88教案网

探究本地地磁场

作为杰出的教学工作者,能够保证教课的顺利开展,高中教师要准备好教案,这是教师工作中的一部分。教案可以让学生更好的消化课堂内容,让高中教师能够快速的解决各种教学问题。我们要如何写好一份值得称赞的高中教案呢?为此,小编从网络上为大家精心整理了《探究本地地磁场》,仅供参考,希望能为您提供参考!

《课题:探究本地地磁场》课堂实录
探究式教学是“以学生为中心,在整个教学过程中由教师起组织者、指导者、帮助者和促进者的作用,利用情境、协作、会话等学习环境要素充分发挥学生的主动性、积极性和首创精神,最终达到使学生有效地实现对当前所学知识的意义建构的目的”;强调学生对知识的主动探索、主动发现和对所学知识意义的主动建构。探究式教学符合新形势下的教学理念、素质教育的创新精神,已广泛地受到各位教育同仁的认可和重视。
在学习《电磁感应》后,我们确定了“探究本地地磁场”的课题,在探究式教学上做了一些有益的尝试。下面就这次活动做一简单回顾,同时也希望各位同行给以指正。
确定课题:
我们在“电磁感应现象”这一节备课时,就想到了这一个问题:有哪些方式可以实现磁生电?而为实现这个目的,在很大程度上取决于磁场提供的方式;而磁场提供方式常见的有磁体和电流的磁场。但我们在查阅资料时,发现有教师利用地磁场来研究电磁感应现象的方法。随后,我们就进行了实验,用导线做绳让学生集体做跳绳的游戏,用灵敏电流计检测出在跳绳时导线中确实有电流产生。通过这个实验不仅让学生大开了眼界,也增添了不少乐趣,这个实验给我们留下了深刻印象。
做完以上实验后,有教师就提出:能不能测出本地的地磁场的强弱呢?当时我们就想到这肯定比较难,我们查阅了很多资料后发现在现今的中学物理中几乎没人涉足这一问题,我们在准备放弃时忽然意识到这是一个很好的探究课题。特别是探究式教学中的“重过程轻结果”及让学生体会探究的科学过程的意义远胜于知识灌输的观念大大激发和鼓励了我们,于是我们决定把地磁场作为高二学生在学完《电磁感应》后的一个探究课题,并且还决定不要求结果有多准确,关键要学生好好体会一下探究的方法和在探究过程中科学素养的培养。当即我们确定如下目标:
1.通过探究让学生感受、认识地磁场;
2.通过对本地地磁场的磁感强度测量,培养学生动手实验,解决实际问题及综合应用能力;
3.提高学生对磁场,电磁感应、运动学知识的理解能力;
4.培养学生的创新精神和探究思想;
5.通过对地磁场的探索过程,培养学生学习物理的兴趣,以及对物理实验的自觉性。
准备阶段:
提前一周要求学生在图书馆或英特网上搜集有关地磁场的资料,以了解地磁场的特点、状况和分布;并查出本地(湖北兴山)具体所处位置。
探究阶段:
一、认识地磁场
由各小组同学选派一名代表将所搜集并整理好的资料通过投影仪或幻灯片展示给大家。搜集资料归纳如下:
⑴地磁场相当于一个巨大的条形磁体,它的北极在地理南极、南极在地理北极;另外,地磁的南北极与地理的南北极不在同一直线上而有一定的偏角,叫磁偏角。
⑵在地理南极地磁场方向竖直向上,地理北极处是竖直向下的,赤道处是由南向北的水平方向,南半球由南向北但斜向上方,北半球由南向北但斜向下方。
二、认识本地地磁场
我们的家乡湖北兴山地处东经:110.46°、北纬:31.14°。因此我们家乡的地磁场是斜向下方的。
三、本地地磁场的测量方法及原理
问1:如何测出本地地磁场的磁感强度?
答:只要我们能测量出地磁场的水平分量和竖直分量,然后利用平行四边形定则就可以算出地磁场的大小和方向。如图1所示。
问2:那么怎样才能测出地磁场的水平分量和竖直分量呢?
(学生讨论并回答)
让一段金属导体沿水平方向做匀速直线运动,并在这段导体两端连上灵敏电流计,从灵敏电流计上读出感应电流的大小,利用闭合电路欧姆定律和法拉第电磁感应定律就可将地磁场的竖直分量计算出来。
原理:I=E/R=BLv/RB=IR/Lv
问3:这种方法可行吗?(学生讨论)
虽然原理是可行的,但实际操作却很难做到,因为匀速直线是一种理想的运动,实际操作中很难做到。
问4:那如何改进呢?
只要记录下金属导体运动的最大速度,和电流计的最大电流值可以,因为它们是一一对应的。
问5:如何记录下最大速度呢?又怎么让这段导体运动起来呢?
学生经讨论得到以下方法:
让学生拿着导体棒向前跑动(但不易测出速度来);电动机带动(也不容易测出速度来);放在摩托车上(速度可以由速度表上读出最大速度)。
问6:摩托车应该向哪个方向运动呢?(学生讨论)
可以向任何方向运动只要保证导体棒是水平的及摩托车是水平运动的就行了!
问7:那我们又如何测出地磁场的水平分量?
受刚才的启发,我们可以让一金属导体沿水平方向做自由落体运动,测出它的高度,记下电流计的最大电流,那么这个电流和落地时的速度相对应,从而就可以算出地磁场的水平分量。
问8:金属杆只要沿水平方向自由下落可以吗?
不行,必须要沿东西方向自由下落,因为水平分量是由南指向北的。
经过以上讨论和探究找到了实验的方案:通过把导体棒放在摩托车上测出竖直分量;利用自由落体运动测出水平分量(导体棒必须沿东西方向)。
实验及数据整理阶段:
在多方的共同努力,我们用一个下午的时间测得数据如下:
1.测竖直分量相关数据:导体长度L=5.27m(把铜导线拉直后固定在竹竿上)速度vxm=30km/h总电阻R=135Ω电流Im=10uA
计算得出:By=3×10-5T
2.测水平分量相关数据:导体长度L=5.27m总电阻R=135Ω金属杆自由下落高度h=3.95m电流Im=15uA
Bx=4×10-5T
3.根据图1可以算出本地地磁场的磁感强度B=5×10-5T,方向与水平方向所成夹角α=37°。
探究后谈体验:
本课题涉及知识多、跨度大,应用到了直线运动、恒定电流、电磁感应和地磁场等知识,跨跃了力学与电学两大板块,对学生能力要求高,特别是综合分析问题的能力。将书本上的知识应用到解决实际问题中去,在思维上是一个飞跃,是一个再创造的过程,因此本课题大大激发了学生的创新精神。尽管本课题不是大纲要求的内容,但学生在探究的过程中所用知识都是大纲所要求的内容,探究中不是淡化了教材,而是加深了对教材内容的理解同时也丰富了教材的内容,亦即本课题既体现了素质教育的新精神同时也没偏离高考这个“指挥棒”。利用身边器材做一些小实验甚至是意想不到的“大实验”,这不仅是创新精神的体现,同时也暗示了物理学科的朴实性,物理学不一定都是那么深奥难懂,并且与我们的生活息息相关。学生亲自查找资料、设计方案、动手实验和处理数据,实实在在经过了一个探究过程,在探究过程中增添了学生学习物理的兴趣;也磨练了学生的意志,学生体会到了在科学探究中不是一番风顺的,有很多曲折要多次反复才可能获得成功。
从教学上看,我们感受到了新一轮课改带给教师理念上的冲击是巨大的,如果不改变过去那种以教师为中心忽略学生自身学习能动性的教学方法,不仅被时代所淘汰更主要是被学生所唾弃!在这次探究活动中,我们发现平常物理基础很差或学习物理兴趣不浓的同学也表现得非常突出,尽管他们没有提出什么有效的方法,但在实验中他们是最热心的一群,在探究结束时我们也看到了从他们脸上泛出的欣慰的笑容……当然,探究式教学不一定都要以一个课题的形式呈现出来,一个概念的引入、一种方法的形成、一个典型例题的讲解都可以成为探究的内容,形式是不拘一格的,能用时就用,而且一定要用好。
因此,实施这个课题后,学生不仅从知识掌握上,还是能力的培养上,抑或是情感的体验上带给他们的影响应该是深远的甚至是刻骨的,而对教师的影响同样是深远甚至是划时代的!

