88教案网

高考数学(理科)一轮复习圆的方程学案(附答案)

一名优秀的教师就要对每一课堂负责,作为高中教师就要精心准备好合适的教案。教案可以更好的帮助学生们打好基础,帮助高中教师缓解教学的压力,提高教学质量。您知道高中教案应该要怎么下笔吗?为满足您的需求,小编特地编辑了“高考数学(理科)一轮复习圆的方程学案(附答案)”,欢迎阅读,希望您能阅读并收藏。

学案49圆的方程

导学目标:1.掌握确定圆的几何要素.2.掌握圆的标准方程与一般方程.3.初步了解用代数方法处理几何问题的思想.
自主梳理
1.圆的定义
在平面内,到________的距离等于________的点的________叫圆.
2.确定一个圆最基本的要素是________和________.
3.圆的标准方程
(x-a)2+(y-b)2=r2(r0),其中________为圆心,____为半径.
4.圆的一般方程
x2+y2+Dx+Ey+F=0表示圆的充要条件是__________________,其中圆心为___________________,半径r=____________________________.
5.确定圆的方程的方法和步骤
确定圆的方程主要方法是待定系数法,大致步骤为:
(1)________________________________________________________________________;
(2)________________________________________________________________________;
(3)________________________________________________________________________.
6.点与圆的位置关系
点和圆的位置关系有三种.
圆的标准方程(x-a)2+(y-b)2=r2,点M(x0,y0),
(1)点在圆上:(x0-a)2+(y0-b)2____r2;
(2)点在圆外:(x0-a)2+(y0-b)2____r2;
(3)点在圆内:(x0-a)2+(y0-b)2____r2.
自我检测
1.方程x2+y2+4mx-2y+5m=0表示圆的条件是()
A.14m1B.m1
C.m14D.m14或m1
2.(2011南平调研)圆心在y轴上,半径为1,且过点(1,2)的圆的方程是()
A.x2+(y-2)2=1
B.x2+(y+2)2=1
C.(x-1)2+(y-3)2=1
D.x2+(y-3)2=1
3.点P(2,-1)为圆(x-1)2+y2=25的弦AB的中点,则直线AB的方程是()
A.x-y-3=0B.2x+y-3=0
C.x+y-1=0D.2x-y-5=0
4.已知点(0,0)在圆:x2+y2+ax+ay+2a2+a-1=0外,则a的取值范围是________________.
5.(2011安庆月考)过圆x2+y2=4外一点P(4,2)作圆的切线,切点为A、B,则△APB的外接圆方程为________.
探究点一求圆的方程
例1求经过点A(-2,-4),且与直线l:x+3y-26=0相切于点B(8,6)的圆的方程.

变式迁移1根据下列条件,求圆的方程.
(1)与圆O:x2+y2=4相外切于点P(-1,3),且半径为4的圆的方程;
(2)圆心在原点且圆周被直线3x+4y+15=0分成1∶2两部分的圆的方程.

探究点二圆的几何性质的应用
例2(2011滁州模拟)已知圆x2+y2+x-6y+m=0和直线x+2y-3=0交于P,Q两点,且OP⊥OQ(O为坐标原点),求该圆的圆心坐标及半径.

变式迁移2
如图,已知圆心坐标为(3,1)的圆M与x轴及直线y=3x分别相切于A、B两点,另一圆N与圆M外切且与x轴及直线y=3x分别相切于C、D两点.
(1)求圆M和圆N的方程;
(2)过点B作直线MN的平行线l,求直线l被圆N截得的弦的长度.

探究点三与圆有关的最值问题
例3已知实数x、y满足方程x2+y2-4x+1=0.
(1)求y-x的最大值和最小值;
(2)求x2+y2的最大值和最小值.

变式迁移3如果实数x,y满足方程(x-3)2+(y-3)2=6,求yx的最大值与最小值.

1.求圆的标准方程就是求出圆心的坐标与圆的半径,借助弦心距、弦、半径之间的关系计算可大大简化计算的过程与难度.
2.点与圆的位置关系有三种情形:点在圆内、点在圆上、点在圆外,其判断方法是看点到圆心的距离d与圆半径r的关系.dr时,点在圆内;d=r时,点在圆上;dr时,点在圆外.
3.本节主要的数学思想方法有:数形结合思想、方程思想.
(满分:75分)

一、选择题(每小题5分,共25分)
1.(2011重庆)在圆x2+y2-2x-6y=0内,过点E(0,1)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为()
A.52B.102
C.152D.202
2.(2011合肥期末)方程x2+y2+ax+2ay+2a2+a-1=0表示圆,则a的取值范围是()
A.a-2或a23B.-23a0
C.-2a0D.-2a23
3.圆x2+y2+2x-4y+1=0关于直线2ax-by+2=0(a、b∈R)对称,则ab的取值范围是()
A.-∞,14B.0,14
C.-14,0D.-∞,14
4.已知点P(2,1)在圆C:x2+y2+ax-2y+b=0上,点P关于直线x+y-1=0的对称点也在圆C上,则实数a,b的值为()
A.a=-3,b=3B.a=0,b=-3
C.a=-1,b=-1D.a=-2,b=1
5.(2011三明模拟)已知两点A(-2,0),B(0,2),点C是圆x2+y2-2x=0上任意一点,则△ABC面积的最小值是()
A.3-2B.3+2
C.3-22D.3-22

二、填空题(每小题4分,共12分)
6.(2010天津)已知圆C的圆心是直线x-y+1=0与x轴的交点,且圆C与直线x+y+3=0相切,则圆C的方程为________________.
7.圆心在直线2x-3y-1=0上的圆与x轴交于A(1,0)、B(3,0)两点,则圆的方程为______________.
8.设直线ax-y+3=0与圆(x-1)2+(y-2)2=4相交于A、B两点,且弦AB的长为23,则a=________.
三、解答题(共38分)
9.(12分)根据下列条件,求圆的方程:
(1)经过A(6,5)、B(0,1)两点,并且圆心C在直线3x+10y+9=0上;
(2)经过P(-2,4)、Q(3,-1)两点,并且在x轴上截得的弦长等于6.

10.(12分)(2011舟山模拟)已知点(x,y)在圆(x-2)2+(y+3)2=1上.
(1)求x+y的最大值和最小值;
(2)求yx的最大值和最小值;
(3)求x2+y2+2x-4y+5的最大值和最小值.
11.(14分)如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度|AB|=20米,拱高|OP|=4米,每隔4米需用一支柱支撑,求支柱A2P2的高度(精确到0.01米)(825≈28.72).

