3.3.2简单线性规划问题
课前预习学案
一、预习目标
1.了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念。
2.了解线性规划问题的图解法,并能应用它解决一些简单的实际问题
二、预习内容
1.阅读课本引例,回答下列问题
线性规划的有关概念:
①线性约束条件
②线性目标函数:
③线性规划问题:
一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.
④可行解、可行域和最优解:
满足线性约束条件的解(x,y)叫可行解.
由所有可行解组成的集合叫做可行域.
使目标函数取得最大或最小值的可行解叫线性规划问题的最优解
2..通过研究引例及例题5、6,你能总结出求线性规划问题的最值或最优解的步骤吗?那些问题较难解决?
课内探究学案
一、学习目标
1.了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念。
2.了解线性规划问题的图解法,并能应用它解决一些简单的实际问题
二、学习重难点
学习重点:教学重点:用图解法解决简单的线性规划问题
教学难点:准确求得线性规划问题的最优解
三、学习过程
(一)自主学习
大家预习课本P87页,并回答以下几个问题:
问题1.①线性约束条件
②线性目标函数:
③线性规划问题:
一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.
④可行解、可行域和最优解:
(二)合作探究,得出解决线性规划问题的一般步骤
(三)典型例题
例1、①求z=2x+y的最大值,使式中的x、y满足约束条件
解析:注意可行域的准确画出
②求z=3x+5y的最大值和最小值,使式中的x、y满足约束条件
解析:注意可行域的准确性
不等式组所表示的平面区域如图所示:
从图示可知,直线3x+5y=t在经过不等式组所表示的公共区域内的点时,以经过点(-2,-1)的直线所对应的t最小,以经过点()的直线所对应的t最大.
所以zmin=3×(-2)+5×(-1)=-11.
zmax=3×+5×=14
例2.有粮食和石油两种物资,可用轮船与飞机两种方式运输,每天每艘轮船和每架飞机的运输效果见表.
轮船运输量/
飞机运输量/
粮食
石油
现在要在一天内运输至少粮食和石油,需至少安排多少艘轮船和多少架飞机?
答案:解:设需安排艘轮船和架飞机,则
即
目标函数为.
作出可行域,如图所示.
作出在一组平行直线(为参数)中经过可行域内某点且和原点距离最小的直线,此直线经过直线和的交点,直线方程为:.
由于不是整数,而最优解中必须都是整数,所以,可行域内点不是最优解.
经过可行域内的整点(横、纵坐标都是整数的点)且与原点距离最近的直线经过的整点是,
即为最优解.则至少要安排艘轮船和架飞机.
变式训练.1、求的最大值、最小值,使、满足条件
2、设,式中变量、满足
反馈测评给出下面的线性规划问题:求的最大值和最小值,使,满足约束条件要使题目中目标函数只有最小值而无最大值,请你改造约束条件中一个不等式,那么新的约束条件是.
答案:
三、课堂小结
1.了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念。
2.了解线性规划问题的图解法,并能应用它解决一些简单的实际问题
四课后练习与提高
某运输公司接受了向抗洪救灾地区每天送至少支援物资的任务.该公司有辆载重的型卡车与辆载重为的型卡车,有名驾驶员,每辆卡车每天往返的次数为型卡车次,型卡车次;每辆卡车每天往返的成本费型为元,型为元.请为公司安排一下,应如何调配车辆,才能使公司所花的成本费最低?若只安排型或型卡车,所花的成本费分别是多少?
解:设需型、型卡车分别为辆和辆.列表分析数据.
型车
型车
限量
车辆数
运物吨数
费用
由表可知,满足的线性条件:
,且.
作出线性区域,如图所示,可知当直线过时,最小,但不是整点,继续向上平移直线可知,是最优解.这时(元),即用辆型车,辆型车,成本费最低.
若只用型车,成本费为(元),只用型车,成本费为(元).