扩展阅读

第1节探究磁场对电流的作用


作为杰出的教学工作者,能够保证教课的顺利开展,作为教师准备好教案是必不可少的一步。教案可以让学生更容易听懂所讲的内容,帮助教师能够井然有序的进行教学。那么,你知道教案要怎么写呢?下面是由小编为大家整理的“第1节探究磁场对电流的作用”,欢迎您参考,希望对您有所助益!

第1节探究磁场对电流的作用
课前预习
一、安培力
1.磁场对通电导线的作用力叫做___○1____.
2.大小:(1)当导线与匀强磁场方向________○2_____时,安培力最大为F=_____○3_____.
(2)当导线与匀强磁场方向_____○4________时,安培力最小为F=____○5______.
(3)当导线与匀强磁场方向斜交时,所受安培力介于___○6___和__○7______之间。
3.方向:左手定则:伸开左手,使大拇指跟其余四个手指__○8____,并且都跟手掌在___○9___,把手放入磁场中,让磁感线___○10____,并使伸开的四指指向_○11___的方向,那么,拇指所指的方向,就是通电导线在磁场中的__○12___方向.
二、磁电式电流表
1.磁电式电流表主要由___○13____、____○14___、____○15____、____○16_____、_____○17_____构成.
2.蹄形磁铁的磁场的方向总是沿着径向均匀地分布的,在距轴线等距离处的磁感应强度的大小总是相等的,这样不管线圈转到什么位置,线圈平面总是跟它所在位置的磁感线平行,I与指针偏角θ成正比,I越大指针偏角越大,因而电流表可以量出电流I的大小,且刻度是均匀的,当线圈中的电流方向改变时,安培力的方向随着改变,指针偏转方向也随着改变,又可知道被测电流的方向。
3、磁电式仪表的优点是____○18________,可以测很弱的电流,缺点是绕制线圈的导线很细,允许通过的电流很弱。
课前预习答案
○1安培力○2垂直○3BIL○4平行○50○60○7BIL○8垂直○9同一个平面内○10垂直穿入手心○11电流○12受力○13蹄形磁铁○14铁芯○15绕在线框上的线圈○16螺旋弹簧○17指针○18灵敏度高
重难点解读
一、对安培力的认识
1、安培力的性质:
安培力是磁场对电流的作用力,是一种性质力。
2、安培力的作用点:
安培力是导体中通有电流而受到的力,与导体的中心位置无关,因此安培力的作用点在导体的几何中心上,这是因为电流始终流过导体的所有部分。
3、安培力的方向:
(1)安培力方向用左手定则判定:伸开左手,使大拇指和其余四指垂直,并且都跟手掌在同一个平面内,把手放入磁场中,让磁感线垂直穿入手心,并使伸开的四指指向电流方向,那么大拇指所指的方向就是通电导体在磁场中的受力方向。
(2)F、B、I三者间方向关系:已知B、I的方向(B、I不平行时),可用左手定则确定F的唯一方向:F⊥B,F⊥I,则F垂直于B和I所构成的平面(如图所示),但已知F和B的方向,不能唯一确定I的方向。由于I可在图中平面α内与B成任意不为零的夹角。同理,已知F和I的方向也不能唯一确定B的方向。
(3)用“同向电流相吸,反向电流相斥”(反映了磁现象的电本质)。只要两导线不是互相垂直的,都可以用“同向电流相吸,反向电流相斥”判定相互作用的磁场力的方向;当两导线互相垂直时,用左手定则判定。
4、安培力的大小:
(1)安培力的计算公式:F=BILsinθ,θ为磁场B与直导体L之间的夹角。
(2)当θ=90°时,导体与磁场垂直,安培力最大Fm=BIL;当θ=0°时,导体与磁场平行,安培力为零。
(3)F=BILsinθ要求L上各点处磁感应强度相等,故该公式一般只适用于匀强磁场。
(4)安培力大小的特点:①不仅与B、I、L有关,还与放置方式θ有关。②L是有效长度,不一定是导线的实际长度。弯曲导线的有效长度L等于两端点所连直线的长度,所以任意形状的闭合线圈的有效长度L=0
二、通电导线或线圈在安培力作用下的运动判断方法
(1)电流元分析法:把整段电流等效为多段很小的直线电流元,先用左手定则判断出每小段电流元所受安培力的方向,从而判断出整段电流所受合力方向,最后确定运动方向.

(2)特殊位置分析法:把通电导体转到一个便于分析的特殊位置后判断其安培力方向,从而确定运动方向.
(3)等效法:环形电流可等效成小磁针,通电螺线管可以等效成条形磁铁或多个环形电流,反过来等效也成立。
(4)转换研究对象法:因为电流之间,电流与磁体之间相互作用满足牛顿第三定律,这样,定性分析磁体在力的作用下如何运动的问题,可先分析电流在磁场中所受的安培力,然后由牛顿第三定律,再确定磁体所受作用力,从而确定磁体所受合力及运动方向.
典题精讲
题型一、安培力的方向
例1、电视机显象管的偏转线圈示意图如右,即时电流方向如图所示。该时刻由里向外射出的电子流将向哪个方向偏转?
解:画出偏转线圈内侧的电流,是左半线圈靠电子流的一侧为向里,右半线圈靠电子流的一侧为向外。电子流的等效电流方向是向里的,根据“同向电流互相吸引,反向电流互相排斥”,可判定电子流向左偏转。(本题用其它方法判断也行,但不如这个方法简洁)。
答案:向左偏转
规律总结:安培力方向的判定方法:
(1)用左手定则。
(2)用“同性相斥,异性相吸”(只适用于磁铁之间或磁体位于螺线管外部时)。
(3)用“同向电流相吸,反向电流相斥”(反映了磁现象的电本质)。可以把条形磁铁等效为长直螺线管(不要把长直螺线管等效为条形磁铁)。
题型二、安培力的大小
例2、如图,一段导线abcd位于磁感应强度大小为B的匀强磁场中,且与磁场方向(垂直于纸面向里)垂直。线段ab、bc和cd的长度均为L,且。流经导线的电流为I,方向如图中箭头所示。导线段abcd所受到的磁场的作用力的合力
A.方向沿纸面向上,大小为
B.方向沿纸面向上,大小为
C.方向沿纸面向下,大小为
D.方向沿纸面向下,大小为
解析:该导线可以用a和d之间的直导线长为来等效代替,根据,可知大小为,方向根据左手定则.A正确。
答案:A
规律总结:应用F=BILsinθ来计算时,F不仅与B、I、L有关,还与放置方式θ有关。L是有效长度,不一定是导线的实际长度。弯曲导线的有效长度L等于两端点所连直线的长度,所以任意形状的闭合线圈的有效长度L=0
题型三、通电导线或线圈在安培力作用下的运动
例3、如图11-2-4条形磁铁放在粗糙水平面上,正中的正上方有一导线,通有图示方向的电流后,磁铁对水平面的压力将会__(增大、减小还是不变?)水平面对磁铁的摩擦力大小为__。
解析:本题有多种分析方法。⑴画出通电导线中电流的磁场中通过两极的那条磁感线(如图中粗虚线所示),可看出两极受的磁场力的合力竖直向上。磁铁对水平面的压力减小,但不受摩擦力。⑵画出条形磁铁的磁感线中通过通电导线的那一条(如图中细虚线所示),可看出导线受到的安培力竖直向下,因此条形磁铁受的反作用力竖直向上。⑶把条形磁铁等效为通电螺线管,上方的电流是向里的,与通电导线中的电流是同向电流,所以互相吸引。
答案:减小零
规律总结:分析通电导线或线圈在安培力作用下的运动常用方法:(1)电流元分析法,(2)特殊位置分析法,(3)等效法,(4)转换研究对象法
题型四、安培力作用下的导体的平衡问题
例4、水平面上有电阻不计的U形导轨NMPQ,它们之间的宽度为L,M和P之间接入电动势为E的电源(不计内阻).现垂直于导轨搁一根质量为m,电阻为R的金属棒ab,并加一个范围较大的匀强磁场,磁感应强度大小为B,方向与水平面夹角为θ且指向右斜上方,如图8-1-32所示,问:
(1)当ab棒静止时,受到的支持力和摩擦力各为多少?
(2)若B的大小和方向均能改变,则要使ab棒所受支持力为零,B的大小至少为多少?此时B的方向如何?
解析:从b向a看侧视图如图所示.
(1)水平方向:F=FAsinθ①
竖直方向:FN+FAcosθ=mg②
又FA=BIL=BERL③
联立①②③得:FN=mg-BLEcosθR,F=BLEsinθR.
(2)使ab棒受支持力为零,且让磁场最小,可知安培力竖直向上.则有FA=mg
Bmin=mgREL,根据左手定则判定磁场方向水平向右.
答案:(1)mg-BLEcosθRBLEsinθR(2)mgREL方向水平向右
规律总结:对于这类问题的求解思路:
(1)若是立体图,则必须先将立体图转化为平面图
(2)对物体受力分析,要注意安培力方向的确定
(3)根据平衡条件或物体的运动状态列出方程
(4)解方程求解并验证结果
巩固拓展
1.如图,长为的直导线拆成边长相等,夹角为的形,并置于与其所在平面相垂直的匀强磁场中,磁感应强度为,当在该导线中通以电流强度为的电流时,该形通电导线受到的安培力大小为
(A)0(B)0.5(C)(D)
答案:C
解析:导线有效长度为2lsin30°=l,所以该V形通电导线收到的安培力大小为。选C。
本题考查安培力大小的计算。

