一名爱岗敬业的教师要充分考虑学生的理解性,准备好一份优秀的教案往往是必不可少的。教案可以让学生能够在教学期间跟着互动起来,有效的提高课堂的教学效率。那么,你知道教案要怎么写呢?为了让您在使用时更加简单方便,下面是小编整理的“高中数学必修四1.2任意角的三角函数章末小结导学案”,欢迎阅读,希望您能够喜欢并分享!
1.2任意角的三角函数章末小结
【学习目标】
1.能够利用终边相同角的表示方法判断角所在的象限,会判断半角和倍角所在的象限。
2.利用三角函数的定义求三角函数值,判断三角函数值的符号。
【新知自学】
知识梳理:
1、任意角
(1)角概念的推广
①按旋转方向不同分为_____、_____、_____;
②按终边位置不同分为_______和_______。
(2)终边与角α相同的角可写成______________
(3)象限角及其集合表示
象限角象限角的集合表示
第一象限角的集合
第二象限角的集合
第三象限角的集合
第四象限角的集合
感悟:
终边落在x轴上的角的集合________________;
终边落在y轴上的角的集合________________;
终边落在坐标轴上的角的集合_______________.
2、弧度制
(1)长度等于_______的弧所对的圆心角叫做1弧度的角,用符号rad表示。
(2)如果半径为r的圆的圆心角α所对弧的长为,那么角α的弧度数的绝对值是|α|=______.
(3)角度与弧度的换算:
①10=π/180rad;②1rad=(180/π)0.
(4)扇形面积的公式:设扇形的弧长为,圆心角大小为α(rad),半径为r,则扇形的面积为S=r=r2α
3、任意角的三角函数
(1)定义:设α是一个任意角,它的终边与单位圆交于点P(x,y),那么:
y叫做α的正弦,记作sinα;
x叫做α的余弦,记作cosα;
y/x叫做α的正切,记作tanα
(2)终边相同角三角函数值(k∈Z)(公式一)sin(α+k2π)=sinα
cos(α+k2π)=cosα
tan(α+k2π)=tanα
(3)三角函数线
有向线段MP为正弦线;
有向线段OM为余弦线;
有向线段AT为正切线
感悟:
1、在解简单的三角不等式时,利用单位圆及三角函数线是一个小技巧.
2、注意易混概念的区别:第一象限角、锐角、小于90°的角是概念不同的三类角,第一类是象限角,第二类、第三类是区间角.
对点练习:
1、若α=k180°+45°(k∈Z),则α在()
A.第一或第三象限B.在第一或第二象限
C.第二或第四象限D.在第三或第四象限
2、已知tanα0,且sinα+cosα0,那么角α的终边在()
A.第一象限B.第二象限
C.第三象限D.第四象限
3、sin2cos3tan4的值()
A.小于0B.大于0
C.等于0D.不存在
4、已知角α的终边过点P(-8m,-6sin30°),且cosα=-45,则m的值为________.
5、已知角α的终边过点P(-3cosθ,4cosθ),其中θ∈π2,π,求α的三角函数值.
【合作探究】
典例精析:
题型一角的集合表示及象限角的判定
例1、(1)写出终边在直线y=3x上的角的集合;
(2)若角θ的终边与6π7角的终边相同,求在[0,2π)内终边与θ3角的终边相同的角;
(3)已知角α是第二象限角,试确定2α、α2所在的象限.
变式练习1:
已知点P(sin5π4,cos3π4)落在角θ的终边上,且θ∈[0,2π),则θ是第________象限角.()
A.一B.二C.三D.四
题型二三角函数的定义
例2、已知角θ的终边上有一点P(x,-1)(x≠0),且tanθ=-x,求sinθ,cosθ.
变式练习2:
已知角θ的顶点与原点重合,始边与x轴的非负半轴重合,终边在直线y=2x上,则cos2θ=().
A.-45B.-35C.35D.45
题型三弧度制的应用
【例3】4已知扇形的周长是6cm,面积是2cm2,则扇形的圆心角的弧度数是()
A.1或4B.1
C.4D.8
变式练习3:
已知半径为10的圆O中,弦AB的长为10.
(1)求弦AB所对的圆心角α的大小;
(2)求α所在的扇形的弧长l及弧所在的弓形的面积S.
题型四三角函数线及其应用
例4、在单位圆中画出适合下列条件的角α的终边的范围.并由此写出角α的集合:
(1)sinα≥32;(2)cosα≤-12.
变式练习4:求下列函数的定义域:
(1)y=2cosx-1;(2)y=lg(3-4sin2x).
【课堂小结】
【当堂达标】
1、已知θ为锐角,则下列选项提供的各值中,可能为sinθ+cosθ的是()
A.43B.35C.32D.12
2、判断下列各式的符号:
(1)sin340°cos265°;(2)sin4tan-234π;
(3)已知|cosθ|=-cosθ且tanθ0.则sincosθcossinθ的符号.
3、已知tanθ=2,则sin2θ+sinθcosθ-2cos2θ等于()
A.-43B.54C.-34D.45
4、已知角α的终边过点P(-3cosθ,4cosθ),其中θ∈π2,π,求α的三角函数值.
5、已知角α终边经过点P(x,-2)(x≠0),且cosα=36x,求sinα、tanα的值.
【课时作业】
1.若α=k180°+45°(k∈Z),则α在().
A.第一或第三象限B.第一或第二象限
C.第二或第四象限D.第三或第四象限
2.与9π4的终边相同的角的集合,表达正确的是().
A.2kπ+45°(k∈Z)B.k360°+94π(k∈Z)
C.k360°-315°(k∈Z)D.kπ+5π4(k∈Z)
3.已知角α的终边过点(-1,2),则cosα的值为().