学案49圆的方程
自主梳理
1.定点定长集合2.圆心半径3.(a,b)r
4.D2+E2-4F0-D2,-E2D2+E2-4F2
5.(1)根据题意,选择标准方程或一般方程(2)根据条件列出关于a,b,r或D、E、F的方程组(3)解出a、b、r或D、E、F,代入标准方程或一般方程6.(1)=(2)(3)
自我检测
1.D2.A3.A
4.(-1-73,-1)∪(12,-1+73)
5.(x-2)2+(y-1)2=5
课堂活动区
例1解题导引(1)一可以利用圆的一般式方程,通过转化三个独立条件,得到有关三个待定字母的关系式求解;二可以利用圆的方程的标准形式,由条件确定圆心和半径.
(2)一般地,求圆的方程时,当条件中给出的是圆上若干点的坐标,较适合用一般式,通过解三元方程组求待定系数;当条件中给出的是圆心坐标或圆心在某直线上、圆的切线方程、圆的弦长等条件,适合用标准式.
解方法一设圆心为C,
所求圆的方程为x2+y2+Dx+Ey+F=0,
则圆心C-D2,-E2.∴kCB=6+E28+D2.
由kCBkl=-1,
∴6+E28+D2-13=-1.①
又有(-2)2+(-4)2-2D-4E+F=0,②
又82+62+8D+6E+F=0.③
解①②③,可得D=-11,E=3,F=-30.
∴所求圆的方程为x2+y2-11x+3y-30=0.
方法二设圆的圆心为C,则CB⊥l,从而可得CB所在直线的方程为y-6=3(x-8),即3x-y-18=0.①
由A(-2,-4),B(8,6),得AB的中点坐标为(3,1).
又kAB=6+48+2=1,
∴AB的垂直平分线的方程为y-1=-(x-3),
即x+y-4=0.②
由①②联立后,解得x=112,y=-32.即圆心坐标为112,-32.
∴所求圆的半径r=112-82+-32-62=1252.
∴所求圆的方程为x-1122+y+322=1252.
变式迁移1解(1)设所求圆的圆心Q的坐标为(a,b),圆Q的方程为(x-a)2+(y-b)2=42,又∵OQ=6,
∴联立方程0-a2+0-b2=62-1-a2+3-b2=16,
解得a=-3,b=33,
所以所求圆的方程为(x+3)2+(y-33)2=16.
(2)
如图,因为圆周被直线3x+4y+15=0分成1∶2两部分,所以∠AOB=120°,而圆心(0,0)到直线3x+4y+15=0的距离d=1532+42=3,在△AOB中,可求得OA=6.
所以所求圆的方程为x2+y2=36.
例2解题导引(1)在解决与圆有关的问题中,借助于圆的几何性质,往往会使得思路简捷明了,简化思路,简便运算.
(2)本题利用方程思想求m值,即“列出m的方程”求m值.
解方法一将x=3-2y,
代入方程x2+y2+x-6y+m=0,
得5y2-20y+12+m=0.
设P(x1,y1),Q(x2,y2),则y1、y2满足条件:
y1+y2=4,y1y2=12+m5.
∵OP⊥OQ,∴x1x2+y1y2=0.
而x1=3-2y1,x2=3-2y2.
∴x1x2=9-6(y1+y2)+4y1y2.
∴9-6(y1+y2)+5y1y2=0,
∴9-6×4+5×12+m5=0,
∴m=3,此时1+36-3×40,圆心坐标为-12,3,半径r=52.
方法二
如图所示,
设弦PQ中点为M,
∵O1M⊥PQ,
∴kO1M=2.
又圆心坐标为-12,3,
∴O1M的方程为y-3=2x+12,即y=2x+4.
由方程组y=2x+4,x+2y-3=0,解得M的坐标为(-1,2).
则以PQ为直径的圆可设为(x+1)2+(y-2)2=r2.
∵OP⊥OQ,∴点O在以PQ为直径的圆上.
∴(0+1)2+(0-2)2=r2,即r2=5,MQ2=r2.
在Rt△O1MQ中,O1M2+MQ2=O1Q2.
∴-12+12+(3-2)2+5=1+-62-4m4.
∴m=3.∴半径为52,圆心为-12,3.
变式迁移2解(1)∵M的坐标为(3,1),∴M到x轴的距离为1,即圆M的半径为1,
则圆M的方程为(x-3)2+(y-1)2=1.
设圆N的半径为r,
连接MA,NC,OM,
则MA⊥x轴,NC⊥x轴,
由题意知:M,N点都在∠COD的平分线上,
∴O,M,N三点共线.
由Rt△OAM∽Rt△OCN可知,
|OM|∶|ON|=|MA|∶|NC|,即23+r=1rr=3,
则OC=33,则圆N的方程为(x-33)2+(y-3)2=9.
(2)由对称性可知,所求的弦长等于过A点与MN平行的直线被圆N截得的弦的长度,
此弦的方程是y=33(x-3),即x-3y-3=0,
圆心N到该直线的距离d=32,
则弦长为2r2-d2=33.
例3解题导引与圆有关的最值问题,常见的有以下几种类型:
(1)形如μ=y-bx-a形式的最值问题,可转化为动直线斜率的最值问题;(2)形如t=ax+by形式的最值问题,可转化为动直线截距的最值问题;(3)形如(x-a)2+(y-b)2形式的最值问题,可转化为动点到定点的距离的平方的最值问题.
解(1)y-x可看作是直线y=x+b在y轴上的截距,当直线y=x+b与圆相切时,纵截距b取得最大值或最小值,此时|2-0+b|2=3,解得b=-2±6.
所以y-x的最大值为-2+6,最小值为-2-6.
(2)x2+y2表示圆上的一点与原点距离的平方,由平面几何知识知,在原点与圆心连线与圆的两个交点处取得最大值和最小值.
又圆心到原点的距离为2-02+0-02=2,
所以x2+y2的最大值是(2+3)2=7+43,
x2+y2的最小值是(2-3)2=7-43.
变式迁移3解设P(x,y),
则P点的轨迹就是已知圆C:(x-3)2+(y-3)2=6.
而yx的几何意义就是直线OP的斜率,
设yx=k,则直线OP的方程为y=kx.
当直线OP与圆相切时,斜率取最值.
因为点C到直线y=kx的距离d=|3k-3|k2+1,
所以当|3k-3|k2+1=6,
即k=3±22时,直线OP与圆相切.
即yx的最大值为3+22,最小值为3-22.
课后练习区
1.B[圆的方程化为标准形式为(x-1)2+(y-3)2=10,由圆的性质可知最长弦|AC|=210,最短弦BD恰以E(0,1)为中心,设点F为其圆心,坐标为(1,3).
故EF=5,∴BD=210-52=25,
∴S四边形ABCD=12ACBD=102.]
2.D3.A4.B5.A
6.(x+1)2+y2=27.(x-2)2+(y-1)2=28.0
9.解(1)∵AB的中垂线方程为3x+2y-15=0,
由3x+2y-15=0,3x+10y+9=0,解得x=7,y=-3.(3分)
∴圆心为C(7,-3).又|CB|=65,
故所求圆的方程为(x-7)2+(y+3)2=65.(6分)
(2)设圆的方程为x2+y2+Dx+Ey+F=0,将P、Q点的坐标分别代入得2D-4E-F=20,3D-E+F=-10.①②
(8分)
又令y=0,得x2+Dx+F=0,③
由|x1-x2|=6有D2-4F=36.④
由①②④解得D=-2,E=-4,F=-8或D=-6,E=-8,F=0.
故所求圆的方程为x2+y2-2x-4y-8=0,或x2+y2-6x-8y=0.(12分)
10.解(1)设t=x+y,则y=-x+t,t可视为直线y=-x+t的纵截距,所以x+y的最大值和最小值就是直线与圆有公共点时直线纵截距的最大值和最小值,即直线与圆相切时的纵截距.
由直线与圆相切,得圆心到直线的距离等于半径,
即|2+-3-t|2=1,解得t=2-1或t=-2-1,
所以x+y的最大值为2-1,
最小值为-2-1.(4分)
(2)yx可视为点(x,y)与原点连线的斜率,yx的最大值和最小值就是过原点的直线与该圆有公共点时斜率的最大值和最小值,即直线与圆相切时的斜率.
设过原点的直线方程为y=kx,由直线与圆相切,得圆心到直线的距离等于半径,即|2k--3|1+k2=1,
解得k=-2+233或k=-2-233,
所以yx的最大值为-2+233,
最小值为-2-233.(8分)
(3)x2+y2+2x-4y+5,
即[x--1]2+y-22,其最值可视为点(x,y)到定点(-1,2)的距离的最值,可转化为圆心(2,-3)到定点(-1,2)的距离与半径的和或差.
又因为圆心到定点(-1,2)的距离为34,所以x2+y2+2x-4y+5的最大值为34+1,最小值为34-1.(12分)
11.解建立如图所示的坐标系,设该圆拱所在圆的方程为x2+y2+Dx+Ey+F=0,由于圆心在y轴上,所以D=0,那么方程即为x2+y2+Ey+F=0.(3分)
下面用待定系数法来确定E、F的值.
因为P、B都在圆上,所以它们的坐标(0,4)、(10,0)都是这个圆的方程的解,
于是有方程组42+4E+F=0,102+F=0,(7分)
解得F=-100,E=21.
∴这个圆的方程是x2+y2+21y-100=0.(10分)
把点P2的横坐标x=-2代入这个圆的方程,
得(-2)2+y2+21y-100=0,y2+21y-96=0.
∵P2的纵坐标y0,故应取正值,
∴y=-21+212+4×962≈3.86(米).
所以支柱A2P2的高度约为3.86米.(14分)

相关阅读

高考数学(理科)一轮复习直线及其方程学案带答案


第九章解析几何
学案47直线及其方程

导学目标:1.在平面直角坐标系中,结合具体图形,确定直线位置的几何要素.2.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.3.掌握确定直线位置的几何要素,掌握直线方程的几种形式,了解斜截式与一次函数的关系.
自主梳理
1.直线的倾斜角与斜率
(1)直线的倾斜角
①定义:当直线l与x轴相交时,我们取x轴作为基准,x轴________与直线l________方向之间所成的角α叫做直线l的倾斜角.当直线l与x轴平行或重合时,规定它的倾斜角为________.
②倾斜角的范围为______________.
(2)直线的斜率
①定义:一条直线的倾斜角α的________叫做这条直线的斜率,斜率常用小写字母k表示,即k=________,倾斜角是90°的直线斜率不存在.
②过两点的直线的斜率公式:
经过两点P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率公式为k=______________________.
2.直线的方向向量
经过两点P1(x1,y1),P2(x2,y2)的直线的一个方向向量为P1P2→,其坐标为________________,当斜率k存在时,方向向量的坐标可记为(1,k).
3.直线的方程和方程的直线
已知二元一次方程Ax+By+C=0(A2+B2≠0)和坐标平面上的直线l,如果直线l上任意一点的坐标都是方程____________的解,并且以方程Ax+By+C=0的任意一个解作为点的坐标都在__________,就称直线l是方程Ax+By+C=0的直线,称方程Ax+By+C=0是直线l的方程.
4.直线方程的五种基本形式
名称方程适用范围
点斜式不含直线x=x0
斜截式不含垂直于x轴的直线
两点式不含直线x=x1(x1≠x2)和直线y=y1(y1≠y2)
截距式不含垂直于坐标轴和过原点的直线
一般式平面直角坐标系内的直线都适用
5.线段的中点坐标公式
若点P1,P2的坐标分别为(x1,y1),(x2,y2),且线段P1P2的中点M的坐标为(x,y),则x=,y=,此公式为线段P1P2的中点坐标公式.
自我检测
1.(2011银川调研)若A(-2,3),B(3,-2),C12,m三点共线,则m的值为()
A.12B.-12C.-2D.2
2.直线l与两条直线x-y-7=0,y=1分别交于P、Q两点,线段PQ的中点为(1,-1),则直线l的斜率为()
A.-32B.32C.23D.-23
3.下列四个命题中,假命题是()
A.经过定点P(x0,y0)的直线不一定都可以用方程y-y0=k(x-x0)表示
B.经过两个不同的点P1(x1,y1)、P2(x2,y2)的直线都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)来表示
C.与两条坐标轴都相交的直线不一定可以用方程xa+yb=1表示
D.经过点Q(0,b)的直线都可以表示为y=kx+b
4.(2011商丘期末)如果AC0,且BC0,那么直线Ax+By+C=0不通过()
A.第一象限B.第二象限
C.第三象限D.第四象限
5.已知直线l的方向向量与向量a=(1,2)垂直,且直线l过点A(1,1),则直线l的方程为()
A.x-2y-1=0B.2x+y-3=0
C.x+2y+1=0D.x+2y-3=0
探究点一倾斜角与斜率

例1已知两点A(-1,-5)、B(3,-2),直线l的倾斜角是直线AB倾斜角的一半,求l的斜率.

变式迁移1直线xsinα-y+1=0的倾斜角的变化范围是()
A.0,π2B.(0,π)
C.-π4,π4D.0,π4∪3π4,π
探究点二直线的方程
例2(2011武汉模拟)过点M(0,1)作直线,使它被两直线l1:x-3y+10=0,l2:2x+y-8=0所截得的线段恰好被M所平分,求此直线方程.

变式迁移2求适合下列条件的直线方程:
(1)经过点P(3,2)且在两坐标轴上的截距相等;
(2)经过点A(-1,-3),倾斜角等于直线y=3x的倾斜角的2倍.

探究点三直线方程的应用

例3过点P(2,1)的直线l交x轴、y轴正半轴于A、B两点,求使:
(1)△AOB面积最小时l的方程;
(2)|PA||PB|最小时l的方程.
变式迁移3为了绿化城市,拟在矩形区域ABCD内建一个矩形草坪(如图),另外△EFA内部有一文物保护区不能占用,经测量|AB|=100m,|BC|=80m,|AE|=30m,|AF|=20m,应如何设计才能使草坪面积最大?
探究点四数形结合思想
例4已知实数x,y满足y=x2-2x+2(-1≤x≤1).
试求y+3x+2的最大值与最小值.