一名优秀的教师在每次教学前有自己的事先计划,作为教师就要好好准备好一份教案课件。教案可以让学生们有一个良好的课堂环境,帮助授课经验少的教师教学。那么如何写好我们的教案呢?下面是小编为大家整理的“简单的线性规划”,相信能对大家有所帮助。
3.4.4简单的线性规划
授课类型:新授课
【教学目标】
1.知识与技能:掌握线性规划问题的图解法,并能应用它解决一些简单的实际问题;
2.过程与方法:经历从实际情境中抽象出简单的线性规划问题的过程,提高数学建模能力;
3.情态与价值:引发学生学习和使用数学知识的兴趣,发展创新精神,培养实事求是、理论与实际相结合的科学态度和科学道德。
【教学重点】
利用图解法求得线性规划问题的最优解;
【教学难点】
把实际问题转化成线性规划问题,并给出解答,解决难点的关键是根据实际问题中的已知条件,找出约束条件和目标函数,利用图解法求得最优解。
【教学过程】
1.课题导入
[复习引入]:
1、二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域(虚线表示区域不包括边界直线)
2、目标函数,线性目标函数,线性规划问题,可行解,可行域,最优解:
2.讲授新课
线性规划在实际中的应用:
线性规划的理论和方法主要在两类问题中得到应用,一是在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务;二是给定一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务
下面我们就来看看线性规划在实际中的一些应用:
[范例讲解]
例5营养学家指出,成人良好的日常饮食应该至少提供0.075kg的碳水化合物,0.06kg的蛋白质,0.06kg的脂肪,1kg食物A含有0.105kg碳水化合物,0.07kg蛋白质,0.14kg脂肪,花费28元;而1kg食物B含有0.105kg碳水化合物,0.14kg蛋白质,0.07kg脂肪,花费21元。为了满足营养专家指出的日常饮食要求,同时使花费最低,需要同时食用食物A和食物B多少kg?
指出:要完成一项确定的任务,如何统筹安排,尽量做到用最少的资源去完成它,这是线性规划中最常见的问题之一.
例6在上一节例3中,若根据有关部门的规定,初中每人每年可收取学费1600元,高中每人每年可收取学费2700元。那么开设初中班和高中班各多少个,每年收取的学费总额最高多?
指出:资源数量一定,如何安排使用它们,使得效益最好,这是线性规划中常见的问题之一
结合上述两例子总结归纳一下解决这类问题的思路和方法:
简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:
(1)寻找线性约束条件,线性目标函数;
(2)由二元一次不等式表示的平面区域做出可行域;
(3)在可行域内求目标函数的最优解
3.随堂练习
课本第103页练习2
4.课时小结
线性规划的两类重要实际问题的解题思路:
首先,应准确建立数学模型,即根据题意找出约束条件,确定线性目标函数。然后,用图解法求得数学模型的解,即画出可行域,在可行域内求得使目标函数取得最值的解,最后,要根据实际意义将数学模型的解转化为实际问题的解,即结合实际情况求得最优解。
5.评价设计
课本第105页习题3.3[A]组的第3题
【板书设计】
经验告诉我们,成功是留给有准备的人。高中教师要准备好教案,这是高中教师的任务之一。教案可以让学生更好的消化课堂内容,帮助高中教师在教学期间更好的掌握节奏。那么如何写好我们的高中教案呢?小编经过搜集和处理,为您提供简单的线性规划1,供大家参考,希望能帮助到有需要的朋友。
简单的线性规划1教学目标学案49圆的方程
导学目标:1.掌握确定圆的几何要素.2.掌握圆的标准方程与一般方程.3.初步了解用代数方法处理几何问题的思想.
自主梳理
1.圆的定义
在平面内,到________的距离等于________的点的________叫圆.
2.确定一个圆最基本的要素是________和________.
3.圆的标准方程
(x-a)2+(y-b)2=r2(r0),其中________为圆心,____为半径.