2..一段长0.2m,通过2.5A电流的直导线,关于在磁感应强度为B的匀强磁场中所受安培力F的情况,正确的是()
A.如果B=2T,F一定是1N
B.如果F=0,B也一定为零
C.如果B=4T,F有可能是1N
D.如果F有最大值时,通电导线一定与B平行
答案:C
解析:当导线与磁场方向垂直放置时,F=BIL,力最大,当导线与磁场方向平行放置时,F=0,当导线与磁场方向成任意其他角度放置时,0FBIL,A、D两项不正确,C项正确;磁感应强度是磁场本身的性质,与受力F无关,B不正确.
3.首先对电磁作用力进行研究的是法国科学家安培.如图所示的装置,可以探究影响安培力大小的因素,实验中如果想增大导体棒AB摆动的幅度,可能的操作是()
A.把磁铁的N极和S极换过来
B.减小通过导体棒的电流强度I
C.把接入电路的导线从②、③两条换成①、④两条
D.更换磁性较小的磁铁
答案:C
解析:安培力的大小与磁场强弱成正比,与电流强度成正比,与导线的长度成正比,C正确.
4.一条形磁铁放在水平桌面上,它的上方靠S极一侧吊挂一根与它垂直的导电棒,图中只画出此棒的截面图,并标出此棒中的电流是流向纸内的,在通电的一瞬间可能产生的情况是()
A.磁铁对桌面的压力减小
B.磁铁对桌面的压力增大
C.磁铁受到向右的摩擦力
D.磁铁受到向左的摩擦力
答案:AD
解析:如右图所示.对导体棒,通电后,由左手定则,导体棒受到斜向左下方的安培力,由牛顿第三定律可得,磁铁受到导体棒的作用力应斜向右上方,所以在通电的一瞬时,磁铁对桌面的压力减小,磁铁受到向左的摩擦力,因此A、D正确.
5..质量为m的通电细杆ab置于倾角为θ的平行导轨上,导轨宽度为d,杆ab与导轨间的动摩擦因数为μ.有电流时ab恰好在导轨上静止,如图右所示.,下图是沿b→a方向观察时的四个平面图,标出了四种不同的匀强磁场方向,其中杆与导轨间摩擦力可能为零的是
A.①②B.③④C.①③D.②④?
答案:A?
解析:①中通电导体杆受到水平向右的安培力,细杆所受的摩擦力可能为零.②中导电细杆受到竖直向上的安培力,摩擦力可能为零.③中导电细杆受到竖直向下的安培力,摩擦力不可能为零.④中导电细杆受到水平向左的安培力,摩擦力不可能为零.故①②正确,选A.
6.如图所示,两根无限长的平行导线a和b水平放置,两导线中通以方向相反、大小不等的恒定电流,且IaIb.当加一个垂直于a、b所在平面的匀强磁场B时;导线a恰好不再受安培力的作用.则与加磁场B以前相比较()
A.b也恰好不再受安培力的作用
B.b受的安培力小于原来安培力的2倍,方向竖直向上
C.b受的安培力等于原来安培力的2倍,方向竖直向下
D.b受的安培力小于原来安培力的大小,方向竖直向下
答案:D
解析:当a不受安培力时,Ib产生的磁场与所加磁场在a处叠加后的磁感应强度为零,此时判断所加磁场垂直纸面向外,因IaIb,所以在b处叠加后的磁场垂直纸面向里,b受安培力向下,且比原来小.故选项D正确.
7.如图所示,在绝缘的水平面上等间距固定着三根相互平行的通电直导线a、b和c,各导线中的电流大小相同,其中a、c导线中的电流方向垂直纸面向外,b导线电流方向垂直纸面向内.每根导线都受到另外两根导线对它的安培力作用,则关于每根导线所受安培力的合力,以下说法中正确的是()
A.导线a所受合力方向水平向右
B.导线c所受合力方向水平向右
C.导线c所受合力方向水平向左
D.导线b所受合力方向水平向左
答案:B
解析:首先用安培定则判定导线所在处的磁场方向,要注意是合磁场的方向,然后用左手定则判定导线的受力方向.可以确定B是正确的.
8.如图所示,在空间有三根相同的导线,相互间的距离相等,各通以大小和方向都相同的电流.除了相互作用的磁场力外,其他作用力都可忽略,则它们的运动情况是______.?
答案:两两相互吸引,相聚到三角形的中心
解析:根据通电直导线周围磁场的特点,由安培定则可判断出,它们之间存在吸引力.
9.如图所示,长为L、质量为m的两导体棒a、b,a被置在光滑斜面上,b固定在距a为x距离的同一水平面处,且a、b水平平行,设θ=45°,a、b均通以大小为I的同向平行电流时,a恰能在斜面上保持静止.则b的电流在a处所产生的磁场的磁感应强度B的大小为.?
答案:
解析:由安培定则和左手定则可判知导体棒a的受力如图,由力的平衡得方程:?
mgsin45°=Fcos45°,即?
mg=F=BIL可得B=.?
10.一劲度系数为k的轻质弹簧,下端挂有一匝数为n的矩形线框abcd.bc边长为l.线框的下半部处在匀强磁场中,磁感应强度大小为B,方向与线框平面垂直.在下图中,垂直于纸面向里,线框中通以电流I,方向如图所示.开始时线框处于平衡状态,令磁场反向,磁感强度的大小仍为B,线框达到新的平衡.在此过程中线框位移的大小Δx______,方向______.
答案:;位移的方向向下
解析:设线圈的质量为m,当通以图示电流时,弹簧的伸长量为x1,线框处于平衡状态,所以kx1=mg-nBIl.当电流反向时,线框达到新的平衡,弹簧的伸长量为x2,由平衡条件可知
kx2=mg+nBIl.?
所以k(x2-x1)=kΔx=2nBIl?
所以Δx=
电流反向后,弹簧的伸长是x2>x1,位移的方向应向下.?
?