变式迁移4直线l过点M(-1,2)且与以点P(-2,-3)、Q(4,0)为端点的线段恒相交,则l的斜率范围是()
A.[-25,5]B.[-25,0)∪(0,5]
C.(-∞,-25]∪[5,+∞)D.[-25,π2)∪(π2,5]
1.要正确理解倾斜角的定义,明确倾斜角的范围为0°≤α180°,熟记斜率公式k=y2-y1x2-x1,该公式与两点顺序无关.已知两点坐标(x1≠x2),根据该公式可以求出经过两点的直线斜率,而x1=x2,y1≠y2时,直线斜率不存在,此时直线的倾斜角为90°.
2.当直线没有斜率(x1=x2)或斜率为0(y1=y2)时,不能用两点式y-y1y2-y1=x-x1x2-x1求直线方程,但都可以写成(x2-x1)(y-y1)=(y2-y1)(x-x1)的形式.直线方程的点斜式、斜截式、两点式、截距式都可以化成一般式,但是有些直线的一般式方程不能化成点斜式、斜截式、两点式或截距式.
3.使用直线方程时,一定要注意限制条件以免解题过程中丢解,如点斜式的使用条件是直线必须有斜率,截距式的使用条件是截距存在且不为零,两点式的使用条件是直线不与坐标轴垂直.
(满分:75分)

一、选择题(每小题5分,共25分)
1.(2011临沂月考)已知直线l经过A(2,1)、B(1,m2)(m∈R)两点,那么直线l的倾斜角的取值范围是()
A.(0,π)B.0,π4∪π2,π
C.0,π4D.π4,π2∪π2,π
2.若直线l:y=kx-3与直线2x+3y-6=0的交点位于第一象限,则直线l的倾斜角的取值范围是()
A.π6,π3B.π6,π2
C.π3,π2D.π6,π2
3.点P(x,y)在经过A(3,0),B(1,1)两点的直线上,那么2x+4y的最小值是()
A.22B.42
C.16D.不存在
4.(2011宜昌调研)点A(a+b,ab)在第一象限内,则直线bx+ay-ab=0不经过的象限是()
A.第一象限B.第二象限
C.第三象限D.第四象限
5.(2011包头期末)经过点P(2,-1),且在y轴上的截距等于它在x轴上的截距的2倍的直线l的方程为()
A.2x+y=2B.2x+y=4
C.2x+y=3D.2x+y=3或x+2y=0
二、填空题(每小题4分,共12分)
6.过两点A(m2+2,m2-3),B(3-m-m2,2m)的直线l的倾斜角为45°,则m=________.
7.直线x+(a2+1)y+1=0(a∈R)的倾斜角的取值范围是________.
8.设A、B是x轴上的两点,点P的横坐标为2,且|PA|=|PB|,若直线PA的方程为x-y+1=0,则直线PB的方程是________________.
三、解答题(共38分)
9.(12分)已知两点A(-1,2),B(m,3),求:
(1)直线AB的斜率k;
(2)求直线AB的方程;
(3)已知实数m∈-33-1,3-1,求直线AB的倾斜角α的范围.

10.(12分)(2011秦皇岛模拟)已知线段PQ两端点的坐标分别为(-1,1)、(2,2),若直线l:x+my+m=0与线段PQ有交点,求m的范围.
11.(14分)已知直线l:kx-y+1+2k=0(k∈R).
(1)证明:直线l过定点;
(2)若直线不经过第四象限,求k的取值范围;
(3)若直线l交x轴负半轴于A,交y轴正半轴于B,△AOB的面积为S,求S的最小值并求此时直线l的方程.

学案47直线及其方程
自主梳理
1.(1)①正向向上0°②0°≤α180°(2)①正切值tanα②y2-y1x2-x12.(x2-x1,y2-y1)3.Ax+By+C=0
直线l上4.y-y0=k(x-x0)y=kx+by-y1y2-y1=x-x1x2-x1xa+yb=1(a≠0,b≠0)Ax+By+C=0(A、B不同时为0)5.x1+x22y1+y22
自我检测
1.A2.D3.D4.C5.D
课堂活动区
例1解题导引斜率与倾斜角常与三角函数联系,本题需要挖掘隐含条件,判断角的范围.关键是熟练掌握好根据三角函数值确定角的范围这一类题型.
解设直线l的倾斜角为α,则直线AB的倾斜角为2α,
由题意可知:tan2α=-2--53--1=34,∴2tanα1-tan2α=34.
整理得3tan2α+8tanα-3=0.
解得tanα=13或tanα=-3,∵tan2α=340,
∴0°2α90°,∴0°α45°,∴tanα0,
故直线l的斜率为13.
变式迁移1D[直线xsinα-y+1=0的斜率是k=sinα,
又∵-1≤sinα≤1,∴-1≤k≤1.
当0≤k≤1时,倾斜角的范围是0,π4,
当-1≤k0时,倾斜角的范围是3π4,π.]
例2解题导引(1)对直线问题,要特别注意斜率不存在的情况.
(2)求直线方程常用方法——待定系数法.
待定系数法就是根据所求的具体直线设出方程,然后按照它们满足的条件求出参数.
解过点M且与x轴垂直的直线是y轴,它和两已知直线的交点分别是0,103和(0,8),
显然不满足中点是点M(0,1)的条件.
故可设所求直线方程为y=kx+1,与两已知直线l1、l2分别交于A、B两点,联立方程组y=kx+1,x-3y+10=0,①
y=kx+1,2x+y-8=0,②
由①解得xA=73k-1,由②解得xB=7k+2.
∵点M平分线段AB,∴xA+xB=2xM,
即73k-1+7k+2=0,解得k=-14.
故所求直线方程为x+4y-4=0.
变式迁移2解(1)设直线l在x,y轴上的截距均为a,
若a=0,即l过点(0,0)和(3,2),
∴l的方程为y=23x,即2x-3y=0.
若a≠0,则设l的方程为xa+ya=1,
∵l过点(3,2),∴3a+2a=1,
∴a=5,∴l的方程为x+y-5=0,
综上可知,直线l的方程为2x-3y=0或x+y-5=0.
(2)由已知:设直线y=3x的倾斜角为α,
则所求直线的倾斜角为2α.
∵tanα=3,∴tan2α=2tanα1-tan2α=-34.
又直线经过点A(-1,-3),
因此所求直线方程为y+3=-34(x+1),
即3x+4y+15=0.
例3解题导引先设出A、B所在的直线方程,再求出A、B两点的坐标,表示出△ABO的面积,然后利用相关的数学知识求最值.
确定直线方程可分为两个类型:一是根据题目条件确定点和斜率或确定两点,进而套用直线方程的几种形式,写出方程,此法称直接法;二是利用直线在题目中具有的某些性质,先设出方程(含参数或待定系数),再确定参数值,然后写出方程,这种方法称为间接法.
解设直线的方程为xa+yb=1(a2,b1),
由已知可得2a+1b=1.
(1)∵22a1b≤2a+1b=1,∴ab≥8.
∴S△AOB=12ab≥4.
当且仅当2a=1b=12,
即a=4,b=2时,S△AOB取最小值4,
此时直线l的方程为x4+y2=1,
即x+2y-4=0.
(2)由2a+1b=1,得ab-a-2b=0,变形得(a-2)(b-1)=2,
|PA||PB|
=2-a2+1-022-02+1-b2
=[2-a2+1][1-b2+4]
≥2a-24b-1.
当且仅当a-2=1,b-1=2,
即a=3,b=3时,|PA||PB|取最小值4.
此时直线l的方程为x+y-3=0.
变式迁移3解如图所示建立直角坐标系,则E(30,0),F(0,20),
∴线段EF的方程为x30+y20=1(0≤x≤30).
在线段EF上取点P(m,n),
作PQ⊥BC于点Q,
PR⊥CD于点R,设矩形PQCR的面积为S,
则S=|PQ||PR|=(100-m)(80-n).
又m30+n20=1(0≤m≤30),
∴n=20(1-m30).
∴S=(100-m)(80-20+23m)
=-23(m-5)2+180503(0≤m≤30).
∴当m=5时,S有最大值,这时|EP||PF|=30-55=5.
所以当矩形草坪的两边在BC、CD上,一个顶点在线段EF上,且这个顶点分EF成5∶1时,草坪面积最大.
例4解题导引解决这类问题的关键是弄清楚所求代数式的几何意义,借助数形结合,将求最值问题转化为求斜率取值范围问题,简化了运算过程,收到事半功倍的效果.
解由y+3x+2的几何意义可知,它表示经过定点P(-2,-3)与曲线段AB上任一点(x,y)的直线的斜率k,由图可知:
kPA≤k≤kPB,由已知可得:
A(1,1),B(-1,5),
∴43≤k≤8,
故y+3x+2的最大值为8,最小值为43.
变式迁移4C
[如图,过点M作y轴的平行线与线段PQ相交于点N.
kMP=5,kMQ=-25.
当直线l从MP开始绕M按逆时针方向旋转到MN时,倾斜角在增大,斜率也在增大,这时,k≥5.当直线l从MN开始逆时针旋转到MQ时,
∵正切函数在(π2,π)上仍为增函数,
∴斜率从-∞开始增加,增大到kMQ=-25,
故直线l的斜率范围是(-∞,-25]∪[5,+∞).]
课后练习区
1.B2.B3.B4.C5.D
6.-27.[34π,π)8.x+y-5=0
9.解(1)当m=-1时,
直线AB的斜率不存在;(1分)
当m≠-1时,k=1m+1.(3分)
(2)当m=-1时,AB的方程为x=-1,(5分)
当m≠-1时,AB的方程为y-2=1m+1(x+1),
即y=xm+1+2m+3m+1.(7分)
∴直线AB的方程为x=-1或y=xm+1+2m+3m+1.
(8分)
(3)①当m=-1时,α=π2;
②当m≠-1时,
∵k=1m+1∈(-∞,-3]∪33,+∞,
∴α∈π6,π2∪π2,2π3.(10分)
综合①②,知直线AB的倾斜角
α∈π6,2π3.(12分)
10.
解直线x+my+m=0恒过A(0,-1)点.(2分)
kAP=-1-10+1=-2,
kAQ=-1-20-2=32,(5分)
则-1m≥32或-1m≤-2,
∴-23≤m≤12且m≠0.(9分)
又m=0时直线x+my+m=0与线段PQ有交点,
∴所求m的范围是-23≤m≤12.(12分)
11.(1)证明直线l的方程是:k(x+2)+(1-y)=0,
令x+2=01-y=0,解之得x=-2y=1,
∴无论k取何值,直线总经过定点(-2,1).(4分)
(2)解由方程知,当k≠0时直线在x轴上的截距为-1+2kk,在y轴上的截距为1+2k,要使直线不经过第四象限,则必须有-1+2kk≤-21+2k≥1,解之得k0;(7分)
当k=0时,直线为y=1,符合题意,故k≥0.(9分)
(3)解由l的方程,得A-1+2kk,0,
B(0,1+2k).依题意得-1+2kk0,1+2k0,
解得k0.(11分)
∵S=12|OA||OB|
=121+2kk|1+2k|
=121+2k2k=124k+1k+4≥12×(2×2+4)=4,
“=”成立的条件是k0且4k=1k,
即k=12,
∴Smin=4,此时l:x-2y+4=0.(14分)

高考数学(理科)一轮复习抛物线学案附答案


学案53抛物线

导学目标:1.掌握抛物线的定义、几何图形和标准方程,知道它们的简单几何性质.2.理解数形结合的思想.
自主梳理
1.抛物线的概念
平面内与一个定点F和一条定直线l(Fl)距离______的点的轨迹叫做抛物线.点F叫做抛物线的__________,直线l叫做抛物线的________.
2.抛物线的标准方程与几何性质
标准方程y2=2px
(p0)y2=-2px
(p0)x2=2py
(p0)x2=-2py
(p0)
p的几何意义:焦点F到准线l的距离
图形

顶点O(0,0)
对称轴y=0x=0
焦点F(p2,0)
F(-p2,0)
F(0,p2)
F(0,-p2)

离心率e=1
准线方程x=-p2
x=p2
y=-p2
y=p2

范围x≥0,
y∈Rx≤0,
y∈Ry≥0,
x∈Ry≤0,
x∈R
开口方向向右向左向上向下

自我检测
1.(2010四川)抛物线y2=8x的焦点到准线的距离是()
A.1B.2C.4D.8
2.若抛物线y2=2px的焦点与椭圆x26+y22=1的右焦点重合,则p的值为()
A.-2B.2C.-4D.4
3.(2011陕西)设抛物线的顶点在原点,准线方程为x=-2,则抛物线的方程是()
A.y2=-8xB.y2=8x
C.y2=-4xD.y2=4x
4.已知抛物线y2=2px(p0)的焦点为F,点P1(x1,y1),P2(x2,y2),P3(x3,y3)在抛物线上,且2x2=x1+x3,则有()
A.|FP1|+|FP2|=|FP3|
B.|FP1|2+|FP2|2=|FP3|2
C.2|FP2|=|FP1|+|FP3|
D.|FP2|2=|FP1||FP3|
5.(2011佛山模拟)已知抛物线方程为y2=2px(p0),过该抛物线焦点F且不与x轴垂直的直线AB交抛物线于A、B两点,过点A、点B分别作AM、BN垂直于抛物线的准线,分别交准线于M、N两点,那么∠MFN必是()
A.锐角B.直角
C.钝角D.以上皆有可能
探究点一抛物线的定义及应用
例1已知抛物线y2=2x的焦点是F,点P是抛物线上的动点,又有点A(3,2),求|PA|+|PF|的最小值,并求出取最小值时P点的坐标.