4.圆的一般方程
x2+y2+Dx+Ey+F=0表示圆的充要条件是__________________,其中圆心为___________________,半径r=____________________________.
5.确定圆的方程的方法和步骤
确定圆的方程主要方法是待定系数法,大致步骤为:
(1)________________________________________________________________________;
(2)________________________________________________________________________;
(3)________________________________________________________________________.
6.点与圆的位置关系
点和圆的位置关系有三种.
圆的标准方程(x-a)2+(y-b)2=r2,点M(x0,y0),
(1)点在圆上:(x0-a)2+(y0-b)2____r2;
(2)点在圆外:(x0-a)2+(y0-b)2____r2;
(3)点在圆内:(x0-a)2+(y0-b)2____r2.
自我检测
1.方程x2+y2+4mx-2y+5m=0表示圆的条件是()
A.14m1B.m1
C.m14D.m14或m1
2.(2011南平调研)圆心在y轴上,半径为1,且过点(1,2)的圆的方程是()
A.x2+(y-2)2=1
B.x2+(y+2)2=1
C.(x-1)2+(y-3)2=1
D.x2+(y-3)2=1
3.点P(2,-1)为圆(x-1)2+y2=25的弦AB的中点,则直线AB的方程是()
A.x-y-3=0B.2x+y-3=0
C.x+y-1=0D.2x-y-5=0
4.已知点(0,0)在圆:x2+y2+ax+ay+2a2+a-1=0外,则a的取值范围是________________.
5.(2011安庆月考)过圆x2+y2=4外一点P(4,2)作圆的切线,切点为A、B,则△APB的外接圆方程为________.
探究点一求圆的方程
例1求经过点A(-2,-4),且与直线l:x+3y-26=0相切于点B(8,6)的圆的方程.
变式迁移1根据下列条件,求圆的方程.
(1)与圆O:x2+y2=4相外切于点P(-1,3),且半径为4的圆的方程;
(2)圆心在原点且圆周被直线3x+4y+15=0分成1∶2两部分的圆的方程.
探究点二圆的几何性质的应用
例2(2011滁州模拟)已知圆x2+y2+x-6y+m=0和直线x+2y-3=0交于P,Q两点,且OP⊥OQ(O为坐标原点),求该圆的圆心坐标及半径.
变式迁移2
如图,已知圆心坐标为(3,1)的圆M与x轴及直线y=3x分别相切于A、B两点,另一圆N与圆M外切且与x轴及直线y=3x分别相切于C、D两点.
(1)求圆M和圆N的方程;
(2)过点B作直线MN的平行线l,求直线l被圆N截得的弦的长度.
探究点三与圆有关的最值问题
例3已知实数x、y满足方程x2+y2-4x+1=0.
(1)求y-x的最大值和最小值;
(2)求x2+y2的最大值和最小值.
变式迁移3如果实数x,y满足方程(x-3)2+(y-3)2=6,求yx的最大值与最小值.
1.求圆的标准方程就是求出圆心的坐标与圆的半径,借助弦心距、弦、半径之间的关系计算可大大简化计算的过程与难度.
2.点与圆的位置关系有三种情形:点在圆内、点在圆上、点在圆外,其判断方法是看点到圆心的距离d与圆半径r的关系.dr时,点在圆内;d=r时,点在圆上;dr时,点在圆外.
3.本节主要的数学思想方法有:数形结合思想、方程思想.