磁场


第十二章磁场
第一单元磁场基本性质
知识目标:
一、磁场
1、磁场:磁场是存在于磁体、运动电荷周围的一种物质.它的基本特性是:对处于其中的磁体、电流、运动电荷有力的作用.
2、磁现象的电本质:所有的磁现象都可归结为运动电荷之间通过磁场而发生的相互作用.
二、磁感线
为了描述磁场的强弱与方向,人们想象在磁场中画出的一组有方向的曲线.
1.疏密表示磁场的强弱.
2.每一点切线方向表示该点磁场的方向,也就是磁感应强度的方向.
3.是闭合的曲线,在磁体外部由N极至S极,在磁体的内部由S极至N极.磁线不相切不相交。
4.匀强磁场的磁感线平行且距离相等.没有画出磁感线的地方不一定没有磁场.
5.安培定则:姆指指向电流方向,四指指向磁场的方向.注意这里的磁感线是一个个同心圆,每点磁场方向是在该点切线方向
*熟记常用的几种磁场的磁感线:

【例1】根据安培假说的物理思想:磁场来源于运动电荷.如果用这种思想解释地球磁场的形成,根据地球上空并无相对地球定向移动的电荷的事实.那么由此推断,地球总体上应该是:(A)
A.带负电;B.带正电;
C.不带电;D.不能确定
解析:因在地球的内部地磁场从地球北极指向地球的南极,根据右手螺旋定则可判断出地球表现环形电流的方向应从东到西,而地球是从西向东自转,所以只有地球表面带负电荷才能形成上述电流,故选A.
三、磁感应强度
1.磁场的最基本的性质是对放入其中的电流或磁极有力的作用,电流垂直于磁场时受磁场力最大,电流与磁场方向平行时,磁场力为零。
2.在磁场中垂直于磁场方向的通电导线受到的磁场力F跟电流强度I和导线长度l的乘积Il的比值,叫做通电导线所在处的磁感应强度.
①表示磁场强弱的物理量.是矢量.
②大小:B=F/Il(电流方向与磁感线垂直时的公式).
③方向:左手定则:是磁感线的切线方向;是小磁针N极受力方向;是小磁针静止时N极的指向.不是导线受力方向;不是正电荷受力方向;也不是电流方向.
④单位:牛/安米,也叫特斯拉,国际单位制单位符号T.
⑤点定B定:就是说磁场中某一点定了,则该处磁感应强度的大小与方向都是定值.
⑥匀强磁场的磁感应强度处处相等.
⑦磁场的叠加:空间某点如果同时存在两个以上电流或磁体激发的磁场,则该点的磁感应强度是各电流或磁体在该点激发的磁场的磁感应强度的矢量和,满足矢量运算法则.
【例2】如图所示,正四棱柱abed一abcd的中心轴线00处有一无限长的载流直导线,对该电流的磁场,下列说法中正确的是(AC)
A.同一条侧棱上各点的磁感应强度都相等
B.四条侧棱上的磁感应强度都相同
C.在直线ab上,从a到b,磁感应强度是先增大后减小
D.棱柱内任一点的磁感应强度比棱柱侧面上所有点都大
解析:因通电直导线的磁场分布规律是B∝1/r,故A,C正确,D错误.四条侧棱上的磁感应强度大小相等,但不同侧棱上的点的磁感应强度方向不同,故B错误.
【【例3】如图所示,两根导线a、b中电流强度相同.方向如图所示,则离两导线等距离的P点,磁场方向如何?
解析:由P点分别向a、b作连线Pa、Pb.然后过P点分别做Pa、Pb垂线,根据安培定则知这两条垂线用PM、PN就是两导线中电流在P点产生磁感应强度的方向,两导线中的电流在P处产生的磁感应强度大小相同,然后按照矢量的合成法则就可知道合磁感应强度的方向竖直向上,如图所示,这也就是该处磁场的方向.答案:竖直向上
【例4】六根导线互相绝缘,所通电流都是I,排成如图10一5所示的形状,区域A、B、C、D均为相等的正方形,则平均磁感应强度最大的区域是哪些区域?该区域的磁场方向如何?
解析:由于电流相同,方格对称,从每方格中心处的磁场来定性比较即可,如I1在任方格中产生的磁感应强度均为B,方向由安培定则可知是向里,在A、D方格内产生的磁感应强度均为B/,方向仍向里,把各自导线产生的磁感应强度及方向均画在四个方格中,可以看出在B、D区域内方向向里的磁场与方向向外的磁场等同,叠加后磁场削弱.
答案:在A、C区域平均磁感应强度最大,在A区磁场方向向里.C区磁场方向向外.
【例5】一小段通电直导线长1cm,电流强度为5A,把它放入磁场中某点时所受磁场力大小为0.1N,则该点的磁感强度为()
A.B=2T;B.B≥2T;C、B≤2T;D.以上三种情况均有可能
解析:由B=F/IL可知F/IL=2(T)当小段直导线垂直于磁场B时,受力最大,因而此时可能导线与B不垂直,即Bsinθ=2T,因而B≥2T。
说明:B的定义式B=F/IL中要求B与IL垂直,若不垂直且两者间夹角为θ,则IL在与B垂直方向分上的分量即ILsinθ,因而B=F/ILsinθ,所以F/IL=Bsinθ.则B≥F/IL。
【例6】如图所示,一根通电直导线放在磁感应强度B=1T的匀强磁场中,在以导线为圆心,半径为r的圆周上有a,b,c,d四个点,若a点的实际磁感应强度为0,则下列说法中正确的是(AC)
A.直导线中电流方向是垂直纸面向里的
B.C点的实际磁感应强度也为0
C.d点实际磁感应强度为,方向斜向下,与B夹角为450
D.以上均不正确
解析:题中的磁场是由直导线电流的磁场和匀强磁场共同形成的,磁场中任一点的磁感应强度应为两磁场分别产生的磁感应强度的矢量和.a处磁感应强度为0,说明直线电流在该处产生的磁感应强度大小与匀强磁场B的大小相等、方向相反,可得直导线中电流方向应是垂直纸面向里.在圆周上任一点,由直导线产生的磁感应强度大小均为B=1T,方向沿圆周切线方向,可知C点的磁感应强度大小为2T,方向向右.d点的磁感应强度大小为,方向与B成450斜向右下方.
四、磁通量与磁通密度
1.磁通量Φ:穿过某一面积磁力线条数,是标量.
2.磁通密度B:垂直磁场方向穿过单位面积磁力线条数,即磁感应强度,是矢量.
3.二者关系:B=Φ/S(当B与面垂直时),Φ=BScosθ,Scosθ为面积垂直于B方向上的投影,θ是B与S法线的夹角.
【例7】如图所示,A为通电线圈,电流方向如图所示,B、C为与A在同一平面内的两同心圆,φB、φC分别为通过两圆面的磁通量的大小,下述判断中正确的是()
A.穿过两圆面的磁通方向是垂直纸面向外
B.穿过两圆面的磁通方向是垂直纸面向里
C.φB>φC
D.φB<φC
解析:由安培定则判断,凡是垂直纸面向外的磁感线都集中在是线圈内,因磁感线是闭合曲线,则必有相应条数的磁感线垂直纸面向里,这些磁总线分布在线圈是外,所以B、C两圆面都有垂直纸面向里和向外的磁感线穿过,垂直纸面向外磁感线条数相同,垂直纸面向里的磁感线条数不同,B圆面较少,c圆面较多,但都比垂直向外的少,所以B、C磁通方向应垂直纸面向外,φB>φC,所以A、C正确.
分析磁通时要注意磁感线是闭合曲线的特点和正反两方向磁总线条数的多少,不能认为面积大的磁通就大.答案:AC
规律方法1.磁通量的计算
【例8】如图所示,匀强磁场的磁感强度B=2.0T,指向x轴的正方向,且ab=40cm,bc=30cm,ae=50cm,求通过面积Sl(abcd)、S2(befc)和S3(aefd)的磁通量φ1、φ2、φ3分别是多少?
解析:根据φ=BS垂,且式中S垂就是各面积在垂直于B的yx平面上投影的大小,所以各面积的磁通量分别为
φ1=BS1=2.0×40×30×10-4=0.24Wb;φ2=0
φ3=φ1=BS1=2.0×40×30×10-4=0.24Wb
答案:φ1=0.24Wb,φ2=0,φ3=0.24Wb
【例9】如图4所示,一水平放置的矩形闭合线圈abcd在细长磁铁N极附近下落,保持bc边在纸外,ad边在纸内,由图中的位置Ⅰ经过位置Ⅱ到位置Ⅲ,且位置Ⅰ和Ⅲ都很靠近位置Ⅱ,在这个过程中,线圈中的磁通量
A.是增加的;B.是减少的
C.先增加,后减少;D.先减少,后增加
解析:要知道线圈在下落过程中磁通量的变化情况,就必须知道条形磁铁在磁极附近磁感线的分布情况.条形磁铁在N极附近的分布情况如图所示,由图可知线圈中磁通量是先减少,后增加.D选项正确.
点评:要知道一个面上磁通量,在面积不变的条件下,也必须知道磁场的磁感线的分布情况.因此,牢记条形磁铁、蹄形磁铁、通电直导线、通电螺线管和通电圆环等磁场中磁感线的分布情况在电磁学中是很必要的.
【例10】如图所示边长为100cm的正方形闭合线圈置于磁场中,线圈AB、CD两边中点连线OO/的左右两侧分别存在方向相同、磁感强度大小各为B1=0.6T,B2=0.4T的匀强磁场。若从上往下看,线圈逆时针转过370时,穿过线圈的磁通量改变了多少?