变式迁移1已知点P在抛物线y2=4x上,那么点P到点Q(2,-1)的距离与点P到抛物线焦点距离之和取得最小值时,点P的坐标为()
A.14,-1B.14,1
C.(1,2)D.(1,-2)
探究点二求抛物线的标准方程
例2(2011芜湖调研)已知抛物线的顶点在原点,焦点在y轴上,抛物线上一点M(m,-3)到焦点的距离为5,求m的值、抛物线方程和准线方程.

变式迁移2根据下列条件求抛物线的标准方程:
(1)抛物线的焦点F是双曲线16x2-9y2=144的左顶点;
(2)过点P(2,-4).

探究点三抛物线的几何性质
例3过抛物线y2=2px的焦点F的直线和抛物线相交于A,B两点,如图所示.
(1)若A,B的纵坐标分别为y1,y2,求证:y1y2=-p2;
(2)若直线AO与抛物线的准线相交于点C,求证:BC∥x轴.

变式迁移3已知AB是抛物线y2=2px(p0)的焦点弦,F为抛物线的焦点,A(x1,y1),B(x2,y2).求证:
(1)x1x2=p24;
(2)1|AF|+1|BF|为定值.

分类讨论思想的应用
例(12分)过抛物线y2=2px(p0)焦点F的直线交抛物线于A、B两点,过B点作其准线的垂线,垂足为D,设O为坐标原点,问:是否存在实数λ,使AO→=λOD→?
多角度审题这是一道探索存在性问题,应先假设存在,设出A、B两点坐标,从而得到D点坐标,再设出直线AB的方程,利用方程组和向量条件求出λ.
【答题模板】
解假设存在实数λ,使AO→=λOD→.
抛物线方程为y2=2px(p0),
则Fp2,0,准线l:x=-p2,
(1)当直线AB的斜率不存在,即AB⊥x轴时,
交点A、B坐标不妨设为:Ap2,p,Bp2,-p.
∵BD⊥l,∴D-p2,-p,
∴AO→=-p2,-p,OD→=-p2,-p,∴存在λ=1使AO→=λOD→.[4分]
(2)当直线AB的斜率存在时,
设直线AB的方程为y=kx-p2(k≠0),
设A(x1,y1),B(x2,y2),则D-p2,y2,x1=y212p,x2=y222p,
由y=kx-p2y2=2px得ky2-2py-kp2=0,∴y1y2=-p2,∴y2=-p2y1,[8分]
AO→=(-x1,-y1)=-y212p,-y1,OD→=-p2,y2=-p2,-p2y1,
假设存在实数λ,使AO→=λOD→,则-y212p=-p2λ-y1=-p2y1λ,解得λ=y21p2,∴存在实数λ=y21p2,使AO→=λOD→.
综上所述,存在实数λ,使AO→=λOD→.[12分]
【突破思维障碍】
由抛物线方程得其焦点坐标和准线方程,按斜率存在和不存在讨论,由直线方程和抛物线方程组成方程组,研究A、D两点坐标关系,求出AO→和OD→的坐标,判断λ是否存在.
【易错点剖析】
解答本题易漏掉讨论直线AB的斜率不存在的情况,出现错误的原因是对直线的点斜式方程认识不足.
1.关于抛物线的定义
要注意点F不在定直线l上,否则轨迹不是抛物线,而是一条直线.
2.关于抛物线的标准方程
抛物线的标准方程有四种不同的形式,这四种标准方程的联系与区别在于:
(1)p的几何意义:参数p是焦点到准线的距离,所以p恒为正数.
(2)方程右边一次项的变量与焦点所在坐标轴的名称相同,一次项系数的符号决定抛物线的开口方向.
3.关于抛物线的几何性质
抛物线的几何性质,只要与椭圆、双曲线加以对照,很容易把握,但由于抛物线的离心率等于1,所以抛物线的焦点弦具有很多重要性质,而且应用广泛.例如:
已知过抛物线y2=2px(p0)的焦点的直线交抛物线于A、B两点,设A(x1,y1),B(x2,y2),则有下列性质:|AB|=x1+x2+p或|AB|=2psin2α(α为AB的倾斜角),y1y2=-p2,x1x2=p24等.
(满分:75分)

一、选择题(每小题5分,共25分)
1.(2011大纲全国)已知抛物线C:y2=4x的焦点为F,直线y=2x-4与C交于A,B两点,则cos∠AFB等于()
A.45B.35
C.-35D.-45
2.(2011湖北)将两个顶点在抛物线y2=2px(p0)上,另一个顶点是此抛物线焦点的正三角形个数记为n,则()
A.n=0B.n=1
C.n=2D.n≥3
3.已知抛物线y2=2px,以过焦点的弦为直径的圆与抛物线准线的位置关系是()
A.相离B.相交C.相切D.不确定
4.(2011泉州月考)已知点A(-2,1),y2=-4x的焦点是F,P是y2=-4x上的点,为使|PA|+|PF|取得最小值,则P点的坐标是()
A.-14,1B.(-2,22)
C.-14,-1D.(-2,-22)
5.设O为坐标原点,F为抛物线y2=4x的焦点,A为抛物线上一点,若OA→AF→=-4,则点A的坐标为()
A.(2,±2)B.(1,±2)
C.(1,2)D.(2,2)
二、填空题(每小题4分,共12分)
6.(2011重庆)设圆C位于抛物线y2=2x与直线x=3所围成的封闭区域(包含边界)内,则圆C的半径能取到的最大值为________.
7.(2011济宁期末)已知A、B是抛物线x2=4y上的两点,线段AB的中点为M(2,2),则|AB|=________.
8.(2010浙江)设抛物线y2=2px(p0)的焦点为F,点A(0,2).若线段FA的中点B在抛物线上,则B到该抛物线准线的距离为________.
三、解答题(共38分)
9.(12分)已知顶点在原点,焦点在x轴上的抛物线截直线y=2x+1所得的弦长为15,求抛物线方程.

10.(12分)(2011韶关模拟)已知抛物线C:x2=8y.AB是抛物线C的动弦,且AB过F(0,2),分别以A、B为切点作轨迹C的切线,设两切线交点为Q,证明:AQ⊥BQ.

11.(14分)(2011济南模拟)已知定点F(0,1)和直线l1:y=-1,过定点F与直线l1相切的动圆圆心为点C.
(1)求动点C的轨迹方程;
(2)过点F的直线l2交轨迹C于两点P、Q,交直线l1于点R,求RP→RQ→的最小值.

学案53抛物线
自主梳理
1.相等焦点准线
自我检测
1.C
2.B[因为抛物线的准线方程为x=-2,所以p2=2,所以p=4,所以抛物线的方程是y2=8x.所以选B.]
3.B4.C5.B
课堂活动区
例1解题导引重视定义在解题中的应用,灵活地进行抛物线上的点到焦点的距离与到准线距离的等价转化,是解决抛物线焦点弦有关问题的重要途径.