(满分:75分)
一、选择题(每小题5分,共25分)
1.(2011重庆)在圆x2+y2-2x-6y=0内,过点E(0,1)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为()
A.52B.102
C.152D.202
2.(2011合肥期末)方程x2+y2+ax+2ay+2a2+a-1=0表示圆,则a的取值范围是()
A.a-2或a23B.-23a0
C.-2a0D.-2a23
3.圆x2+y2+2x-4y+1=0关于直线2ax-by+2=0(a、b∈R)对称,则ab的取值范围是()
A.-∞,14B.0,14
C.-14,0D.-∞,14
4.已知点P(2,1)在圆C:x2+y2+ax-2y+b=0上,点P关于直线x+y-1=0的对称点也在圆C上,则实数a,b的值为()
A.a=-3,b=3B.a=0,b=-3
C.a=-1,b=-1D.a=-2,b=1
5.(2011三明模拟)已知两点A(-2,0),B(0,2),点C是圆x2+y2-2x=0上任意一点,则△ABC面积的最小值是()
A.3-2B.3+2
C.3-22D.3-22
二、填空题(每小题4分,共12分)
6.(2010天津)已知圆C的圆心是直线x-y+1=0与x轴的交点,且圆C与直线x+y+3=0相切,则圆C的方程为________________.
7.圆心在直线2x-3y-1=0上的圆与x轴交于A(1,0)、B(3,0)两点,则圆的方程为______________.
8.设直线ax-y+3=0与圆(x-1)2+(y-2)2=4相交于A、B两点,且弦AB的长为23,则a=________.
三、解答题(共38分)
9.(12分)根据下列条件,求圆的方程:
(1)经过A(6,5)、B(0,1)两点,并且圆心C在直线3x+10y+9=0上;
(2)经过P(-2,4)、Q(3,-1)两点,并且在x轴上截得的弦长等于6.
10.(12分)(2011舟山模拟)已知点(x,y)在圆(x-2)2+(y+3)2=1上.
(1)求x+y的最大值和最小值;
(2)求yx的最大值和最小值;
(3)求x2+y2+2x-4y+5的最大值和最小值.
11.(14分)如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度|AB|=20米,拱高|OP|=4米,每隔4米需用一支柱支撑,求支柱A2P2的高度(精确到0.01米)(825≈28.72).
学案49圆的方程
自主梳理
1.定点定长集合2.圆心半径3.(a,b)r
4.D2+E2-4F0-D2,-E2D2+E2-4F2
5.(1)根据题意,选择标准方程或一般方程(2)根据条件列出关于a,b,r或D、E、F的方程组(3)解出a、b、r或D、E、F,代入标准方程或一般方程6.(1)=(2)(3)
自我检测
1.D2.A3.A
4.(-1-73,-1)∪(12,-1+73)
5.(x-2)2+(y-1)2=5
课堂活动区
例1解题导引(1)一可以利用圆的一般式方程,通过转化三个独立条件,得到有关三个待定字母的关系式求解;二可以利用圆的方程的标准形式,由条件确定圆心和半径.
(2)一般地,求圆的方程时,当条件中给出的是圆上若干点的坐标,较适合用一般式,通过解三元方程组求待定系数;当条件中给出的是圆心坐标或圆心在某直线上、圆的切线方程、圆的弦长等条件,适合用标准式.
解方法一设圆心为C,
所求圆的方程为x2+y2+Dx+Ey+F=0,
则圆心C-D2,-E2.∴kCB=6+E28+D2.
由kCBkl=-1,
∴6+E28+D2-13=-1.①
又有(-2)2+(-4)2-2D-4E+F=0,②
又82+62+8D+6E+F=0.③
解①②③,可得D=-11,E=3,F=-30.
∴所求圆的方程为x2+y2-11x+3y-30=0.
方法二设圆的圆心为C,则CB⊥l,从而可得CB所在直线的方程为y-6=3(x-8),即3x-y-18=0.①
由A(-2,-4),B(8,6),得AB的中点坐标为(3,1).
又kAB=6+48+2=1,
∴AB的垂直平分线的方程为y-1=-(x-3),
即x+y-4=0.②
由①②联立后,解得x=112,y=-32.即圆心坐标为112,-32.
∴所求圆的半径r=112-82+-32-62=1252.
∴所求圆的方程为x-1122+y+322=1252.
