导数的概念与运算
典例精析
题型一导数的概念
【例1】已知函数f(x)=2ln3x+8x,
求f(1-2Δx)-f(1)Δx的值.
【解析】由导数的定义知:
f(1-2Δx)-f(1)Δx=-2f(1-2Δx)-f(1)-2Δx=-2f′(1)=-20.
【点拨】导数的实质是求函数值相对于自变量的变化率,即求当Δx→0时,平均变化率ΔyΔx的极限.
【变式训练1】某市在一次降雨过程中,降雨量y(mm)与时间t(min)的函数关系可以近似地表示为f(t)=t2100,则在时刻t=10min的降雨强度为()
A.15mm/minB.14mm/min
C.12mm/minD.1mm/min
【解析】选A.
题型二求导函数
【例2】求下列函数的导数.
(1)y=ln(x+1+x2);
(2)y=(x2-2x+3)e2x;
(3)y=3x1-x.
【解析】运用求导数公式及复合函数求导数法则.
(1)y′=1x+1+x2(x+1+x2)′
=1x+1+x2(1+x1+x2)=11+x2.
(2)y′=(2x-2)e2x+2(x2-2x+3)e2x
=2(x2-x+2)e2x.
(3)y′=13(x1-x1-x+x(1-x)2
=13(x1-x1(1-x)2
=13x(1-x)
【变式训练2】如下图,函数f(x)的图象是折线段ABC,其中A、B、C的坐标分别为(0,4),(2,0),(6,4),则f(f(0))=;f(1+Δx)-f(1)Δx=(用数字作答).
【解析】f(0)=4,f(f(0))=f(4)=2,
由导数定义f(1+Δx)-f(1)Δx=f′(1).
当0≤x≤2时,f(x)=4-2x,f′(x)=-2,f′(1)=-2.
题型三利用导数求切线的斜率
【例3】已知曲线C:y=x3-3x2+2x,直线l:y=kx,且l与C切于点P(x0,y0)(x0≠0),求直线l的方程及切点坐标.
【解析】由l过原点,知k=y0x0(x0≠0),又点P(x0,y0)在曲线C上,y0=x30-3x20+2x0,
所以y0x0=x20-3x0+2.
而y′=3x2-6x+2,k=3x20-6x0+2.
又k=y0x0,
所以3x20-6x0+2=x20-3x0+2,其中x0≠0,
解得x0=32.
所以y0=-38,所以k=y0x0=-14,
所以直线l的方程为y=-14x,切点坐标为(32,-38).
【点拨】利用切点在曲线上,又曲线在切点处的切线的斜率为曲线在该点处的导数来列方程,即可求得切点的坐标.
【变式训练3】若函数y=x3-3x+4的切线经过点(-2,2),求此切线方程.
【解析】设切点为P(x0,y0),则由
y′=3x2-3得切线的斜率为k=3x20-3.
所以函数y=x3-3x+4在P(x0,y0)处的切线方程为
y-y0=(3x20-3)(x-x0).
又切线经过点(-2,2),得
2-y0=(3x20-3)(-2-x0),①
而切点在曲线上,得y0=x30-3x0+4,②
由①②解得x0=1或x0=-2.
则切线方程为y=2或9x-y+20=0.
总结提高
1.函数y=f(x)在x=x0处的导数通常有以下两种求法:
(1)导数的定义,即求ΔyΔx=f(x0+Δx)-f(x0)Δx的值;
(2)先求导函数f′(x),再将x=x0的值代入,即得f′(x0)的值.
2.求y=f(x)的导函数的几种方法:
(1)利用常见函数的导数公式;
(2)利用四则运算的导数公式;
(3)利用复合函数的求导方法.
3.导数的几何意义:函数y=f(x)在x=x0处的导数f′(x0),就是函数y=f(x)的曲线在点P(x0,y0)处的切线的斜率.
3.2导数的应用(一)
典例精析
题型一求函数f(x)的单调区间
【例1】已知函数f(x)=x2-ax-aln(x-1)(a∈R),求函数f(x)的单调区间.
【解析】函数f(x)=x2-ax-aln(x-1)的定义域是(1,+∞).
f′(x)=2x-a-ax-1=2x(x-a+22)x-1,
①若a≤0,则a+22≤1,f′(x)=2x(x-a+22)x-1>0在(1,+∞)上恒成立,所以a≤0时,f(x)的增区间为(1,+∞).
②若a>0,则a+22>1,
故当x∈(1,a+22]时,f′(x)=2x(x-a+22)x-1≤0;
当x∈[a+22,+∞)时,f′(x)=2x(x-a+22)x-1≥0,
所以a>0时,f(x)的减区间为(1,a+22],f(x)的增区间为[a+22,+∞).