将x=3代入抛物线方程
y2=2x,得y=±6.
∵62,∴A在抛物线内部.
设抛物线上点P到准线l:
x=-12的距离为d,由定义知
|PA|+|PF|=|PA|+d,
当PA⊥l时,|PA|+d最小,最小值为72,
即|PA|+|PF|的最小值为72,
此时P点纵坐标为2,代入y2=2x,得x=2,
∴点P坐标为(2,2).
变式迁移1A[
点P到抛物线焦点的距离等于点P到抛物线准线的距离,如图,|PF|+|PQ|=|PS|+|PQ|,故最小值在S,P,Q三点共线时取得,此时P,Q的纵坐标都是-1,点P的坐标为14,-1.]
例2解题导引(1)求抛物线方程时,若由已知条件可知所求曲线是抛物线,一般用待定系数法.若由已知条件可知所求曲线的动点的轨迹,一般用轨迹法;
(2)待定系数法求抛物线方程时既要定位(即确定抛物线开口方向),又要定量(即确定参数p的值).解题关键是定位,最好结合图形确定方程适合哪种形式,避免漏解;
(3)解决抛物线相关问题时,要善于用定义解题,即把|PF|转化为点P到准线的距离,这种“化斜为直”的转化方法非常有效,要注意领会和运用.
解方法一设抛物线方程为
x2=-2py(p0),
则焦点为F0,-p2,准线方程为y=p2.
∵M(m,-3)在抛物线上,且|MF|=5,
∴m2=6p,m2+-3+p22=5,解得p=4,m=±26.
∴抛物线方程为x2=-8y,m=±26,
准线方程为y=2.
方法二如图所示,
设抛物线方程为x2=-2py(p0),
则焦点F0,-p2,
准线l:y=p2,作MN⊥l,垂足为N.
则|MN|=|MF|=5,而|MN|=3+p2,
∴3+p2=5,∴p=4.∴抛物线方程为x2=-8y,
准线方程为y=2.由m2=(-8)×(-3),得m=±26.
变式迁移2解(1)双曲线方程化为x29-y216=1,
左顶点为(-3,0),由题意设抛物线方程为y2=-2px(p0)且-p2=-3,∴p=6.∴方程为y2=-12x.
(2)由于P(2,-4)在第四象限且对称轴为坐标轴,可设方程为y2=mx(m0)或x2=ny(n0),代入P点坐标求得m=8,n=-1,
∴所求抛物线方程为y2=8x或x2=-y.
例3解题导引解决焦点弦问题时,抛物线的定义有着广泛的应用,而且还应注意焦点弦的几何性质.焦点弦有以下重要性质(AB为焦点弦,以y2=2px(p0)为例):
①y1y2=-p2,x1x2=p24;
②|AB|=x1+x2+p.
证明(1)方法一由抛物线的方程可得焦点坐标为Fp2,0.设过焦点F的直线交抛物线于A,B两点的坐标分别为(x1,y1)、(x2,y2).
①当斜率存在时,过焦点的直线方程可设为
y=kx-p2,由y=kx-p2,y2=2px,
消去x,得ky2-2py-kp2=0.(*)
当k=0时,方程(*)只有一解,∴k≠0,
由韦达定理,得y1y2=-p2;
②当斜率不存在时,得两交点坐标为
p2,p,p2,-p,∴y1y2=-p2.
综合两种情况,总有y1y2=-p2.
方法二由抛物线方程可得焦点Fp2,0,设直线AB的方程为x=ky+p2,并设A(x1,y1),B(x2,y2),
则A、B坐标满足x=ky+p2,y2=2px,
消去x,可得y2=2pky+p2,
整理,得y2-2pky-p2=0,∴y1y2=-p2.
(2)直线AC的方程为y=y1x1x,
∴点C坐标为-p2,-py12x1,yC=-py12x1=-p2y12px1.
∵点A(x1,y1)在抛物线上,∴y21=2px1.
又由(1)知,y1y2=-p2,∴yC=y1y2y1y21=y2,∴BC∥x轴.
变式迁移3证明(1)∵y2=2px(p0)的焦点Fp2,0,设直线方程为y=kx-p2(k≠0),
由y=kx-p2y2=2px,消去x,得ky2-2py-kp2=0.
∴y1y2=-p2,x1x2=y1y224p2=p24,
当k不存在时,直线方程为x=p2,这时x1x2=p24.
因此,x1x2=p24恒成立.
(2)1|AF|+1|BF|=1x1+p2+1x2+p2
=x1+x2+px1x2+p2x1+x2+p24.
又∵x1x2=p24,代入上式得1|AF|+1|BF|=2p=常数,
所以1|AF|+1|BF|为定值.
课后练习区
1.D[方法一由y=2x-4,y2=4x,得x=1,y=-2或x=4,y=4.
令B(1,-2),A(4,4),又F(1,0),
∴由两点间距离公式得|BF|=2,|AF|=5,|AB|=35.
∴cos∠AFB=|BF|2+|AF|2-|AB|22|BF||AF|=4+25-452×2×5
=-45.
方法二由方法一得A(4,4),B(1,-2),F(1,0),
∴FA→=(3,4),FB→=(0,-2),
∴|FA→|=32+42=5,|FB→|=2.
∴cos∠AFB=FA→FB→|FA→||FB→|=3×0+4×-25×2=-45.]
2.C[
如图所示,A,B两点关于x轴对称,F点坐标为(p2,0),设A(m,2pm)(m0),则由抛物线定义,
|AF|=|AA1|,
即m+p2=|AF|.
又|AF|=|AB|=22pm,
∴m+p2=22pm,整理,得m2-7pm+p24=0,①
∴Δ=(-7p)2-4×p24=48p20,
∴方程①有两相异实根,记为m1,m2,且m1+m2=7p0,m1m2=p240,
∴m10,m20,∴n=2.]
3.C
4.A[过P作PK⊥l(l为抛物线的准线)于K,则|PF|=|PK|,
∴|PA|+|PF|=|PA|+|PK|.
∴当P点的纵坐标与A点的纵坐标相同时,|PA|+|PK|最小,此时P点的纵坐标为1,把y=1代入y2=-4x,得x=-14,即当P点的坐标为-14,1时,|PA|+|PF|最小.]
5.B
6.6-1
解析如图所示,若圆C的半径取到最大值,需圆与抛物线及直线x=3同时相切,设圆心的坐标为(a,0)(a3),则圆的方程为(x-a)2+y2=(3-a)2,与抛物线方程y2=2x联立得x2+(2-2a)x+6a-9=0,由判别式Δ=(2-2a)2-4(6a-9)=0,得a=4-6,故此时半径为3-(4-6)=6-1.
7.42
解析由题意可设AB的方程为y=kx+m,与抛物线方程联立得x2-4kx-4m=0,线段AB中点坐标为(2,2),x1+x2=4k=4,得k=1.
又∵y1+y2=k(x1+x2)+2m=4,
∴m=0.从而直线AB:y=x,|AB|=2|OM|=42.
8.324
解析抛物线的焦点F的坐标为p2,0,线段FA的中点B的坐标为p4,1,代入抛物线方程得1=2p×p4,解得p=2,故点B的坐标为24,1,故点B到该抛物线准线的距离为24+22=324.
9.解设直线和抛物线交于点A(x1,y1),B(x2,y2),
(1)当抛物线开口向右时,设抛物线方程为y2=2px(p0),则y2=2pxy=2x+1,消去y得,
4x2-(2p-4)x+1=0,
∴x1+x2=p-22,x1x2=14,(4分)
∴|AB|=1+k2|x1-x2|
=5x1+x22-4x1x2
=5p-222-4×14=15,(7分)
则p24-p=3,p2-4p-12=0,解得p=6(p=-2舍去),
抛物线方程为y2=12x.(9分)
(2)当抛物线开口向左时,设抛物线方程为y2=-2px(p0),仿(1)不难求出p=2,
此时抛物线方程为y2=-4x.(11分)
综上可得,
所求的抛物线方程为y2=-4x或y2=12x.(12分)
10.证明因为直线AB与x轴不垂直,
设直线AB的方程为y=kx+2,A(x1,y1),B(x2,y2).
由y=kx+2,y=18x2,
可得x2-8kx-16=0,x1+x2=8k,x1x2=-16.(4分)
抛物线方程为y=18x2,求导得y′=14x.(7分)
所以过抛物线上A、B两点的切线斜率分别是
k1=14x1,k2=14x2,k1k2=14x114x2
=116x1x2=-1.(10分)
所以AQ⊥BQ.(12分)
11.解(1)由题设点C到点F的距离等于它到l1的距离,
所以点C的轨迹是以F为焦点,l1为准线的抛物线,
∴所求轨迹的方程为x2=4y.(5分)
(2)由题意直线l2的方程为y=kx+1,与抛物线方程联立消去y得x2-4kx-4=0.
记P(x1,y1),Q(x2,y2),则x1+x2=4k,x1x2=-4.(8分)
因为直线PQ的斜率k≠0,易得点R的坐标为-2k,-1.(9分)
RP→RQ→=x1+2k,y1+1x2+2k,y2+1
=x1+2kx2+2k+(kx1+2)(kx2+2)
=(1+k2)x1x2+2k+2k(x1+x2)+4k2+4
=-4(1+k2)+4k2k+2k+4k2+4
=4k2+1k2+8,(11分)
∵k2+1k2≥2,当且仅当k2=1时取到等号.
RP→RQ→≥4×2+8=16,即RP→RQ→的最小值为16.(14分)

高考数学(理科)一轮复习函数与方程学案有答案


一位优秀的教师不打无准备之仗,会提前做好准备,教师要准备好教案,这是教师需要精心准备的。教案可以让上课时的教学氛围非常活跃,使教师有一个简单易懂的教学思路。那么,你知道教案要怎么写呢?为了让您在使用时更加简单方便,下面是小编整理的“高考数学(理科)一轮复习函数与方程学案有答案”,欢迎您阅读和收藏,并分享给身边的朋友!

学案11函数与方程
导学目标:1.结合二次函数的图象,了解函数的零点与方程根的联系,会判断一元二次方程根的存在性及根的个数.2.根据具体函数的图象,能够用二分法求相应方程的近似值.
自主梳理
1.函数零点的定义
(1)对于函数y=f(x)(x∈D),把使________成立的实数x叫做函数y=f(x)(x∈D)的零点.
(2)方程f(x)=0有实根函数y=f(x)的图象与____有交点函数y=f(x)有________.
2.函数零点的判定
如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有____________,那么函数y=f(x)在区间________内有零点,即存在c∈(a,b),使得________,这个____也就是f(x)=0的根.我们不妨把这一结论称为零点存在性定理.
3.二次函数y=ax2+bx+c(a0)的图象与零点的关系
Δ0Δ=0Δ0
二次函数y=ax2+bx+c
(a0)的图象

与x轴的交点________,
________________无交点
零点个数________________________
4.用二分法求函数f(x)零点近似值的步骤
第一步,确定区间[a,b],验证________________,给定精确度ε;
第二步,求区间(a,b)的中点c;
第三步,计算______:
①若________,则c就是函数的零点;
②若________,则令b=c[此时零点x0∈(a,c)];
③若________,则令a=c[此时零点x0∈(c,b)];
第四步,判断是否达到精确度ε:即若|a-b|ε,则得到零点近似值a(或b);否则重复第二、三、四步.
自我检测
1.(2010福建)f(x)=x2+2x-3,x≤0-2+lnxx0的零点个数为()
A.0B.1C.2D.3
2.若函数y=f(x)在R上递增,则函数y=f(x)的零点()
A.至少有一个B.至多有一个
C.有且只有一个D.可能有无数个
3.如图所示的函数图象与x轴均有交点,其中不能用二分法求图中交点横坐标的是()
A.①②B.①③
C.①④D.③④
4.设f(x)=3x+3x-8,用二分法求方程3x+3x-8=0在x∈(1,2)内近似解的过程中得f(1)0,f(1.5)0,f(1.25)0,则方程的根所在的区间是()
A.(1,1.25)B.(1.25,1.5)
C.(1.5,2)D.不能确定
5.(2011福州模拟)若函数f(x)的零点与g(x)=4x+2x-2的零点之差的绝对值不超过0.25,则f(x)可以是()
A.f(x)=4x-1B.f(x)=(x-1)2
C.f(x)=ex-1D.f(x)=ln(x-0.5)
探究点一函数零点的判断
例1判断函数y=lnx+2x-6的零点个数.

变式迁移1(2011烟台模拟)若定义在R上的偶函数f(x)满足f(x+2)=f(x),且当x∈[0,1]时,f(x)=x,则函数y=f(x)-log3|x|的零点个数是()
A.多于4个B.4个
C.3个D.2个
探究点二用二分法求方程的近似解
例2求方程2x3+3x-3=0的一个近似解(精确度0.1).