解析:在原图示位置,由于磁感线与线圈平面垂直,因此
Φ1=B1×S/2+B2×S/2=(0.6×1/2+0.4×1/2)Wb=0.5Wb
当线圈绕OO/轴逆时针转过370后,(见图中虚线位置):
Φ2=B1×Sn/2+B2×Sn/2=B1×Scos370/2+B2×Scos370/2=0.4Wb
磁通量变化量ΔΦ=Φ2-Φ1=(0.4-0.5)Wb=-0.1Wb
所以线圈转过370后。穿过线圈的磁通量减少了0.1Wb.
2.磁场基本性质的应用
【例11】从太阳或其他星体上放射出的宇宙射线中含有高能带电粒子,若到达地球,对地球上的生命将带来危害.对于地磁场对宇宙射线有无阻挡作用的下列说法中,正确的是(B)
A.地磁场对直射地球的宇宙射线的阻挡作用在南北两极最强,赤道附近最弱
B.地磁场对直射地球的宇宙射线的阻挡作用在赤道附近最强,南北两极最弱
C.地磁场对宇宙射线的阻挡作用各处相同
D.地磁场对宇宙射线无阻挡作用
解析:因在赤道附近带电粒子运动方向与地磁场近似垂直,而在两极趋于平行.
【例12】超导是当今高科技的热点之一,当一块磁体靠近超导体时,超导体中会产生强大的电流,对磁体有排斥作用,这种排斥力可使磁体悬浮在空中,磁悬浮列车就采用了这项技术,磁体悬浮的原理是(D)
①超导体电流的磁场方向与磁体的磁场方向相同.
②超导体电流的磁场方向与磁体的磁场方向相反.
③超导体使磁体处于失重状态.
④超导体对磁体的磁力与磁体的重力相平衡.
A.①③B.①④C.②③D.②④
解析:超导体中产生的是感应电流,根据楞次定律的“增反减同”原理,这个电流的磁场方向与原磁场方向相反,对磁体产生排斥作用力,这个力与磁体的重力达平衡.
【例13】.如图所示,用弯曲的导线环把一铜片和锌片相连装在一绝缘的浮标上,然后把浮标浸在盛有稀硫酸的容器中,设开始设置时,环平面处于东西方向上.放手后,环平面将最终静止在方向上.
解析:在地表附近地磁场的方向是大致由南向北的,此题中由化学原理可推知在环中有环形电流由等效法可假定其为一个垂直于纸面的条形磁体,而条形磁体所受地磁场的力的方向是南北方向的.
【例14】普通磁带录音机是用一个磁头来录音和放音的。磁头结构如图所示,在一个环形铁芯上绕一个线圈.铁芯有个缝隙,工作时磁带就贴着这个缝隙移动。录音时磁头线圈跟微音器相连,放音时,磁头线圈改为跟扬声器相连,磁带上涂有一层磁粉,磁粉能被磁化且留下剩磁。微音器的作用是把声音的变化转化为电流的变化;扬声器的作用是把电流的变化转化为声音的变化,根据学过的知识,把普通录音机录、放音的基本原理简明扼要地写下来。
解析:(1)录音原理:当由微音器把声音信号转化为电流信号后,电流信号流经线圈,在铁芯中产生随声音变化的磁场,磁带经过磁头时磁粉被不同程度地磁化,并留下剩磁,且剩磁的变化与声音的变化一致,这样,声音的变化就被记录成磁粉不同程度的变化。即录音是利用电流的磁效应。
(2)放音原理:各部分被不同程度磁化的磁带经过铁芯时,铁芯中形成变化的磁场,在线圈中激发出变化的感应电流,感应电流经过扬声器时,电流的变化被转化为声音的变化。这样,磁信号又被转化为声音信号而播放出来。即放音过程是利用电磁感应原理。
【例15】磁场具有能量,磁场中单位体积所具有的能量叫做能量密度,其值为B2/2μ,式中B是感应强度,μ是磁导率,在空气中μ为一已知常数.为了近似测得条形磁铁磁极端面附近的磁感应强度B,一学生用一根端面面积为A的条形磁铁吸住一相同面积的铁片P,再用力将铁片与磁铁拉开一段微小距离△L,并测出拉力F,如图所示.因为F所做的功等于间隙中磁场的能量,所以由此可得磁感应强度B与F、A之间的关系为B=
解析:在用力将铁片与磁铁拉开一段微小距离△L的过程中,拉力F可认为不变,因此F所做的功为:W=F△L.
以ω表示间隙中磁场的能量密度,则间隙中磁场的能量E=ωV=ωA△L
又题给条件ω=B2/2μ,故E=A△LB2/2μ.
因为F所做的功等于间隙中磁场的能量,即W=E,故有F△L=A△LB2/2μ
解得
试题展示
1、下列单位中与磁感应强度单位相同有()
A.B.
C.D.
解:由可知1特。由。由1安及
,可知1特。由1焦=1牛米=1库伏,可知
1牛=1库伏/米,又知1特=,从而可知1特。
此题答案应选A、B、C、D。
2、在地球赤道上空有一小磁针处于水平静止状态,突然发现小磁针N极向东偏转,由此可知()
A.一定是小磁针正东方向有一条形磁铁的N极靠近小磁针
B.一定是小磁针正东方向有一条形磁铁的S极靠近小磁针
C.可能是小磁针正上方有电子流自南向北通过
D.可能是小磁针正上方有电子流自北向南水平通过
解析在赤道上空地磁场方向水平向北,在地磁场的作用下,小磁针的N极只能稳定地水平指
北.当小磁针的N极突然向东偏转,说明小磁针所在位置突然有一指向东边的磁场对小磁针产生磁力的作用.这一磁场既可以是磁体产生的,也可以是电流产生的.在小磁针正东方向,条形磁体N极所产生的磁场在小磁针所在位置是指向西,故A选项不正确.而条形磁铁S极产生的磁场在小磁针所在位置指向东,小磁针N极可能向东偏转,但不是惟一原因;故B选项不正确.当小磁针正上方有电子流通过时,电子流在小磁针所在位置产生的磁场方向为水平方向,若电子流水平自南向北,则经过小磁针的磁场方向为水平向东;若电子流水平自北向南,则其中小磁针的磁场方向为水平向西.故C选项正确.
答案C
3、静电场和磁场对比:(AB)
A.电场线不闭合,磁感线闭合;
B.静电场和磁场都可使运动电荷发生偏转;
C.静电场和磁场都可使运动电荷加速;
D.静电场和磁场都能对运动电荷做功。
4.下列说法中正确的是(BCD)
A.条形磁铁和蹄形磁铁内部磁感线都是从磁铁的北极到南极
B.直线电流磁场的磁感线是以导线上的各点为圆心的同心圆,该圆的平面与导线垂直
C.把安培定则用于通电螺线管时,大拇指所指的方向是螺线管内部磁感线的方向
D.把安培定则用于环形电流时,大拇指所指的方向是中心轴线上的磁感线的方向
5、奥斯特实验中,通电直导线的放置位置是(D)
A.西南方向,在小磁针上方B.东南方向,在小磁针上方
C.平行地面东西方向,在小磁针上方D.平行地面南北方向,在小磁针上方
6、一束电子流沿水平面自西向东运动,在电子流的正上方有一点P,由于电子运动产生磁场在P点的方向为(D)
A.竖直向上B.竖直向下C.水平向南D.水平向北
7、如图两个同样的导线环同轴平行悬挂,相隔一小段距离,当同时给两导线环通以同向电流时,两导线环将()
A.吸引B.排斥C.保持静止D.边吸引边转动
解析:两个线圈内的电流产生的磁场方向相同,互相吸引。也可以由一个电流受另一个的磁场力判断得相同的结论。
8、如图所示,两根无限长的平行导线水平放置,两导线中均通以向右的、大小相等的恒定电流I,图中的A点与两导线共面,且到两导线的距离相等,则这两根通电导线在该点产生的磁场的磁感应强度的合矢量()
A.方向水平向右B.方向水平向左
C.大小一定为零D.大小一定不为零
解析:本题考查直线电流的磁场及磁感应强度的合成,
由安培定则可判出两电流在A产生的磁场方向相反,又A点与两导线共面,且等距,故磁感应强度的合矢量大小一定为零。选项C正确.
9、19世纪20年代,以塞贝克(数学家)为代表的科学家已认识到:温度差会引起电流,安培考虑到地球自转造成了太阳照射后正面与背面的温度差,从而提出如下假设:地球磁场是由绕地球的环形电流引起的,则该假设中的电流方向是。(B)?
A.由西向东垂直磁子午线
B.由东向西垂直磁子午线?
C.由南向北沿磁子午线?
D.由赤道向两极沿磁子午线方向?
(注:磁子午线是地球磁场N极与S极在地球表面的连线)?
【解析】地磁北极在地理南极;地磁南极在地理北极,根据安培定则判知.?
10、根据图中合上电键K后小磁针A向右摆动的现象,分析小磁针B、C的转动方向.
解析合上电键后小磁针A向右移,说明受到向右的力作用,通电螺线管左端相当于S极.根据安培定则,B处导线中的电流方向向左,此电流在B处产生的磁场方向垂直纸面向外,所以小磁针B的N极受磁场力垂直纸面向外,故小磁针B的N极向外运动.通电螺线管在C处的磁场方向向左,小磁针C的N极受磁场力向左,故小磁针C转动后N极指向左,如图所示.