【点拨】在定义域x>1下,为了判定f′(x)符号,必须讨论实数a+22与0及1的大小,分类讨论是解本题的关键.
【变式训练1】已知函数f(x)=x2+lnx-ax在(0,1)上是增函数,求a的取值范围.
【解析】因为f′(x)=2x+1x-a,f(x)在(0,1)上是增函数,
所以2x+1x-a≥0在(0,1)上恒成立,
即a≤2x+1x恒成立.
又2x+1x≥22(当且仅当x=22时,取等号).
所以a≤22,
故a的取值范围为(-∞,22].
【点拨】当f(x)在区间(a,b)上是增函数时f′(x)≥0在(a,b)上恒成立;同样,当函数f(x)在区间(a,b)上为减函数时f′(x)≤0在(a,b)上恒成立.然后就要根据不等式恒成立的条件来求参数的取值范围了.
题型二求函数的极值
【例2】已知f(x)=ax3+bx2+cx(a≠0)在x=±1时取得极值,且f(1)=-1.
(1)试求常数a,b,c的值;
(2)试判断x=±1是函数的极小值点还是极大值点,并说明理由.
【解析】(1)f′(x)=3ax2+2bx+c.
因为x=±1是函数f(x)的极值点,
所以x=±1是方程f′(x)=0,即3ax2+2bx+c=0的两根.
由根与系数的关系,得
又f(1)=-1,所以a+b+c=-1.③
由①②③解得a=12,b=0,c=-32.
(2)由(1)得f(x)=12x3-32x,
所以当f′(x)=32x2-32>0时,有x<-1或x>1;
当f′(x)=32x2-32<0时,有-1<x<1.
所以函数f(x)=12x3-32x在(-∞,-1)和(1,+∞)上是增函数,在(-1,1)上是减函数.
所以当x=-1时,函数取得极大值f(-1)=1;当x=1时,函数取得极小值f(1)=-1.
【点拨】求函数的极值应先求导数.对于多项式函数f(x)来讲,f(x)在点x=x0处取极值的必要条件是f′(x)=0.但是,当x0满足f′(x0)=0时,f(x)在点x=x0处却未必取得极值,只有在x0的两侧f(x)的导数异号时,x0才是f(x)的极值点.并且如果f′(x)在x0两侧满足“左正右负”,则x0是f(x)的极大值点,f(x0)是极大值;如果f′(x)在x0两侧满足“左负右正”,则x0是f(x)的极小值点,f(x0)是极小值.
【变式训练2】定义在R上的函数y=f(x),满足f(3-x)=f(x),(x-32)f′(x)<0,若x1<x2,且x1+x2>3,则有()
A.f(x1)<f(x2)B.f(x1)>f(x2)
C.f(x1)=f(x2)D.不确定
【解析】由f(3-x)=f(x)可得f[3-(x+32)]=f(x+32),即f(32-x)=f(x+32),所以函数f(x)的图象关于x=32对称.又因为(x-32)f′(x)<0,所以当x>32时,函数f(x)单调递减,当x<32时,函数f(x)单调递增.当x1+x22=32时,f(x1)=f(x2),因为x1+x2>3,所以x1+x22>32,相当于x1,x2的中点向右偏离对称轴,所以f(x1)>f(x2).故选B.
题型三求函数的最值
【例3】求函数f(x)=ln(1+x)-14x2在区间[0,2]上的最大值和最小值.
【解析】f′(x)=11+x-12x,令11+x-12x=0,化简为x2+x-2=0,解得x1=-2或x2=1,其中x1=-2舍去.
又由f′(x)=11+x-12x>0,且x∈[0,2],得知函数f(x)的单调递增区间是(0,1),同理,得知函数f(x)的单调递减区间是(1,2),所以f(1)=ln2-14为函数f(x)的极大值.又因为f(0)=0,f(2)=ln3-1>0,f(1)>f(2),所以,f(0)=0为函数f(x)在[0,2]上的最小值,f(1)=ln2-14为函数f(x)在[0,2]上的最大值.
【点拨】求函数f(x)在某闭区间[a,b]上的最值,首先需求函数f(x)在开区间(a,b)内的极值,然后,将f(x)的各个极值与f(x)在闭区间上的端点的函数值f(a)、f(b)比较,才能得出函数f(x)在[a,b]上的最值.
【变式训练3】(2008江苏)f(x)=ax3-3x+1对x∈[-1,1]总有f(x)≥0成立,则a=.