变式迁移2(2011淮北模拟)用二分法研究函数f(x)=x3+lnx+12的零点时,第一次经计算f(0)0,0,可得其中一个零点x0∈________,第二次应计算________.以上横线上应填的内容为()
A.0,12B.(0,1)f12
C.12,1D.0,12
探究点三利用函数的零点确定参数
例3已知a是实数,函数f(x)=2ax2+2x-3-a,如果函数y=f(x)在区间[-1,1]上有零点,求a的取值范围.
变式迁移3若函数f(x)=4x+a2x+a+1在(-∞,+∞)上存在零点,求实数a的取值范围.
1.全面认识深刻理解函数零点:
(1)从“数”的角度看:即是使f(x)=0的实数x;
(2)从“形”的角度看:即是函数f(x)的图象与x轴交点的横坐标;
(3)若函数f(x)的图象在x=x0处与x轴相切,则零点x0通常称为不变号零点;
(4)若函数f(x)的图象在x=x0处与x轴相交,则零点x0通常称为变号零点.
2.求函数y=f(x)的零点的方法:
(1)(代数法)求方程f(x)=0的实数根(常用公式法、因式分解法、直接求解法等);
(2)(几何法)对于不能用求根公式的方程,可以将它与函数y=f(x)的图象联系起来,并利用函数的性质找出零点;
(3)(二分法)主要用于求函数零点的近似值,二分法的条件f(a)f(b)0表明:用二分法求函数的近似零点都是指变号零点.
3.有关函数零点的重要结论:
(1)若连续不间断的函数f(x)是定义域上的单调函数,则f(x)至多有一个零点;
(2)连续不间断的函数,其相邻两个零点之间的所有函数值保持同号;
(3)连续不间断的函数图象通过零点时,函数值符号可能不变.
(满分:75分)

一、选择题(每小题5分,共25分)
1.(2010天津)函数f(x)=2x+3x的零点所在的一个区间是()
A.(-2,-1)B.(-1,0)
C.(0,1)D.(1,2)
2.(2011福州质检)已知函数f(x)=log2x-13x,若实数x0是方程f(x)=0的解,且0x1x0,则f(x1)的值()
A.恒为负B.等于零
C.恒为正D.不小于零
3.下列函数图象与x轴均有公共点,其中能用二分法求零点的是()
4.函数f(x)=(x-2)(x-5)-1有两个零点x1、x2,且x1x2,则()
A.x12,2x25
B.x12,x25
C.x12,x25
D.2x15,x25
5.(2011厦门月考)设函数f(x)=4x-4,x≤1x2-4x+3,x1,g(x)=log2x,则函数h(x)=f(x)-g(x)的零点个数是()
A.4B.3C.2D.1
题号12345
答案
二、填空题(每小题4分,共12分)
6.定义在R上的奇函数f(x)满足:当x0时,f(x)=2006x+log2006x,则在R上,函数f(x)零点的个数为________.
7.(2011深圳模拟)已知函数f(x)=x+2x,g(x)=x+lnx,h(x)=x-x-1的零点分别为x1,x2,x3,则x1,x2,x3的大小关系是______________.
8.(2009山东)若函数f(x)=ax-x-a(a0,且a≠1)有两个零点,则实数a的取值范围是________.
三、解答题(共38分)
9.(12分)已知函数f(x)=x3-x2+x2+14.
证明:存在x0∈(0,12),使f(x0)=x0.

10.(12分)已知二次函数f(x)=4x2-2(p-2)x-2p2-p+1在区间[-1,1]内至少存在一个实数c,使f(c)0,求实数p的取值范围.
11.(14分)(2011杭州调研)设函数f(x)=ax2+bx+c,且f(1)=-a2,3a2c2b,求证:
(1)a0且-3ba-34;
(2)函数f(x)在区间(0,2)内至少有一个零点;
(3)设x1,x2是函数f(x)的两个零点,则2≤|x1-x2|574.

答案自主梳理
1.(1)f(x)=0(2)x轴零点2.f(a)f(b)0(a,b)f(c)=0c3.(x1,0)(x2,0)(x1,0)两个一个无4.f(a)f(b)0f(c)①f(c)=0②f(a)f(c)0③f(c)f(b)0
自我检测
1.C[当x≤0时,令x2+2x-3=0,
解得x=-3;
当x0时,令-2+lnx=0,解得x=e2,
所以已知函数有两个零点.]
2.B3.B4.B5.A
课堂活动区
例1解题导引判断函数零点个数最常用的方法是令f(x)=0,转化为方程根的个数,解出方程有几个根,函数y=f(x)就有几个零点,如果方程的根解不出,还有两种方法判断:方法一是基本方法,是利用零点的存在性原理,要注意参考单调性可判定零点的唯一性;方法二是数形结合法,要注意作图技巧.
解方法一设f(x)=lnx+2x-6,
∵y=lnx和y=2x-6均为增函数,
∴f(x)也是增函数.
又∵f(1)=0+2-6=-40,f(3)=ln30,
∴f(x)在(1,3)上存在零点.又f(x)为增函数,
∴函数在(1,3)上存在唯一零点.
方法二在同一坐标系画出y=lnx与y=6-2x的图象,由图可知两图象只有一个交点,故函数y=lnx+2x-6只有一个零点.
变式迁移1B[由题意知f(x)是偶函数并且周期为2.由f(x)-log3|x|=0,得f(x)=log3|x|,令y=f(x),y=log3|x|,这两个函数都是偶函数,画两函数y轴右
边的图象如图,两函数有两个交点,因此零点个数在x≠0,x∈R的范围内共4个.]
例2解题导引①用二分法求函数的零点时,最好是利用表格,将计算过程所得的各个区间、中点坐标、区间中点的函数值等置于表格中,可清楚地表示出逐步缩小零点所在区间的过程,有时也可利用数轴来表示这一过程;
②在确定方程近似解所在的区间时,转化为求方程对应函数的零点所在的区间,找出的区间[a,b]长度尽可能小,且满足f(a)f(b)0;
③求方程的近似解,所要求的精确度不同得到的结果也不同,精确度ε,是指在计算过程中得到某个区间(a,b)后,直到|a-b|ε时,可停止计算,其结果可以是满足精确度的最后小区间的端点或区间内的任一实数,结果不唯一.
解设f(x)=2x3+3x-3.
经计算,f(0)=-30,f(1)=20,
所以函数在(0,1)内存在零点,
即方程2x3+3x-3=0在(0,1)内有解.
取(0,1)的中点0.5,经计算f(0.5)0,
又f(1)0,所以方程2x3+3x-3=0在(0.5,1)内有解,
如此继续下去,得到方程的一个实数解所在的区间,如下表.
(a,b)(a,b)
的中点fa+b2

(0,1)0.5f(0.5)0
(0.5,1)0.75f(0.75)0
(0.5,0.75)0.625f(0.625)0
(0.625,0.75)0.6875f(0.6875)0
(0.6875,0.75)|0.6875-0.75|=0.06250.1
至此,可以看出方程的根落在区间长度小于0.1的区间(0.6875,0.75)内,可以将区间端点0.6875作为函数f(x)零点的近似值.因此0.6875是方程2x3+3x-3=0精确度0.1的一个近似解.
变式迁移2D[由于f(0)0,f120,而f(x)=x3+lnx+12中的x3及lnx+12在-12,+∞上是增函数,故f(x)在-12,+∞上也是增函数,
故f(x)在0,12上存在零点,所以x0∈0,12,
第二次计算应计算0和12在数轴上对应的中点
x1=0+122=14.]
例3解若a=0,f(x)=2x-3,显然在[-1,1]上没有零点,所以a≠0.
令Δ=4+8a(3+a)=8a2+24a+4=0,
解得a=-3±72.
①当a=-3-72时,f(x)=0的重根x=3-72∈[-1,1],
当a=-3+72时,f(x)=0的重根x=3+72[-1,1],
∴y=f(x)恰有一个零点在[-1,1]上;
②当f(-1)f(1)=(a-1)(a-5)0,
即1a5时,y=f(x)在[-1,1]上也恰有一个零点.
③当y=f(x)在[-1,1]上有两个零点时,则
a0Δ=8a2+24a+40-1-12a1f1≥0f-1≥0,或a0Δ=8a2+24a+40-1-12a1f1≤0f-1≤0,
解得a≥5或a-3-72.
综上所述实数a的取值范围是a1或a≤-3-72.
变式迁移3解方法一(换元)
设2x=t,则函数f(x)=4x+a2x+a+1化为g(t)=t2+at+a+1(t∈(0,+∞)).
函数f(x)=4x+a2x+a+1在(-∞,+∞)上存在零点,等价于方程t2+at+a+1=0,①有正实数根.
(1)当方程①有两个正实根时,
a应满足Δ=a2-4a+1≥0t1+t2=-a0t1t2=a+10,
解得:-1a≤2-22;
(2)当方程①有一正根一负根时,只需t1t2=a+10,
即a-1;
(3)当方程①有一根为0时,a=-1,此时方程①的另一根为1.
综上可知a≤2-22.
方法二令g(t)=t2+at+a+1(t∈(0,+∞)).
(1)当函数g(t)在(0,+∞)上存在两个零点时,
实数a应满足Δ=a2-4a+1≥0-a20g0=a+10,
解得-1a≤2-22;
(2)当函数g(t)在(0,+∞)上存在一个零点,另一个零点在(-∞,0)时,实数a应满足g(0)=a+10,
解得a-1;
(3)当函数g(t)的一个零点是0时,g(0)=a+1=0,a=-1,此时可以求得函数g(t)的另一个零点是1.
综上(1)(2)(3)知a≤2-22.
课后练习区
1.B[因为f(-1)=12-30,f(0)=10,
所以f(x)在区间(-1,0)上存在零点.]
2.A
3.C[能用二分法求零点的函数必须在给定区间[a,b]上连续不断,并且有f(a)f(b)0.A、B中不存在f(x)0,D中函数不连续.]
4.C
5.B[当x≤1时,函数f(x)=4x-4与g(x)=log2x的图象有两个交点,可得h(x)有两个零点,当x1时,函数f(x)=x2-4x+3与g(x)=log2x的图象有1个交点,可得函数h(x)有1个零点,∴函数h(x)共有3个零点.]
6.3
解析函数f(x)为R上的奇函数,因此f(0)=0,当x0时,f(x)=2006x+log2006x在区间(0,12006)内存在一个零点,又f(x)为增函数,因此在(0,+∞)内有且仅有一个零点.根据对称性可知函数在(-∞,0)内有且仅有一解,从而函数在R上的零点的个数为3.
7.x1x2x3
解析令x+2x=0,即2x=-x,设y=2x,y=-x;
令x+lnx=0,即lnx=-x,
设y=lnx,y=-x.
在同一坐标系内画出y=2x,y=lnx,y=-x,如图:x10x21,令x-x-1=0,则(x)2-x-1=0,
∴x=1+52,
即x3=3+521,所以x1x2x3.
8.a1
解析设函数y=ax(a0,且a≠1)和函数y=x+a,则函数f(x)=ax-x-a(a0,且a≠1)有两个零点,就是函数y=ax(a0,且a≠1)与函数y=x+a有两个交点,由图象可知当0a1时两函数只有一个交点,不符合;当a1时,因为函数y=ax(a1)的图象过点(0,1),而直线y=x+a所过的点一定在点(0,1)的上方,所以一定有两个交点,所以实数a的取值范围是a1.
9.证明令g(x)=f(x)-x.………………………………………………………………(2分)
∵g(0)=14,g(12)=f(12)-12=-18,
∴g(0)g(12)0.……………………………………………………………………………(8分)
又函数g(x)在(0,12)上连续,…………………………………………………………(10分)
所以存在x0∈(0,12),使g(x0)=0.
即f(x0)=x0.………………………………………………………………………………(12分)
10.解二次函数f(x)在区间[-1,1]内至少存在一个实数c,
使f(c)0的否定是:对于区间[-1,1]内的任意一个x都有f(x)≤0.……………………(4分)
此时f1≤0f-1≤0,即2p2+3p-9≥02p2-p-1≥0,解得:
p≥32或p≤-3.…………………………………………………………………………(10分)
∴二次函数f(x)在区间[-1,1]内至少存在一个实数c,使f(c)0的实数p的取值范围是
-3p32.…………………………………………………………………………………(12分)
11.证明(1)∵f(1)=a+b+c=-a2,
∴3a+2b+2c=0.
又3a2c2b,∴3a0,2b0,
∴a0,b0.
又2c=-3a-2b,由3a2c2b,
∴3a-3a-2b2b.
∵a0,∴-3ba-34.……………………………………………………………………(4分)
(2)∵f(0)=c,f(2)=4a+2b+c=a-c.
①当c0时,∵a0,
∴f(0)=c0且f(1)=-a20,
∴函数f(x)在区间(0,1)内至少有一个零点.……………………………………………(7分)
②当c≤0时,
∵a0,
∴f(1)=-a20且f(2)=a-c0,
∴函数f(x)在区间(1,2)内至少有一个零点.
综合①②得f(x)在(0,2)内至少有一个零点.……………………………………………(10分)
(3)∵x1,x2是函数f(x)的两个零点,则x1,x2是方程ax2+bx+c=0的两根.
∴x1+x2=-ba,x1x2=ca=-32-ba.
∴|x1-x2|=x1+x22-4x1x2
=-ba2-4-32-ba
=ba+22+2.(12分)
∵-3ba-34,
∴2≤|x1-x2|574.……………………………………………………………………(14分)