答案小磁针B的N极向外转动、小磁针C转动后N极指向左.
11、如右图所示,条形磁铁放在水平桌面上,它的正中央的上方固定一与磁铁垂直的通电直导线,电流方向垂直纸面向外,则下面结论正确的是()
A.磁铁对桌面的压力减小,它不受摩擦力;
B.磁铁对桌面的压力减小,它受到摩擦力;
C.磁铁对桌面的压力加大,它不受摩擦力;
D.磁铁对桌面的压力加大,它受到摩擦力;
解:直线电流磁场中通过磁铁N、S极的磁感线如左图所示。由磁铁N极在磁场中某处所受磁场力方向与该处磁场方向相同,S极在磁场中某处所受磁场力方向与该处磁场方向相反的结论可知,N、S两极所受磁场力的方向应分别如图中、所示。由对称性可知,与的

竖直分量大小相等方向相同,水平分量则大小相等方向相反。以磁铁为研究对象,其受力情况如上图所示。由磁铁在竖直方向平衡可知地面对磁铁弹力N小于磁铁重力G,由牛顿第三定律可知,磁铁对地面的压力N’也小于G。可见与导线中未通电时相比,磁铁对地面的压力变小了。由于磁铁在水平方向没有受到促使它相对地面产生运动趋势的外力,所以不受地面的静摩擦力;磁铁没有沿地运动,也不受地面的滑动摩擦力。
此题答案应选A。

《磁场》复习


俗话说,居安思危,思则有备,有备无患。作为教师准备好教案是必不可少的一步。教案可以让学生更好的吸收课堂上所讲的知识点,帮助教师更好的完成实现教学目标。那么一篇好的教案要怎么才能写好呢?小编收集并整理了“《磁场》复习”,仅供参考,欢迎大家阅读。

高中物理粤教版(选修3-1)
第三章《磁场》复习课教学设计
一、教学内容分析
本章涉及的概念多,判断电磁规律的手法多,图象也多,因此相应的选择题难度也较大,在复习时要引导学生善用类比及比较法以加深对知识的理解和掌握;带电粒子在匀强磁场或复合场中的运动是高考的热点内容,是考查频率最高的的知识点之一,且该部分试题多为高考的压轴题,试题构思新颖、综合性强、难度大,且易与现代生产、生活和科技知识紧密联系,是学科内综合及跨学科的要点之一,对学生的空间想象能力,应用数学工具能力,分析综合能力要求高,在复习时应让学生在弄清左手定则的前提下,侧重带电粒子在电磁场中的运动的实例分析,如质谱仪、回旋加速器、流量计等,以达到理论联系实际的目的。
二、学情分析
学生通过新课的学习,已经本章内容有一定的认识。但是由于本章涉及的概念多,判断电磁规律的手法也较多,学生在学习过程中容易混淆,因此在复习时,教师要引导学生善用类比和比较的方法,如磁感线与电场线、磁感强度与电场强度、安培力与电场力、洛伦兹力与安培力的类比与对比,以加深对知识的理解和掌握。而对带电粒子在匀强磁场或复合场中的运动,是重点也是难点,复习中侧重带电粒子在电磁场中的运动的实例分析,如质谱仪、回旋加速器、流量计等,同时注重过程及方法的引导,例如在研究带电粒子在磁场中的圆周运动问题时,引导学生把握“一找圆心,二找半径,三找周期或时间”的规律。
三、教学目标:
(一)知识目标
1.加深理解磁场、磁感应强度及磁通量的概念
2.熟练掌握用左手定则判断安培力的方向,会计算匀强磁场中安培力的大小
3.熟练掌握用左手定则判断洛伦兹力的方向,会计算洛伦兹力的大小
4.认识磁感线与电场线的异同、会比较安培力与电场力及洛伦兹力的异同
5.带电粒子在匀强磁场中或在复合场中的运动规律分析。
(二)过程与方法
1、列表疏理重要的知识点
2、运用类比法加深对概念的理解,编写快捷记忆口诀,帮助学生区分安培定则及左手定则
3、利用学案导学,讲解与练习相结合
(三)情感态度与价值观、能力培养
1、通过类比各物理概念的联系与区别,让学生体会物理概念的严谨性,不同物理知识之间紧密联系的奥妙,培养在理解物理量时举一反三的能力。
2、通过带电粒子在电磁场中运动的实例分析与练习,让学生体会把力学与电磁学知识成功地综合运用的快乐以及提高学生把理论联系到实际的能力。
四、教学重、难点:物理概念的深刻含义、带电粒子在匀强磁场中或复合场中的运动分析
五、教学策略:
对重要知识点建立框图,力求简明扼要;疏理知识点时把抽象概念多与学生相对
熟悉的知识进行类比,并编写快捷记忆口诀,帮助学生加深理解;利用学案导学,侧重带电粒子在电磁场中的运动实例分析,并注意启发学生思维、讲练结合。
六、教具:多媒体课件,学案,
七、教学过程:

教学环节教师活动学生活动教学目的
(一)梳理基础知识

(二)
整合拓展

一、提出三个基本问题,学生回答后再小结:
1.磁场存在于何处?
2.磁场的基本特性是什么?
3.什么是磁现象的电本质?
二、用PPT演示本章的基础知识:
1、加深学生对磁感应强度及磁感线的理解,讲解磁感线时引导学生与电场线作比较,找异同点。
2、复习安培定则及左手定则,并编记忆口诀帮助学生区分两个定则的用法。
3、复习磁通量及其计算式,安培力及洛伦兹力的大小计算
4、带电粒子在匀强磁场中的运动分析方法及相关的应用实例,并指出在研究带电粒子在磁场中的圆周运动问题,着重把握“一找圆心,二找半径,三找周期或时间”的规律(对于带电粒子在磁场中的圆周运动问题,着重把握“一找圆心,二找半径,三找周期或时间”的规律)