【解析】若x=0,则无论a为何值,f(x)≥0恒成立.
当x∈(0,1]时,f(x)≥0可以化为a≥3x2-1x3,
设g(x)=3x2-1x3,则g′(x)=3(1-2x)x4,
x∈(0,12)时,g′(x)>0,x∈(12,1]时,g′(x)<0.
因此g(x)max=g(12)=4,所以a≥4.
当x∈[-1,0)时,f(x)≥0可以化为
a≤3x2-1x3,此时g′(x)=3(1-2x)x4>0,
g(x)min=g(-1)=4,所以a≤4.
综上可知,a=4.
总结提高
1.求函数单调区间的步骤是:
(1)确定函数f(x)的定义域D;
(2)求导数f′(x);
(3)根据f′(x)>0,且x∈D,求得函数f(x)的单调递增区间;根据f′(x)<0,且x∈D,求得函数f(x)的单调递减区间.
2.求函数极值的步骤是:
(1)求导数f′(x);
(2)求方程f′(x)=0的根;
(3)判断f′(x)在方程根左右的值的符号,确定f(x)在这个根处取极大值还是取极小值.
3.求函数最值的步骤是:
先求f(x)在(a,b)内的极值;再将f(x)的各极值与端点处的函数值f(a)、f(b)比较,其中最大的一个是最大值,最小的一个是最小值.
3.3导数的应用(二)
典例精析
题型一利用导数证明不等式
【例1】已知函数f(x)=12x2+lnx.
(1)求函数f(x)在区间[1,e]上的值域;
(2)求证:x>1时,f(x)<23x3.
【解析】(1)由已知f′(x)=x+1x,
当x∈[1,e]时,f′(x)>0,因此f(x)在[1,e]上为增函数.
故f(x)max=f(e)=e22+1,f(x)min=f(1)=12,
因而f(x)在区间[1,e]上的值域为[12,e22+1].
(2)证明:令F(x)=f(x)-23x3=-23x3+12x2+lnx,则F′(x)=x+1x-2x2=(1-x)(1+x+2x2)x,
因为x>1,所以F′(x)<0,
故F(x)在(1,+∞)上为减函数.
又F(1)=-16<0,
故x>1时,F(x)<0恒成立,
即f(x)<23x3.
【点拨】有关“超越性不等式”的证明,构造函数,应用导数确定所构造函数的单调性是常用的证明方法.
【变式训练1】已知对任意实数x,有f(-x)=-f(x),g(-x)=g(x),且x>0时,f′(x)>0,g′(x)>0,则x<0时()
A.f′(x)>0,g′(x)>0B.f′(x)>0,g′(x)<0
C.f′(x)<0,g′(x)>0D.f′(x)<0,g′(x)<0
【解析】选B.
题型二优化问题
【例2】(2009湖南)某地建一座桥,两端的桥墩已建好,这两个桥墩相距m米,余下工程只需建两端桥墩之间的桥面和桥墩.经测算,一个桥墩的工程费用为256万元;距离为x米的相邻两墩之间的桥面工程费用为(2+x)x万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素.记余下工程的费用为y万元.
(1)试写出y关于x的函数关系式;
(2)当m=640米时,需新建多少个桥墩才能使y最小?
【解析】(1)设需新建n个桥墩,则(n+1)x=m,
即n=mx-1.
所以y=f(x)=256n+(n+1)(2+x)x
=256(mx-1)+mx(2+x)x
=256mx+mx+2m-256.
(2)由(1)知f′(x)=-256mx2+12mx=m2x2(x-512).
令f′(x)=0,得x=512.所以x=64.
当0<x<64时,f′(x)<0,f(x)在区间(0,64)内为减函数;当64<x<640时,f′(x)>0,f(x)在区间(64,640)内为增函数.
所以f(x)在x=64处取得最小值.
此时n=mx-1=64064-1=9.
故需新建9个桥墩才能使y最小.
【变式训练2】(2010上海)如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝,骨架把圆柱底面8等份,再用S平方米塑料片制成圆柱的侧面和下底面(不安装上底面).当圆柱底面半径r取何值时,S取得最大值?并求出该最大值(结果精确到0.01平方米).
【解析】设圆柱底面半径为r,高为h,
则由已知可得4(4r+2h)=9.6,所以2r+h=1.2.
S=2.4πr-3πr2,h=1.2-2r>0,所以r<0.6.
所以S=2.4πr-3πr2(0<r<0.6).
令f(r)=2.4πr-3πr2,则f′(r)=2.4π-6πr.
令f′(r)=0得r=0.4.所以当0<r<0.4,f′(r)>0;
当0.4<r<0.6,f′(r)<0.