高考数学(理科)一轮复习曲线与方程学案含答案


学案55曲线与方程

导学目标:了解曲线的方程与方程的曲线的对应关系.
自主梳理
1.曲线的方程与方程的曲线
在直角坐标系中,如果某曲线C(看作点的集合或适合某种条件的点的轨迹)上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:
(1)__________________都是这个方程的______.
(2)以这个方程的解为坐标的点都是________________,那么,这个方程叫做曲线的方程,这条曲线叫做方程的曲线.
2.平面解析几何研究的两个主要问题
(1)根据已知条件,求出表示平面曲线的方程;
(2)通过曲线的方程研究曲线的性质.
3.求曲线方程的一般方法(五步法)
求曲线(图形)的方程,一般有下面几个步骤:
(1)建立适当的坐标系,用有序实数对(x,y)表示________________________;
(2)写出适合条件p的点M的集合P=____________;
(3)用坐标表示条件p(M),列出方程f(x,y)=0;
(4)化方程f(x,y)=0为________;
(5)说明以化简后的方程的解为坐标的点都在________.
自我检测
1.(2011湛江月考)已知动点P在曲线2x2-y=0上移动,则点A(0,-1)与点P连线中点的轨迹方程是()
A.y=2x2B.y=8x2
C.2y=8x2-1D.2y=8x2+1
2.一动圆与圆O:x2+y2=1外切,而与圆C:x2+y2-6x+8=0内切,那么动圆的圆心P的轨迹是()
A.双曲线的一支B.椭圆
C.抛物线D.圆
3.(2011佛山模拟)已知直线l的方程是f(x,y)=0,点M(x0,y0)不在l上,则方程f(x,y)-f(x0,y0)=0表示的曲线是()
A.直线lB.与l垂直的一条直线
C.与l平行的一条直线D.与l平行的两条直线
4.若M、N为两个定点且|MN|=6,动点P满足PM→PN→=0,则P点的轨迹是()
A.圆B.椭圆C.双曲线D.抛物线
5.(2011江西)若曲线C1:x2+y2-2x=0与曲线C2:y(y-mx-m)=0有四个不同的交点,则实数m的取值范围是()
A.(-33,33)B.(-33,0)∪(0,33)
C.[-33,33]D.(-∞,-33)∪(33,+∞)
探究点一直接法求轨迹方程
例1动点P与两定点A(a,0),B(-a,0)连线的斜率的乘积为k,试求点P的轨迹方程,并讨论轨迹是什么曲线.

变式迁移1已知两点M(-2,0)、N(2,0),点P为坐标平面内的动点,满足|MN→||MP→|+MN→NP→=0,则动点P(x,y)的轨迹方程为______________.
探究点二定义法求轨迹方程
例2(2011包头模拟)已知两个定圆O1和O2,它们的半径分别是1和2,且|O1O2|=4.动圆M与圆O1内切,又与圆O2外切,建立适当的坐标系,求动圆圆心M的轨迹方程,并说明轨迹是何种曲线.

变式迁移2在△ABC中,A为动点,B、C为定点,B-a2,0,Ca2,0,且满足条件sinC-sinB=12sinA,则动点A的轨迹方程是()
A.16x2a2-16y215a2=1(y≠0)
B.16y2a2-16x23a2=1(x≠0)
C.16x2a2-16y215a2=1(y≠0)的左支
D.16x2a2-16y23a2=1(y≠0)的右支
探究点三相关点法(代入法)求轨迹方程
例3如图所示,从双曲线x2-y2=1上一点Q引直线x+y=2的垂线,垂足为N.求线段QN的中点P的轨迹方程.

变式迁移3已知长为1+2的线段AB的两个端点A、B分别在x轴、y轴上滑动,P是AB上一点,且AP→=22PB→.求点P的轨迹C的方程.

分类讨论思想的应用

例(12分)
过定点A(a,b)任作互相垂直的两直线l1与l2,且l1与x轴交于点M,l2与y轴交于点N,如图所示,求线段MN的中点P的轨迹方程.
多角度审题要求点P坐标,必须先求M、N两点,这样就要求直线l1、l2,又l1、l2过定点且垂直,只要l1的斜率存在,设一参数k1即可求出P点坐标,再消去k1即得点P轨迹方程.
【答题模板】
解(1)当l1不平行于y轴时,设l1的斜率为k1,则k1≠0.因为l1⊥l2,
所以l2的斜率为-1k1,
l1的方程为y-b=k1(x-a),①
l2的方程为y-b=-1k1(x-a),②
在①中令y=0,得M点的横坐标为x1=a-bk1,[4分]
在②中令x=0,得N点的纵坐标为y1=b+ak1,[6分]
设MN中点P的坐标为(x,y),则有x=a2-b2k1,y=b2+a2k1,
消去k1,得2ax+2by-a2-b2=0(x≠a2).③[8分]
(2)当l1平行于y轴时,MN中点为a2,b2,其坐标满足方程③.
综合(1)(2)知所求MN中点P的轨迹方程为2ax+2by-a2-b2=0.[12分]
【突破思维障碍】
引进l1的斜率k1作参数,写出l1、l2的直线方程,求出M、N的坐标,求出点P的坐标,得参数方程,消参化为普通方程,本题还要注意直线l1的斜率是否存在.
【易错点剖析】
当AM⊥x轴时,AM的斜率不存在,此时MN中点为a2,b2,易错点是把斜率不存在的情况忽略,因而丢掉点a2,b2.
1.求轨迹方程的常用方法:(1)直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,易于表达成含x,y的等式,就得到轨迹方程,这种方法称之为直接法.用直接法求动点轨迹的方程一般有建系设点,列式,代换,化简,证明五个步骤,但最后的证明可以省略.(2)定义法:运用解析几何中一些常用定义(例如圆锥曲线的定义),可从曲线定义出发直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程.(3)代入法:动点所满足的条件不易表达或求出,但形成轨迹的动点P(x,y)却随另一动点Q(x′,y′)的运动而有规律的运动,且动点Q的轨迹为给定或容易求得,则可先将x′,y′表示为x、y的式子,再代入Q的轨迹方程,然后整理得P的轨迹方程,代入法也称相关点法.(4)参数法:求轨迹方程有时很难直接找出动点的横坐标、纵坐标之间的关系,则可借助中间变量(参数),使x、y之间建立起联系,然后再从所求式子中消去参数,得出动点的轨迹方程.
2.本节易错点:(1)容易忽略直线斜率不存在的情况;(2)利用定义求曲线方程时,应考虑是否符合曲线的定义.
(满分:75分)

一、选择题(每小题5分,共25分)
1.已知椭圆的焦点是F1、F2,P是椭圆的一个动点,如果M是线段F1P的中点,则动点M的轨迹是()
A.圆B.椭圆
C.双曲线的一支D.抛物线
2.(2011唐山模拟)已知A、B是两个定点,且|AB|=3,|CB|-|CA|=2,则点C的轨迹为()
A.双曲线B.双曲线的一支
C.椭圆D.线段
3.长为3的线段AB的端点A、B分别在x轴、y轴上移动,AC→=2CB→,则点C的轨迹是()
A.线段B.圆C.椭圆D.双曲线
4.(2011银川模拟)如图,圆O:x2+y2=16,A(-2,0),B(2,0)为两个定点.直线l是圆O的一条切线,若经过A、B两点的抛物线以直线l为准线,则抛物线焦点所在的轨迹是()
A.双曲线B.椭圆
C.抛物线D.圆
5.已知F1、F2是椭圆x24+y23=1的两个焦点,平面内一个动点M满足|MF1|-|MF2|=2,则动点M的轨迹是()
A.双曲线B.双曲线的一个分支
C.两条射线D.一条射线
二、填空题(每小题4分,共12分)
6.已知两定点A(-2,0),B(1,0),如果动点P满足|PA|=2|PB|,则点P的轨迹所包围的图形的面积等于______.
7.(2011泰安月考)已知△ABC的顶点B(0,0),C(5,0),AB边上的中线长|CD|=3,则顶点A的轨迹方程为______________.
8.平面上有三点A(-2,y),B0,y2,C(x,y),若AB→⊥BC→,则动点C的轨迹方程为__________.
三、解答题(共38分)
9.(12分)已知抛物线y2=4px(p0),O为顶点,A,B为抛物线上的两动点,且满足OA⊥OB,如果OM⊥AB于点M,求点M的轨迹方程.

10.(12分)(2009宁夏,海南)已知椭圆C的中心为平面直角坐标系xOy的原点,焦点在x轴上,它的一个顶点到两个焦点的距离分别是7和1.
(1)求椭圆C的方程;
(2)若P为椭圆C上的动点,M为过P且垂直于x轴的直线上的一点,|OP||OM|=λ,求点M的轨迹方程,并说明轨迹是什么曲线.