变式迁移1解(1)设所求圆的圆心Q的坐标为(a,b),圆Q的方程为(x-a)2+(y-b)2=42,又∵OQ=6,
∴联立方程0-a2+0-b2=62-1-a2+3-b2=16,
解得a=-3,b=33,
所以所求圆的方程为(x+3)2+(y-33)2=16.
(2)
如图,因为圆周被直线3x+4y+15=0分成1∶2两部分,所以∠AOB=120°,而圆心(0,0)到直线3x+4y+15=0的距离d=1532+42=3,在△AOB中,可求得OA=6.
所以所求圆的方程为x2+y2=36.
例2解题导引(1)在解决与圆有关的问题中,借助于圆的几何性质,往往会使得思路简捷明了,简化思路,简便运算.
(2)本题利用方程思想求m值,即“列出m的方程”求m值.
解方法一将x=3-2y,
代入方程x2+y2+x-6y+m=0,
得5y2-20y+12+m=0.
设P(x1,y1),Q(x2,y2),则y1、y2满足条件:
y1+y2=4,y1y2=12+m5.
∵OP⊥OQ,∴x1x2+y1y2=0.
而x1=3-2y1,x2=3-2y2.
∴x1x2=9-6(y1+y2)+4y1y2.
∴9-6(y1+y2)+5y1y2=0,
∴9-6×4+5×12+m5=0,
∴m=3,此时1+36-3×40,圆心坐标为-12,3,半径r=52.
方法二
如图所示,
设弦PQ中点为M,
∵O1M⊥PQ,
∴kO1M=2.
又圆心坐标为-12,3,
∴O1M的方程为y-3=2x+12,即y=2x+4.
由方程组y=2x+4,x+2y-3=0,解得M的坐标为(-1,2).
则以PQ为直径的圆可设为(x+1)2+(y-2)2=r2.
∵OP⊥OQ,∴点O在以PQ为直径的圆上.
∴(0+1)2+(0-2)2=r2,即r2=5,MQ2=r2.
在Rt△O1MQ中,O1M2+MQ2=O1Q2.
∴-12+12+(3-2)2+5=1+-62-4m4.
∴m=3.∴半径为52,圆心为-12,3.
变式迁移2解(1)∵M的坐标为(3,1),∴M到x轴的距离为1,即圆M的半径为1,
则圆M的方程为(x-3)2+(y-1)2=1.
设圆N的半径为r,
连接MA,NC,OM,
则MA⊥x轴,NC⊥x轴,
由题意知:M,N点都在∠COD的平分线上,
∴O,M,N三点共线.
由Rt△OAM∽Rt△OCN可知,
|OM|∶|ON|=|MA|∶|NC|,即23+r=1rr=3,
则OC=33,则圆N的方程为(x-33)2+(y-3)2=9.
(2)由对称性可知,所求的弦长等于过A点与MN平行的直线被圆N截得的弦的长度,
此弦的方程是y=33(x-3),即x-3y-3=0,
圆心N到该直线的距离d=32,
则弦长为2r2-d2=33.
例3解题导引与圆有关的最值问题,常见的有以下几种类型:
(1)形如μ=y-bx-a形式的最值问题,可转化为动直线斜率的最值问题;(2)形如t=ax+by形式的最值问题,可转化为动直线截距的最值问题;(3)形如(x-a)2+(y-b)2形式的最值问题,可转化为动点到定点的距离的平方的最值问题.
解(1)y-x可看作是直线y=x+b在y轴上的截距,当直线y=x+b与圆相切时,纵截距b取得最大值或最小值,此时|2-0+b|2=3,解得b=-2±6.
所以y-x的最大值为-2+6,最小值为-2-6.
(2)x2+y2表示圆上的一点与原点距离的平方,由平面几何知识知,在原点与圆心连线与圆的两个交点处取得最大值和最小值.
又圆心到原点的距离为2-02+0-02=2,
所以x2+y2的最大值是(2+3)2=7+43,
x2+y2的最小值是(2-3)2=7-43.