所以r=0.4时S最大,Smax=1.51.
题型三导数与函数零点问题
【例3】设函数f(x)=13x3-mx2+(m2-4)x,x∈R.
(1)当m=3时,求曲线y=f(x)在点(2,f(2))处的切线方程;
(2)已知函数f(x)有三个互不相同的零点0,α,β,且α<β.若对任意的x∈[α,β],都有f(x)≥f(1)恒成立,求实数m的取值范围.
【解析】(1)当m=3时,f(x)=13x3-3x2+5x,f′(x)=x2-6x+5.
因为f(2)=23,f′(2)=-3,所以切点坐标为(2,23),切线的斜率为-3,
则所求的切线方程为y-23=-3(x-2),即9x+3y-20=0.
(2)f′(x)=x2-2mx+(m2-4).
令f′(x)=0,得x=m-2或x=m+2.
当x∈(-∞,m-2)时,f′(x)>0,f(x)在(-∞,m-2)上是增函数;
当x∈(m-2,m+2)时,f′(x)<0,f(x)在(m-2,m+2)上是减函数;
当x∈(m+2,+∞)时,f′(x)>0,f(x)在(m+2,+∞)上是增函数.
因为函数f(x)有三个互不相同的零点0,α,β,且f(x)=13x[x2-3mx+3(m2-4)],
所以
解得m∈(-4,-2)∪(-2,2)∪(2,4).
当m∈(-4,-2)时,m-2<m+2<0,
所以α<m-2<β<m+2<0.
此时f(α)=0,f(1)>f(0)=0,与题意不合,故舍去.
当m∈(-2,2)时,m-2<0<m+2,
所以α<m-2<0<m+2<β.
因为对任意的x∈[α,β],都有f(x)≥f(1)恒成立,
所以α<1<β.
所以f(1)为函数f(x)在[α,β]上的最小值.
因为当x=m+2时,函数f(x)在[α,β]上取最小值,
所以m+2=1,即m=-1.
当m∈(2,4)时,0<m-2<m+2,
所以0<m-2<α<m+2<β.
因为对任意的x∈[α,β],都有f(x)≥f(1)恒成立,
所以α<1<β.
所以f(1)为函数f(x)在[α,β]上的最小值.
因为当x=m+2时,函数f(x)在[α,β]上取最小值,
所以m+2=1,即m=-1(舍去).
综上可知,m的取值范围是{-1}.
【变式训练3】已知f(x)=ax2(a∈R),g(x)=2lnx.
(1)讨论函数F(x)=f(x)-g(x)的单调性;
(2)若方程f(x)=g(x)在区间[2,e]上有两个不等解,求a的取值范围.
【解析】(1)当a>0时,F(x)的递增区间为(1a,+∞),递减区间为(0,1a);
当a≤0时,F(x)的递减区间为(0,+∞).
(2)[12ln2,1e).
总结提高
在应用导数处理方程、不等式有关问题时,首先应熟练地将方程、不等式问题直接转化为函数问题,再利用导数确定函数单调性、极值或最值.
3.4定积分与微积分基本定理
典例精析
题型一求常见函数的定积分
【例1】计算下列定积分的值.
(1)(x-1)5dx;
(2)(x+sinx)dx.
【解析】(1)因为[16(x-1)6]′=(x-1)5,
所以(x-1)5dx==16.
(2)因为(x22-cosx)′=x+sinx,
所以(x+sinx)dx==π28+1.
【点拨】(1)一般情况下,只要能找到被积函数的原函数,就能求出定积分的值;
(2)当被积函数是分段函数时,应对每个区间分段积分,再求和;
(3)对于含有绝对值符号的被积函数,应先去掉绝对值符号后积分;
(4)当被积函数具有奇偶性时,可用以下结论:
①若f(x)是偶函数时,则f(x)dx=2f(x)dx;
②若f(x)是奇函数时,则f(x)dx=0.
【变式训练1】求(3x3+4sinx)dx.
【解析】(3x3+4sinx)dx表示直线x=-5,x=5,y=0和曲线y=3x3+4sinx所围成的曲边梯形面积的代数和,且在x轴上方的面积取正号,在x轴下方的面积取负号.
又f(-x)=3(-x)3+4sin(-x)
=-(3x3+4sinx)=-f(x).
所以f(x)=3x3+4sinx在[-5,5]上是奇函数,
所以(3x3+4sinx)dx=-(3x3+4sinx)dx,
所以(3x3+4sinx)dx=(3x3+4sinx)dx+(3x3+4sinx)dx=0.