11.(14分)(2011石家庄模拟)在平面直角坐标系xOy中,有一个以F1(0,-3)和F2(0,3)为焦点、离心率为32的椭圆,设椭圆在第一象限的部分为曲线C,动点P在C上,C在点P处的切线与x轴,y轴的交点分别为A,B,且OM→=OA→+OB→.求:
(1)点M的轨迹方程;
(2)|OM→|的最小值.
学案55曲线与方程
自主梳理
1.(1)曲线上的点的坐标解(2)曲线上的点3.(1)曲线上任意一点M的坐标(2){M|p(M)}(4)最简形式(5)曲线上
自我检测
1.C2.A3.C4.A
5.B[
C1:(x-1)2+y2=1,
C2:y=0或y=mx+m=m(x+1).
当m=0时,C2:y=0,此时C1与C2显然只有两个交点;
当m≠0时,要满足题意,需圆(x-1)2+y2=1与直线y=m(x+1)有两交点,当圆与直线相切时,m=±33,
即直线处于两切线之间时满足题意,
则-33m0或0m33.
综上知-33m0或0m33.]
课堂活动区
例1解题导引①在判断含参数的方程所表示的曲线类型时,不能仅仅根据方程的外表草率地作出判断;
②由于已知条件中,直线PA、PB的斜率存在,因此轨迹曲线应除去A、B两点;
③一般地,方程x2A+y2B=1所表示的曲线有以下几种情况:
1°AB0,表示焦点在x轴上的椭圆;
2°A=B0,表示圆;
3°0AB,表示焦点在y轴上的椭圆;
4°A0B,表示焦点在x轴上的双曲线;
5°A0B,表示焦点在y轴上的双曲线;
6°A,B0,无轨迹.
解设点P(x,y),则kAP=yx-a,kBP=yx+a.
由题意得yx-ayx+a=k,即kx2-y2=ka2.
∴点P的轨迹方程为kx2-y2=ka2(x≠±a).(*)
(1)当k=0时,(*)式即y=0,点P的轨迹是直线AB(除去A、B两点).
(2)当k≠0时,(*)式即x2a2-y2ka2=1,
①若k0,点P的轨迹是焦点在x轴上的双曲线(除去A、B两点).
②若k0,(*)式可化为x2a2+y2-ka2=1.
1°当-1k0时,点P的轨迹是焦点在x轴上的椭圆(除去A、B两点);
2°当k=-1时,(*)式即x2+y2=a2,点P的轨迹是以原点为圆心,|a|为半径的圆(除去A、B两点);
3°当k-1时,点P的轨迹是焦点在y轴上的椭圆(除去A、B两点).
变式迁移1y2=-8x
解析由题意:MN→=(4,0),MP→=(x+2,y),NP→=(x-2,y),
∵|MN→||MP→|+MN→NP→=0,
∴42+02x+22+y2+(x-2)4+y0=0,
移项两边平方,化简得y2=-8x.
例2解题导引(1)由于动点M到两定点O1、O2的距离的差为常数,故应考虑是否符合双曲线的定义,是双曲线的一支还是两支,能否确定实轴长和虚轴长等,以便直接写出其方程,而不需再将几何等式借助坐标转化;
(2)求动点的轨迹或轨迹方程时需注意:“轨迹”和“轨迹方程”是两个不同的概念,前者要指出曲线的形状、位置、大小等特征,后者指方程(包括范围).

如图所示,以O1O2的中点O为原点,O1O2所在直线为x轴建立平面直角坐标系.由|O1O2|=4,
得O1(-2,0)、O2(2,0).
设动圆M的半径为r,则
由动圆M与圆O1内切,有|MO1|=r-1;
由动圆M与圆O2外切,有|MO2|=r+2.
∴|MO2|-|MO1|=34.
∴点M的轨迹是以O1、O2为焦点,实轴长为3的双曲线的左支.∴a=32,c=2,∴b2=c2-a2=74.
∴点M的轨迹方程为4x29-4y27=1(x0).
变式迁移2D[∵sinC-sinB=12sinA,由正弦定理得到
|AB|-|AC|=12|BC|=12a(定值).
∴A点轨迹是以B,C为焦点的双曲线右支,其中实半轴长为a4,焦距为|BC|=a.
∴虚半轴长为a22-a42=34a,由双曲线标准方程得为16x2a2-16y23a2=1(y≠0)的右支.]
例3解题导引相关点法也叫坐标转移(代入)法,是求轨迹方程常用的方法.其题目特征是:点A的运动与点B的运动相关,且点B的运动有规律(有方程),只需将A的坐标转移到B的坐标中,整理即可得点A的轨迹方程.
解设动点P的坐标为(x,y),点Q的坐标为(x1,y1),则点N的坐标为(2x-x1,2y-y1).
∵N在直线x+y=2上,
∴2x-x1+2y-y1=2.①
又∵PQ垂直于直线x+y=2,
∴y-y1x-x1=1,即x-y+y1-x1=0.②
联立①②解得x1=32x+12y-1,y1=12x+32y-1.③
又点Q在双曲线x2-y2=1上,
∴x21-y21=1.④
③代入④,得动点P的轨迹方程是
2x2-2y2-2x+2y-1=0.
变式迁移3解设A(x0,0),B(0,y0),P(x,y),
AP→=22PB→,又AP→=(x-x0,y),PB→=(-x,y0-y),
所以x-x0=-22x,y=22(y0-y)
得x0=1+22x,y0=(1+2)y.
因为|AB|=1+2,即x20+y20=(1+2)2,
所以1+22x2+[(1+2)y]2=(1+2)2,
化简得x22+y2=1.∴点P的轨迹方程为x22+y2=1.
课后练习区
1.B[
如图所示,由题知|PF1|+|PF2|=2a(设椭圆方程为x2a2+y2b2=1,其中ab0).
连接MO,由三角形的中位线可得
|F1M|+|MO|=a(a|F1O|),则M的轨迹为以F1、O为焦点的椭圆.]
2.B[A、B是两个定点,|CB|-|CA|=2|AB|,所以点C轨迹为双曲线的一支.]
3.C[设C(x,y),A(a,0),B(0,b),则a2+b2=9,①
又AC→=2CB→,所以(x-a,y)=2(-x,b-y),
即a=3x,b=32y,②
代入①式整理可得x2+y24=1.]
4.B[
设抛物线的焦点为F,因为A、B在抛物线上,
所以由抛物线的定义知,A、B到F的距离AF、BF分别等于A、B到准线l的距离AM、BN(如图所示),
于是|AF|+|BF|=|AM|+|BN|.
过O作OR⊥l,由于l是圆O的一条切线,所以四边形AMNB是直角梯形,OR是中位线,
故有|AF|+|BF|=|AM|+|BN|
=2|OR|=84=|AB|.
根据椭圆的定义知,焦点F的轨迹是一个椭圆.]
5.D[因为|F1F2|=2,|MF1|-|MF2|=2,
所以轨迹为一条射线.]
6.4π
解析设P(x,y),由题知有:(x+2)2+y2=4[(x-1)2+y2],整理得x2-4x+y2=0,配方得(x-2)2+y2=4,可知圆的面积为4π.
7.(x-10)2+y2=36(y≠0)
解析方法一直接法.
设A(x,y),y≠0,则Dx2,y2,
∴|CD|=x2-52+y24=3.
化简得(x-10)2+y2=36,
∵A、B、C三点构成三角形,
∴A不能落在x轴上,即y≠0.
方法二
定义法.如图所示,
设A(x,y),D为AB的中点,过A作AE∥CD交x轴于E,
则E(10,0).
∵|CD|=3,∴|AE|=6,
∴A到E的距离为常数6.
∴A的轨迹为以E为圆心,6为半径的圆,
即(x-10)2+y2=36.
又A、B、C不共线,故A点纵坐标y≠0.
故A点轨迹方程为(x-10)2+y2=36(y≠0).
8.y2=8x
解析AB→=2,-y2,BC→=x,y2.
∵AB→⊥BC→,∴AB→BC→=0,
得2x-y2y2=0,得y2=8x.
9.解设M(x,y),直线AB斜率存在时,
设直线AB的方程为y=kx+b.
由OM⊥AB得k=-xy.
设A、B两点坐标分别为(x1,y1)、(x2,y2),
由y2=4px及y=kx+b消去y,
得k2x2+x(2kb-4p)+b2=0,所以x1x2=b2k2.
消去x,得ky2-4py+4pb=0,
所以y1y2=4pbk.(4分)
由OA⊥OB,得y1y2=-x1x2,
所以4pbk=-b2k2,b=-4kp.
故y=kx+b=k(x-4p).(8分)
用k=-xy代入,
得x2+y2-4px=0(x≠0).(10分)
AB斜率不存在时,经验证也符合上式.
故M的轨迹方程为x2+y2-4px=0(x≠0).(12分)
10.解(1)设椭圆长半轴长及半焦距分别为a、c,由已知得a-c=1,a+c=7,解得a=4,c=3,又∵b2=a2-c2,∴b=7,
所以椭圆C的方程为x216+y27=1.(4分)
(2)设M(x,y),其中x∈[-4,4],
由已知|OP|2|OM|2=λ2及点P在椭圆C上可得9x2+11216x2+y2=λ2,
整理得(16λ2-9)x2+16λ2y2=112,
其中x∈[-4,4].(5分)
①当λ=34时,化简得9y2=112,
所以点M的轨迹方程为y=±473(-4≤x≤4).
轨迹是两条平行于x轴的线段.(7分)
②当λ≠34时,方程变形为x211216λ2-9+y211216λ2=1,
其中x∈[-4,4].
当0λ34时,点M的轨迹为中心在原点、实轴在y轴上的双曲线满足-4≤x≤4的部分.
当34λ1时,点M的轨迹为中心在原点、长轴在x轴上的椭圆满足-4≤x≤4的部分;
当λ≥1时,点M的轨迹为中心在原点,长轴在x轴上的椭圆.(12分)
11.解(1)椭圆的方程可写为y2a2+x2b2=1,其中ab0,
由a2-b2=33a=32得a2=4b2=1,所以曲线C的方程为x2+y24=1(0x1,0y2).(3分)
y=21-x2(0x1),y′=-2x1-x2.
设P(x0,y0),因为P在C上,有0x01,
y0=21-x20,y′|x=x0=-4x0y0,
得切线AB的方程为y=-4x0y0(x-x0)+y0.
(6分)
设A(x,0)和B(0,y),由切线方程得x=1x0,y=4y0.
由OM→=OA→+OB→得点M的坐标为(x,y),
由x0,y0满足C的方程,得点M的轨迹方程为1x2+4y2=1(x1,y2).(10分)
(2)|OM→|2=x2+y2,y2=41-1x2=4+4x2-1,
所以|OM→|2=x2-1+4x2-1+5≥4+5=9,
当且仅当x2-1=4x2-1,即x=3时,上式取等号.
故|OM→|的最小值为3.(14分)

文章来源:http://m.jab88.com/j/57008.html

更多

最新更新

更多