变式迁移3解设P(x,y),
则P点的轨迹就是已知圆C:(x-3)2+(y-3)2=6.
而yx的几何意义就是直线OP的斜率,
设yx=k,则直线OP的方程为y=kx.
当直线OP与圆相切时,斜率取最值.
因为点C到直线y=kx的距离d=|3k-3|k2+1,
所以当|3k-3|k2+1=6,
即k=3±22时,直线OP与圆相切.
即yx的最大值为3+22,最小值为3-22.
课后练习区
1.B[圆的方程化为标准形式为(x-1)2+(y-3)2=10,由圆的性质可知最长弦|AC|=210,最短弦BD恰以E(0,1)为中心,设点F为其圆心,坐标为(1,3).
故EF=5,∴BD=210-52=25,
∴S四边形ABCD=12ACBD=102.]
2.D3.A4.B5.A
6.(x+1)2+y2=27.(x-2)2+(y-1)2=28.0
9.解(1)∵AB的中垂线方程为3x+2y-15=0,
由3x+2y-15=0,3x+10y+9=0,解得x=7,y=-3.(3分)
∴圆心为C(7,-3).又|CB|=65,
故所求圆的方程为(x-7)2+(y+3)2=65.(6分)
(2)设圆的方程为x2+y2+Dx+Ey+F=0,将P、Q点的坐标分别代入得2D-4E-F=20,3D-E+F=-10.①②
(8分)
又令y=0,得x2+Dx+F=0,③
由|x1-x2|=6有D2-4F=36.④
由①②④解得D=-2,E=-4,F=-8或D=-6,E=-8,F=0.
故所求圆的方程为x2+y2-2x-4y-8=0,或x2+y2-6x-8y=0.(12分)
10.解(1)设t=x+y,则y=-x+t,t可视为直线y=-x+t的纵截距,所以x+y的最大值和最小值就是直线与圆有公共点时直线纵截距的最大值和最小值,即直线与圆相切时的纵截距.
由直线与圆相切,得圆心到直线的距离等于半径,
即|2+-3-t|2=1,解得t=2-1或t=-2-1,
所以x+y的最大值为2-1,
最小值为-2-1.(4分)
(2)yx可视为点(x,y)与原点连线的斜率,yx的最大值和最小值就是过原点的直线与该圆有公共点时斜率的最大值和最小值,即直线与圆相切时的斜率.
设过原点的直线方程为y=kx,由直线与圆相切,得圆心到直线的距离等于半径,即|2k--3|1+k2=1,
解得k=-2+233或k=-2-233,
所以yx的最大值为-2+233,
最小值为-2-233.(8分)
(3)x2+y2+2x-4y+5,
即[x--1]2+y-22,其最值可视为点(x,y)到定点(-1,2)的距离的最值,可转化为圆心(2,-3)到定点(-1,2)的距离与半径的和或差.
又因为圆心到定点(-1,2)的距离为34,所以x2+y2+2x-4y+5的最大值为34+1,最小值为34-1.(12分)
11.解建立如图所示的坐标系,设该圆拱所在圆的方程为x2+y2+Dx+Ey+F=0,由于圆心在y轴上,所以D=0,那么方程即为x2+y2+Ey+F=0.(3分)
下面用待定系数法来确定E、F的值.
因为P、B都在圆上,所以它们的坐标(0,4)、(10,0)都是这个圆的方程的解,
于是有方程组42+4E+F=0,102+F=0,(7分)
解得F=-100,E=21.
∴这个圆的方程是x2+y2+21y-100=0.(10分)
把点P2的横坐标x=-2代入这个圆的方程,
得(-2)2+y2+21y-100=0,y2+21y-96=0.
∵P2的纵坐标y0,故应取正值,
∴y=-21+212+4×962≈3.86(米).
所以支柱A2P2的高度约为3.86米.(14分)
文章来源:http://m.jab88.com/j/52048.html
更多