题型二利用定积分计算曲边梯形的面积
【例2】求抛物线y2=2x与直线y=4-x所围成的平面图形的面积.
【解析】方法一:如图,
由
得交点A(2,2),B(8,-4),
则S=[2x-(-2x)]dx+[4-x-(-2x)]dx
=+
=163+383=18.
方法二:S=[(4-y)-y22]dy
==18.
【点拨】根据图形的特征,选择不同的积分变量,可使计算简捷,在以y为积分变量时,应注意将曲线方程变为x=φ(y)的形式,同时,积分上、下限必须对应y的取值.
【变式训练2】设k是一个正整数,(1+xk)k的展开式中x3的系数为116,则函数y=x2与y=kx-3的图象所围成的阴影部分(如图)的面积为.
【解析】Tr+1=Crk(xk)r,令r=3,得x3的系数为C3k1k3=116,解得k=4.由得函数y=x2与y=4x-3的图象的交点的横坐标分别为1,3.
所以阴影部分的面积为S=(4x-3-x2)dx=(2x2-3x-=43.
题型三定积分在物理中的应用
【例3】(1)变速直线运动的物体的速度为v(t)=1-t2,初始位置为x0=1,求它在前2秒内所走过的路程及2秒末所在的位置;
(2)一物体按规律x=bt3作直线运动,式中x为时间t内通过的距离,媒质的阻力正比于速度的平方,试求物体由x=0运动到x=a时阻力所做的功.
【解析】(1)当0≤t≤1时,v(t)≥0,当1≤t≤2时,v(t)≤0,所以前2秒内所走过的路程为
s=v(t)dt+(-v(t))dt
=(1-t2)dt+(t2-1)dt
=+=2.
2秒末所在的位置为
x1=x0+v(t)dt=1+(1-t2)dt=13.
所以它在前2秒内所走过的路程为2,2秒末所在的位置为x1=13.
(2)物体的速度为v=(bt3)′=3bt2.
媒质阻力F阻=kv2=k(3bt2)2=9kb2t4,其中k为比例常数,且k>0.
当x=0时,t=0;
当x=a时,t=t1=(ab),
又ds=vdt,故阻力所做的功为
W阻=ds=kv2vdt=kv3dt
=k(3bt2)3dt=277kb3t71=277k3a7b2.
【点拨】定积分在物理学中的应用应注意:v(t)=a(t)dt,s(t)=v(t)dt和W=F(x)dx这三个公式.
【变式训练3】定义F(x,y)=(1+x)y,x,y∈(0,+∞).令函数f(x)=F[1,log2(x2-4x+9)]的图象为曲线C1,曲线C1与y轴交于点A(0,m),过坐标原点O向曲线C1作切线,切点为B(n,t)(n>0),设曲线C1在点A,B之间的曲线段与线段OA,OB所围成图形的面积为S,求S的值.
【解析】因为F(x,y)=(1+x)y,所以f(x)=F(1,log2(x2-4x+9))==x2-4x+9,故A(0,9),又过坐标原点O向曲线C1作切线,切点为B(n,t)(n>0),f′(x)=2x-4.
所以解得B(3,6),
所以S=(x2-4x+9-2x)dx=(x33-3x2+9x)=9.
总结提高
1.定积分的计算关键是通过逆向思维求得被积函数的原函数.?
2.定积分在物理学中的应用必须遵循相应的物理过程和物理原理.?
3.利用定积分求平面图形面积的步骤:?
(1)画出草图,在直角坐标系中画出曲线或直线的大致图象;?
(2)借助图形确定出被积函数,求出交点坐标,确定积分的上、下限;?
(3)把曲边梯形的面积表示成若干个定积分的和;?
(4)计算定积分,写出答案.
第十六章几何证明选讲
高考导航
考试要求重难点击命题展望
1.了解平行线截割定理.
2.会证明并应用直角三角形射影定理.
3.会证明并应用圆周角定理,圆的切线的判定定理及性质定理,并会运用它们进行计算与证明.
4.会证明并应用相交弦定理、圆内接四边形的性质定理与判定定理、切割线定理,并会运用它们进行几何计算与证明.
5.了解平行投影的含义,通过圆柱与平面的位置关系了解平行投影;会证明平面与圆柱面的截线是椭圆(特殊情形是圆).
6.了解下面的定理.
定理:在空间中,取直线l为轴,直线l′与l相交于点O,其夹角为α,l′围绕l旋转得到以O为顶点,l′为母线的圆锥面,任取平面π,若它与轴l的交角为β(π与l平行,记β=0),则:
①β>α,平面π与圆锥的交线为椭圆;
②β=α,平面π与圆锥的交线为抛物线;
③β<α,平面π与圆锥的交线为双曲线.