分类型对本章的主要考点进行逐个击破:
类型一安培力的有关应用
1.结合左手定则判断安培力的方向.
2.关于安培力与其他力共同作用于物体的问题,求解中往往结合受力分析、能量守恒等知识.
讲解例1、在等边三角形的三个顶点a、b、c处各有一条长直导线垂直穿过纸面,导线中通有大小相等的恒定电流,方向如图3-T-1所示.过c点的导线所受安培力的方向()
A.与ab边平行,竖直向上
B.与ab边平行,竖直向下
C.与ab边垂直,指向左边
D.与ab边垂直,指向右边
让学生先读题,教师再提示:电流与电流之间的作用力是一种什么力?学生回答:安培力。教师再进一步启发:C点导线受到的是哪些磁场施加的安培力?要判断安培力的方向,就是先判断什么?
学生回答:a和b电流产生的磁场;先判断磁场的方向。
教师再引导:电流产生的磁场方向用什么宝则来判断?
学生回答:安培定则。教师表示赞同然后一边复习安培定则的记忆口诀:“右手指弯如螺线,安培定则判磁向”,一边让学生分别判断a和b电流产生的磁场在C点的方向。
教师设问:现在怎么样判断C受到的安培力方向?
学生回答:左手定则。然后动手完成例1的问题。
教师小结:电流与电流之间的相互作用是通过磁场产生的,所以要先用安培定则判断磁场的方向,再用左手定则判断受力的方向。如果除安培力后,还受到其他的力,一般还要画受力图,结合物体的运动状态,利用牛顿运动定律来求解:引入变式1的训练。
老师巡查学生练习的情况,然后再小结解题的步骤:先判断安培力的方向及列出其计算公式,再画出导线的受力图,结合共点力平衡条件列方程求解。
类型二带电粒子在电磁场中的运动的实例分析
师:用PPT复习质谱仪、回旋加速器及电磁流量计的原理,然后演示相应例题,让学生先思考,老师再讲解分析思路,再让学生完成相应的变式练习,老师巡查学生练习,然后作针对性讲解,以加深学生对带电粒子在电磁场中运动的实例分析方法的理解与熟悉程度
类型三洛伦兹力引起的动态问题
洛伦兹力的大小与带电粒子运动的速度有关,粒子速度的变化会引起洛伦兹力的变化,又会连锁引起摩擦力的变化,这样粒子的受力情况发生变化,因此引起了其运动状态的变化.
教师用PPT演示例2,让学生认真读题,并提示从受力分析开始入手,
再分析小球的运动情况(包括速度和加速度),要特别注意临界条件,还有动能定理与功能关系的应用。
再让学生动手求解该题,教师巡查学生练习的情况,再针对学生解答中出现的问题进行分析,然后小结求解这类问题的一般方法:
1、先分析研究对象的受力情况,画出受力图
2、再分析对象的运动情况(包括速度和加速度),要特别注意临界条件
3、不要忘记用动能定理及功能关系帮助解题
类型四带电粒子在复合场中的运动
教师归纳带电粒子在复合场中的运动性质,让学生做笔记
带电粒子在电场和磁场两种场中运动的性质:
(1)在电场中
①当粒子运动方向与电场方向平行时,做匀变速直线运动;
②当粒子垂直于电场方向进入时,做匀变速曲线运动(类平抛运动);
(2)在磁场中
①当粒子运动方向与磁场方向一致时,不受洛伦兹力作用,做匀速直线运动;
②当粒子垂直于匀强磁场方向进入时,做匀速圆周运动
教师用PPT演示例3,让学生先认真读题,分析粒子的运动过程,老师在与学生一起分析时提示:求解此类问题的一般方法是:借助示意图把物理过程划分为几个阶段,考虑每个阶段的运动特点和所遵循的规律(强调:对于带电粒子在磁场中的圆周运动问题,着重把握“一找圆心,二找半径,三找周期或时间”的规律)。
让学生根据提示动手做题,老师巡查学生练习的情况,然后用PPT演示解答过程,并从中指出学生答题中出现的主要错误。再用PPT展示题目点评。
老师让学生做变式练习,边巡查学生练习的情况,边作出提示。

在学案中回答老师提出的问题,然后边听讲解边思考老师在复习基础知识过程中提出的问题。

学生在教师的引导下思考回答问题,先完成例1,再完成学案中相应的变式练习

在老师的引导下思考解答例2,认真听老师讲解,并做笔记

学生做笔记

学生在教师的引导下思考回答问题,再完成例1,及学案中相应的变式练习

让学生认识本章的研究重点就是磁场的性质,并对基础知识加深理解。
加强学生对知识重、难点的理解及运用能力
加强学生综合解题能力

让学生加深对带电粒子在复合场中运动的分析方法的理解与掌握。
(四)小结、作业布置教师小结:
1、安培定则与左手定则的区分快捷记忆口诀:
右手指弯如螺线,安培定则判磁向;
左手五指一平面,左手定则判力向。
2、在研究带电粒子在磁场中的圆周运动问题,着重把握“一找圆心,二找半径,三找周期或时间”的规律
作业:1、完成导学案中未完成的题目
2、复习阅读辅助教材,整理基础知识,处理错题

认真听讲,认真体会,并做笔记

磁场学案


一名优秀的教师在教学时都会提前最好准备,作为教师就要根据教学内容制定合适的教案。教案可以更好的帮助学生们打好基础,帮助教师缓解教学的压力,提高教学质量。您知道教案应该要怎么下笔吗?为了让您在使用时更加简单方便,下面是小编整理的“磁场学案”,欢迎阅读,希望您能阅读并收藏。

第三章磁场章末总结学案(粤教版选修3-1)
一、“磁偏转”与“电偏转”的区别
所谓“电偏转”与“磁偏转”是分别利用电场和磁场对运动电荷施加作用,从而控制其运动方向,但电场和磁场对电荷的作用特点不同,因此这两种偏转有明显的差别.
磁偏转电偏转
受力
特征
及运
动规
律若v⊥B,则洛伦兹力f洛=qvB,使粒子做匀速圆周运动,v的方向变化,又导致FB的方向变化,其运动规律可由r=mvqB和T=2πmqB进行描述
电场力F=qE为恒力,粒子做匀变速曲线运动——类平抛运动,其运动规律可由vx=v0,x=v0t,vy=qEmt,y=12qEmt2进行描述
偏转
情况粒子的运动方向能够偏转的角度不受限制,θB=ωt=vrt=qBmt,且相等时间内偏转的角度相等粒子运动方向所能偏转的角度θE<π2,且相等时间内偏转的角度不同
动能
的变
化由于f洛始终不做功,所以其动能保持不变由于F与粒子速度的夹角越来越小,所以其动能不断增大,并且增大得越来越快

图1
例1如图1所示,在空间存在一个变化的匀强电场和另一个变化的匀强磁场.从t=1s开始,在A点每隔2s有一个相同的带电粒子(重力不计)沿AB方向(垂直于BC)以速度v0射出,恰好能击中C点.AB=BC=l,且粒子在点A、C间的运动时间小于1s.电场的方向水平向右,场强变化规律如图2甲所示;磁感应强度变化规律如图乙所示,方向垂直于纸面.求:
图2
(1)磁场方向;
(2)E0和B0的比值;
(3)t=1s射出的粒子和t=3s射出的粒子由A点运动到C点所经历的时间t1和t2之比.