7.会利用丹迪林(Dandelin)双球(如图所示,这两个球位于圆锥的内部,一个位于平面π的上方,一个位于平面π的下方,并且与平面π及圆锥面均相切,其切点分别为F,E)证明上述定理①的情形:
当β>α时,平面π与圆锥的交线为椭圆.
(图中,上、下两球与圆锥面相切的切点分别为点B和点C,线段BC与平面π相交于点A)
8.会证明以下结果:
①在7.中,一个丹迪林球与圆锥面的交线为一个圆,并与圆锥的底面平行.记这个圆所在的平面为π′.
②如果平面π与平面π′的交线为m,在6.①中椭圆上任取点A,该丹迪林球与平面π的切点为F,则点A到点F的距离与点A到直线m的距离比是小于1的常数e(称点F为这个椭圆的焦点,直线m为椭圆的准线,常数e为离心率).
9.了解定理6.③中的证明,了解当β无限接近α时,平面π的极限结果.本章重点:相似三角形的判定与性质,与圆有关的若干定理及其运用,并将其运用到立体几何中.
本章难点:对平面截圆柱、圆锥所得的曲线为圆、椭圆、双曲线、抛物线的证明途径与方法,它是解立体几何、平面几何知识的综合运用,应较好地把握.
本专题强调利用演绎推理证明结论,通过推理证明进一步发展学生的逻辑推理能力,进一步提高空间想象能力、几何直观能力和综合运用几何方法解决问题的能力.
第一讲与第二讲是传统内容,高考中主要考查平行线截割定理、直角三角形射影定理以及与圆有关的性质和判定,考查逻辑推理能力.第三讲内容是新增内容,在新课程高考下,要求很低,只作了解.
知识网络
16.1相似三角形的判定及有关性质
典例精析
题型一相似三角形的判定与性质
【例1】如图,已知在△ABC中,D是BC边的中点,且AD=AC,DE⊥BC,DE与AB相交于点E,EC与AD相交于点F.
(1)求证:△ABC∽△FCD;
(2)若S△FCD=5,BC=10,求DE的长.
【解析】(1)因为DE⊥BC,D是BC的中点,所以EB=EC,所以∠B=∠1.
又因为AD=AC,所以∠2=∠ACB.所以△ABC∽△FCD.
(2)过点A作AM⊥BC,垂足为点M.因为△ABC∽△FCD,BC=2CD,所以S△ABCS△FCD=(BCCD)2=4,又因为S△FCD=5,所以S△ABC=20.因为S△ABC=12BCAM,BC=10,所以20=12×10×AM,所以AM=4.又因为DE∥AM,所以DEAM=BDBM,因为DM=12DC=52,BM=BD+DM,BD=12BC=5,所以DE4=55+52,所以DE=83.
【变式训练1】如右图,在△ABC中,AB=14cm,ADBD=59,DE∥BC,CD⊥AB,CD=12cm.求△ADE的面积和周长.
【解析】由AB=14cm,CD=12cm,CD⊥AB,得S△ABC=84cm2.
再由DE∥BC可得△ABC∽△ADE.由S△ADES△ABC=(ADAB)2可求得S△ADE=757cm2.利用勾股定理求出BC,AC,再由相似三角形性质可得△ADE的周长为15cm.
题型二探求几何结论
【例2】如图,在梯形ABCD中,点E,F分别在AB,CD上,EF∥AD,假设EF做上下平行移动.
(1)若AEEB=12,求证:3EF=BC+2AD;
(2)若AEEB=23,试判断EF与BC,AD之间的关系,并说明理由;
(3)请你探究一般结论,即若AEEB=mn,那么你可以得到什么结论?
【解析】过点A作AH∥CD分别交EF,BC于点G、H.
(1)因为AEEB=12,所以AEAB=13,
又EG∥BH,所以EGBH=AEAB=13,即3EG=BH,
又EG+GF=EG+AD=EF,从而EF=13(BC-HC)+AD,
所以EF=13BC+23AD,即3EF=BC+2AD.
(2)EF与BC,AD的关系式为5EF=2BC+3AD,理由和(1)类似.
(3)因为AEEB=mn,所以AEAB=mm+n,
又EG∥BH,所以EGBH=AEAB,即EG=mm+nBH.
EF=EG+GF=EG+AD=mm+n(BC-AD)+AD,
所以EF=mm+nBC+nm+nAD,
即(m+n)EF=mBC+nAD.
【点拨】在相似三角形中,平行辅助线是常作的辅助线之一;探求几何结论可按特殊到一般的思路去获取,但结论证明应从特殊情况得到启迪.
【变式训练2】如右图,正方形ABCD的边长为1,P是CD边上中点,点Q在线段BC上,设BQ=k,是否存在这样的实数k,使得以Q,C,P为顶点的三角形与△ADP相似?若存在,求出k的值;若不存在,请说明理由.
【解析】设存在满足条件的实数k,
则在正方形ABCD中,∠D=∠C=90°,
由Rt△ADP∽Rt△QCP或Rt△ADP∽Rt△PCQ得ADQC=DPCP或ADPC=DPCQ,
由此解得CQ=1或CQ=14.
从而k=0或k=34.
题型三解决线的位置或数量关系
【例3】(2009江苏)如图,在四边形ABCD中,△ABC△BAD,求证:AB∥CD.
【证明】由△ABC≌△BAD得∠ACB=∠BDA,所以A、B、C、D四点共圆,
所以∠CAB=∠CDB.
再由△ABC≌△BAD得∠CAB=∠DBA,
所以∠DBA=∠CDB,即AB∥CD.
【变式训练3】如图,AA1与BB1相交于点O,AB∥A1B1且AB=12A1B1,△AOB的外接圆的直径为1,则△A1OB1的外接圆的直径为.
【解析】因为AB∥A1B1且AB=12A1B1,所以△AOB∽△A1OB1
因为两三角形外接圆的直径之比等于相似比.
所以△A1OB1的外接圆直径为2.
总结提高
1.相似三角形的判定与性质这一内容是平面几何知识的重要组成部分,是解题的工具,同时它的内容渗透了等价转化、从一般到特殊、分类讨论等重要的数学思想与方法,在学习时应以它们为指导.相似三角形的证法有:定义法、平行法、判定定理法以及直角三角形的HL法.
相似三角形的性质主要有对应线的比值相等(边长、高线、中线、周长、内切圆半径等),对应角相等,面积的比等于相似比的平方.
2.“平行出相似”“平行成比例”,故此章中平行辅助线是常作的辅助线之一,遇到困难时应常考虑此类辅助线.
16.2直线与圆的位置关系和圆锥曲线的性质
典例精析
题型一切线的判定和性质的运用
【例1】如图,AB是⊙O的直径,AC是弦,∠BAC的平分线AD交⊙O于点D,DE⊥AC,交AC的延长线于点E,OE交AD于点F.
(1)求证:DE是⊙O的切线;
(2)若ACAB=25,求AFDF的值.
【解析】(1)证明:连接OD,可得∠ODA=∠OAD=∠DAC,
所以OD∥AE,又AE⊥DE,所以DE⊥OD,
又OD为半径,所以DE是⊙O的切线.
(2)过D作DH⊥AB于H,则有∠DOH=∠CAB,
OHOD=cos∠DOH=cos∠CAB=ACAB=25,
设OD=5x,则AB=10x,OH=2x,所以AH=7x.
由△AED≌△AHD可得AE=AH=7x,
又由△AEF∽△DOF可得AF∶DF=AE∶OD=75,
所以AFDF=75.
【变式训练1】已知在直角三角形ABC中,∠ACB=90°,以BC为直径的⊙O交AB于点D,连接DO并延长交AC的延长线于点E,⊙O的切线DF交AC于点F.
(1)求证:AF=CF;
(2)若ED=4,sin∠E=35,求CE的长.
【解析】(1)方法一:设线段FD延长线上一点G,则∠GDB=∠ADF,且∠GDB+∠BDO=π2,所以∠ADF+∠BDO=π2,又因为在⊙O中OD=OB,∠BDO=∠OBD,所以∠ADF+∠OBD=π2.
在Rt△ABC中,∠A+∠CBA=π2,所以∠A=∠ADF,所以AF=FD.
又在Rt△ABC中,直角边BC为⊙O的直径,所以AC为⊙O的切线,
又FD为⊙O的切线,所以FD=CF.
所以AF=CF.
方法二:在直角三角形ABC中,直角边BC为⊙O的直径,所以AC为⊙O的切线,
又FD为⊙O的切线,所以FD=CF,且∠FDC=∠FCD.
又由BC为⊙O的直径可知,∠ADF+∠FDC=π2,∠A+∠FCD=π2,
所以∠ADF=∠A,所以FD=AF.
所以AF=CF.
(2)因为在直角三角形FED中,ED=4,sin∠E=35,所以cos∠E=45,所以FE=5.
又FD=3=FC,所以CE=2.