二、有界匀强磁场问题
1.有界磁场及边界类型
(1)有界匀强磁场是指在局部空间存在着匀强磁场,带电粒子从磁场区域外垂直磁场方向射入磁场区域,经历一段匀速圆周运动后,又离开磁场区域.
(2)边界的类型,如图3所示
图3
2.解决带电粒子在有界磁场中运动问题的方法
解决此类问题时,先画出运动轨迹草图,找到粒子在磁场中做匀速圆周运动的圆心位置、半径大小以及与半径相关的几何关系是解题的关键.解决此类问题时应注意下列结论:
(1)刚好穿出或刚好不能穿出磁场的条件是带电粒子在磁场中运动的轨迹与边界相切.
(2)当以一定的速率垂直射入磁场时,运动的弧长越长,圆心角越大,则带电粒子在有界磁场中运动时间越长.
(3)当比荷相同,速率v不同时,在匀强磁场中运动的圆心角越大,运动时间越长.
图4
例2半径为r的圆形空间内,存在着垂直于纸面向里的匀强磁场,一个带电粒子(不计重力)从A点以速度v0垂直磁场方向射入磁场中,并从B点射出.∠AOB=120°,如图4所示,则该带电粒子在磁场中运动的时间为()
A.2πr3v0B.23πr3v0C.πr3v0D.3πr3v0
听课记录:

图5
变式训练1图5是某离子速度选择器的原理示意图,在一半径R=10cm的圆柱形筒内有B=1×10-4T的匀强磁场,方向平行于圆筒的轴线.在圆柱形筒上某一直径两端开有小孔a、b,分别作为入射孔和出射孔.现有一束比荷qm=2×1011C/kg的正离子,以不同角度α入射,最后有不同速度的离子束射出.其中入射角α=30°,且不经碰撞而直接从出射孔射出的离子的速度v的大小是()
A.4×105m/sB.2×105m/s
C.4×106m/sD.2×106m/s
三、洛伦兹力作用下形成多解的问题
带电粒子在洛伦兹力作用下做匀速圆周运动,由于某些条件不确定,使问题出现多解.
1.带电粒子电性不确定形成多解
带电粒子由于电性不确定,在初速度相同的条件下,正、负带电粒子在磁场中运动轨迹不同.
2.磁场方向不确定形成多解
对于某一带电粒子在磁场中运动,若只知道磁感应强度的大小,而不能确定方向,带电粒子的运动轨迹也会不同.
3.临界状态不惟一形成多解
带电粒子在洛伦兹力作用下飞入有界磁场时,由于粒子运动轨迹呈圆弧状,因此,它可能穿过去了,也可能转过大于180°的角度从入射界面这边反向飞出,于是形成了多解.
4.运动的重复性形成多解
带电粒子在部分是电场、部分是磁场的空间运动时,往往运动具有往复性,因而形成多解.
例3如图6所示,长为L的水平极板间,有垂直纸面向里的匀强磁场,磁感应强度为B,板间距离为L,极板不带电.现有质量为m、电荷量为q的带正电粒子(重力不计),从左边极板间中点处垂直磁场以速度v水平入射.欲使粒子不打在极板上,可采用的办法是()
图6
A.使粒子速度v<BqL4m
B.使粒子速度v>5BqL4m
C.使粒子速度v>BqL4m
D.使粒子速度BqL4m<v<5BqL4m
听课记录:

图7
变式训练2如图7所示,左右边界分别为PP′、QQ′的匀强磁场的宽度为d,磁感应强度大小为B,方向垂直纸面向里.一个质量为m、电荷量为q的微观粒子,沿图示方向以速度v0垂直射入磁场.欲使粒子不能从边界QQ′射出,粒子入射速度v0的最大值可能是()
A.BqdmB.2+2Bqdm
C.2-2Bqdm
D.2Bqd2m
【即学即练】
图8
1.如图8所示,一带正电的粒子沿平行金属板中央直线以速度v0射入互相垂直的匀强电场和匀强磁场区域,粒子质量为m、带电荷量为q,磁场的磁感应强度为B,电场强度为E,粒子从P点离开电磁场区域时速度为v,P与中央直线相距为d.下列说法正确的是()
A.粒子在运动过程中所受磁场力可能比所受电场力小
B.粒子沿电场方向的加速度大小始终是Bqv0-Eqm
C.粒子的运动轨迹是抛物线
D.粒子到达P时的速度大小v=v20-2Eqdm
2.
图9
如图9所示,表面粗糙的斜面固定于地面上,并处于方向垂直纸面向外、强度为B的匀强磁场中.质量为m、带电量为+Q的小滑块从斜面顶端由静止下滑.在滑块下滑的过程中,下列判断正确的是()
A.滑块受到的摩擦力不变
B.滑块到达地面时的动能与B的大小无关
C.滑块受到的洛伦兹力方向垂直斜面向下
D.B很大时,滑块可能静止于斜面上
3.
图10
如图10所示,为一速度选择器的原理图,K为电子枪,由枪中沿KA方向射出的电子速度大小不一,当电子通过方向互相垂直的匀强电场和磁场后,只有一定速率的电子能沿直线前进并通过小孔S,设产生匀强电场的平行板间电压为300V,间距为5cm,垂直纸面的匀强磁场的磁感应强度为0.06T,则:(电子的质量不计)
(1)磁场的指向应该向里还是向外?
(2)速度为多大的电子才能通过小孔?

参考答案
知识体系构建
运动FILNBS右BI左BvmvqB2πmqB
解题方法探究
例1(1)垂直纸面向外(2)2v0∶1(3)2∶π
解析(1)由题图可知,电场与磁场是交替存在的,即同一时刻不可能同时既有电场,又有磁场.根据题意,对于同一粒子,从点A到点C,它只受电场力或磁场力中的一种.粒子能在电场力作用下从点A运动到点C,说明受向右的电场力,又因场强方向也向右,故粒子带正电.因为粒子能在磁场力作用下由点A运动到点C,说明它受到向右的磁场力,又因其带正电,根据左手定则可判断出磁场方向垂直于纸面向外.
(2)粒子只在磁场中运动时,它在洛伦兹力作用下做匀速圆周运动.因为AB=BC=l,则运动半径R=l.由牛顿第二定律知:
qv0B0=mv20R,则B0=mv0ql.
粒子只在电场中运动时,它做类平抛运动,从点A到点B方向上,有l=v0t.
从点B到点C方向上,有a=qE0m,l=12at2.解得E0=2mv20ql,则E0B0=2v01.
(3)t=1s射出的粒子仅受到电场力作用,则粒子由A点运动到C点所经历的时间t1=lv0,因E0=2mv20ql,
则t1=2mv0qE0.
t=3s射出的粒子仅受到磁场力作用,则粒子由A点运动到C点所经历的时间t2=14T,因为T=2πmqB0,
所以t2=πm2qB0.故t1∶t2=2∶π.
例2D[从AB弧所对圆心角θ=60°,知t=16T=πm3qB.但题中已知条件不够,没有此选项,另想办法找规律表示t.由匀速圆周运动t=ABv0,从图示分析有R=3r,则:AB=Rθ=3r×π3=33πr,则t=ABv0=3πr3v0.D正确.]
变式训练1C
例3AB[粒子速度的大小将影响到带电粒子轨道半径,分析速度大时粒子运动情况和速度小时粒子的运动情况.问题归结为求粒子能从右边穿出的运动半径临界值r1和从左边穿出的运动半径临界值r2,轨迹如图所示.
粒子刚好从右边穿出时圆心在O点,有r21=L2+r1-L22,得r1=54L.
又因为r1=mv1qB,得v1=5BqL4m,所以v>5BqL4m时粒子能从右边穿出.
粒子刚好从左边穿出时圆心在O′点,有r2=12×L2=L4,得v2=qBL4m.
所以v<qBL4m时,粒子能从左边穿出.]
变式训练2BC
即学即练
1.AD[由题意知,带正电的粒子从中央线的上方离开混合场,说明在进入电、磁场时,竖直向上的洛伦兹力大于竖直向下的电场力.在运动过程中,由于电场力做负功,洛伦兹力不做功,所以粒子的动能减小,从而使所受到的磁场力可能比所受电场力小,选项A正确.又在运动过程中,洛伦兹力的方向不断发生改变,其加速度大小也是变化的,运动轨迹是复杂的曲线而并非简单的抛物线,所以选项B、C错误.由动能定理得:-Eqd=12mv2-12mv20,故选项D正确.]
2.C[据左手定则可知,滑块受到垂直斜面向下的洛伦兹力,C对.随着滑块速度的变化,洛伦兹力大小变化,它对斜面的压力大小发生变化,故滑块受到的摩擦力大小变化,A错.B越大,滑块受到的洛伦兹力越大,受到的摩擦力也越大,摩擦力做功越多,据动能定理,滑块到达地面时的动能就越小,B错.由于开始滑块不受洛伦兹力时就能下滑,故B再大,滑块也不可能静止在斜面上.]
3.(1)垂直纸面向里(2)105m/s
解析(1)因电场力竖直向上,故洛伦兹力应向下,由左手定则可判断,磁场方向应垂直纸面向里.
(2)能通过的电子必须满足qE=qvB,故v=EB代入数据可得v=105m/s.

文章来源:http://m.jab88.com/j/45826.html

更多

最新更新

更多