题型二圆中有关定理的综合应用
【例2】如图所示,已知⊙O1与⊙O2相交于A、B两点,过点A作⊙O1的切线交⊙O2于点C,过点B作两圆的割线,分别交⊙O1、⊙O2于点D、E,DE与AC相交于点P.
(1)求证:AD∥EC;
(2)若AD是⊙O2的切线,且PA=6,PC=2,BD=9,求AD的长.
【解析】(1)连接AB,因为AC是⊙O1的切线,所以∠BAC=∠D,
又因为∠BAC=∠E,所以∠D=∠E,所以AD∥EC.
(2)方法一:因为PA是⊙O1的切线,PD是⊙O1的割线,
所以PA2=PBPD,所以62=PB(PB+9),所以PB=3.
在⊙O2中,由相交弦定理得PAPC=BPPE,所以PE=4.
因为AD是⊙O2的切线,DE是⊙O2的割线,
所以AD2=DBDE=9×16,所以AD=12.
方法二:设BP=x,PE=y.
因为PA=6,PC=2,所以由相交弦定理得PAPC=BPPE,即xy=12.①
因为AD∥EC,所以DPPE=APPC,所以9+xy=62.②
由①②可得或(舍去),所以DE=9+x+y=16.
因为AD是⊙O2的切线,DE是⊙O2的割线,所以AD2=DBDE=9×16,所以AD=12.
【变式训练2】如图,⊙O的直径AB的延长线与弦CD的延长线相交于点P,E为⊙O上一点,,DE交AB于点F,且AB=2BP=4.
(1)求PF的长度;
(2)若圆F与圆O内切,直线PT与圆F切于点T,求线段PT的长度.
【解析】(1)连接OC,OD,OE,由同弧对应的圆周角与圆心角之间的关系,结合题中已知条件可得∠CDE=∠AOC.
又∠CDE=∠P+∠PFD,∠AOC=∠P+∠OCP,
从而∠PFD=∠OCP,故△PFD∽△PCO,所以PFPC=PDPO.
由割线定理知PCPD=PAPB=12,故PF==124=3.
(2)若圆F与圆O内切,设圆F的半径为r,
因为OF=2-r=1,即r=1,
所以OB是圆F的直径,且过点P的圆F的切线为PT,
则PT2=PBPO=2×4=8,即PT=22.
题型三四点共圆问题
【例3】如图,圆O与圆P相交于A、B两点,圆心P在圆O上,圆O的弦BC切圆P于点B,CP及其延长线交圆P于D,E两点,过点E作EF⊥CE,交CB的延长线于点F.
(1)求证:B、P、E、F四点共圆;
(2)若CD=2,CB=22,求出由B、P、E、F四点所确定的圆的直径.
【解析】(1)证明:连接PB.因为BC切圆P于点B,所以PB⊥BC.
又因为EF⊥CE,所以∠PBF+∠PEF=180°,所以∠EPB+∠EFB=180°,
所以B,P,E,F四点共圆.
(2)因为B,P,E,F四点共圆,且EF⊥CE,PB⊥BC,所以此圆的直径就是PF.
因为BC切圆P于点B,且CD=2,CB=22,
所以由切割线定理CB2=CDCE,得CE=4,DE=2,BP=1.
又因为Rt△CBP∽Rt△CEF,所以EF∶PB=CE∶CB,得EF=2.
在Rt△FEP中,PF=PE2+EF2=3,
即由B,P,E,F四点确定的圆的直径为3.
【变式训练3】如图,△ABC是直角三角形,∠ABC=90°.以AB为直径的圆O交AC于点E,点D是BC边的中点.连接OD交圆O于点M.求证:
(1)O,B,D,E四点共圆;
(2)2DE2=DMAC+DMAB.
【证明】(1)连接BE,则BE⊥EC.
又D是BC的中点,所以DE=BD.
又OE=OB,OD=OD,所以△ODE≌△ODB,
所以∠OBD=∠OED=90°,所以D,E,O,B四点共圆.
(2)延长DO交圆O于点H.
因为DE2=DMDH=DM(DO+OH)=DMDO+DMOH=DM(12AC)+DM(12AB),
所以2DE2=DMAC+DMAB.
总结提高
1.直线与圆的位置关系是一种重要的几何关系.
本章在初中平面几何的基础上加以深化,使平面几何知识趋于完善,同时为解析几何、立体几何提供了多个理论依据.
2.圆中的角如圆周角、圆心角、弦切角及其性质为证明相关的比例线段提供了理论基础,为解决综合问题提供了方便,使学生对几何概念和几何方法有较透彻的理解.
文章来源:http://m.jab88.com/j/52141.html
更多