A.-55B.255C.-255D.-12
4.若sinα<0且tanα>0,则α是().
A.第一象限角B.第二象限角
C.第三象限角D.第四象限角
5.已知角θ的顶点为坐标原点,始边为x轴非负半轴,若P(4,y)是角θ终边上一点,且sinθ=-255,则y=________.
6、如果tanα=m(m≠0)且sinα=mm2+1,那么α所在的象限是()
A.一、二象限B.二、三象限
C.二、四象限D.一、四象限
7、已知角α的终边在直线3x+4y=0上,求sinα+cosα+45tanα.
8、已知sinα-cosα=-55,πα3π2,求tanα的值.
9、已知集合M={α|sinαcosα,0≤α≤π2},N={α|sinαtanα},则M∩N等于()
A.α|π4απ2B.α|0απ4
C.α|π8απ4D.α|0απ8
10、已知A为锐角,lg(1+cosA)=m,lg11-cosA=n,则lgsinA的值为()
A.m+1nB.m-n
C.12m+1nD.12(m-n)
【延伸探究】
若sin2xcos2x,则x的取值范围是()
A.{x|2kπ-34πx2kπ+π4,k∈Z}
B.{x|2kπ+π4x2kπ+5π4,k∈Z}
C.{x|kπ-π4xkπ+π4,k∈Z}
D.{x|kπ+π4xkπ+3π4,k∈Z}
1.1任意角和三角函数
1.1.1任意角
【学习目标】
1、解任意角的概念.
2、边相同的角的含义及表示.
【新知自学】
知识回顾:
回忆初中角的概念:
从一个点引出的两条_________构成的几何图形.
新知梳理:
1.角的定义
高中:一条射线OA由原来的位置,绕着它的________按一定方向旋转到另一位置OB,就形成了角.其中射线OA叫角的_______,射线OB叫角的_______,O叫角的_______.
2.正角、负角、零角概念
把按__________方向旋转所形成的角叫正角;按_______方向旋转所形成的角叫负角;如果一条射线_______________,我们称它形成了一个零角.在不引起混淆的前提下,“角”或“∠”可简记为.
感悟:角的概念推广到任意角,其中包括_________、________、_______,正角可以到正无穷大,负角可以到负无穷大.
对点练习:
1、如果你的手表慢了25分钟,有比较简单的两种校正方式,请问校正时分针分别转过的角度是多少?
3.象限角
角的顶点与原点重合,角的始边与x轴的________________重合,那么,角的终边(除端点外)在第几象限,我们就说这个角是第几象限角.
思考:任意角都可以归结为象限角吗?
锐角都是第一象限角吗?第一象限角都是锐角吗?
4.终边相同的角
所有与角终边相同的角,连同角在内,可构成一个集合________________________,即任一与角终边相同的角,都可以表示成角与________________的和.
对点练习:
2、在与角10030°终边相同的角中,求满足下列条件的角.
(1)最大的负角;
(2)最小的正角;
(3)360°~720°的角.
3.若角α满足180°α360°,角5α与α有相同的始边,且又有相同的终边,那么角α=________.
【合作探究】
典例精析:
一、角的基本概念
例1.下列说法正确的是()
A.三角形的内角必定是第一、二象限角
B.第一象限角必是锐角
C.不相等的角终边必定不同
D.若,则
变式1.下列说法:①锐角都是第一象限角;②第一象限角一定不是负角;③第二象限角大于第一象限角;④第二象限角是钝角;⑤小于1800的角是钝角、直角或锐角.其中正确的命题序号是_________________.
二、象限角
例2.在00~3600间,分别找出与下列各角终边相同的角,并判定它们是第几象限角.
(1)-1200;(2)6600;(3)-9500.
变式练习
2.分别写出与下列各角终边相同的角的集合S,并把S中适合不等式-3600≤β3600的元素β写出来:
(1)4600;(2)-3610.
三、终边相同的角
例3.写出终边在如图所示的直线上的角的集合.
变式练习3.集合M={|=k1800+900,k∈Z}中,各角的终边都在()
A.x轴正半轴上
B.x轴上
C.y轴上
D.x轴正半轴或y轴正半轴上
变式练习:
4.写出终边落在坐标轴上的角的集合S.
【课堂小结】
【当堂达标】
1.下列命题:
①第一象限角是锐角;
②锐角都是第一象限角;
③第一象限角一定不是负角;
④第二象限角大于第一象限角;
⑤第二象限角是钝角;
⑥三角形内角是第一、第二象限的角;
⑦向左转体1周形成的角为360°.
其中是真命题的为__________(把正确命题的序号都写上).
2.下列命题正确的是()
A.-330°与330°都是第四象限角
B.45°角是按顺时针方向旋转形成的
C.钝角都是第二象限角
D.小于90°的角都是锐角
3、分别指出它们是哪个象限的角?
(1)8550;(2)-5100.
4.用集合表示(1)锐角;(2)第一象限角.
5.一个角为300,其终边按逆时针方向旋转两周后的角度数为_________.
6.与-4900终边相同的角的集合是
__________________________,
它们是第________象限的角,其中最小的正角是___________,最大负角是___________.
【课时作业】
1.-11200角所在象限是()
A.第一象限B.第二象限
C.第三象限D.第四象限
2.给出下列四个命题:①-75°角是第四象限角;②225°角是第三象限角;③475°角是第二象限角;④-315°是第一象限角,其中真命题有()
A.1个B.2个C.3个D.4个
3.已知是第三象限角,则1800+是()
A.第一象限角B.第二象限角
C.第三象限角D.第四象限角
4.集合中各角的终边都在()
A.x轴的非负半轴上
B.y轴的非负半轴上
C.x轴或y轴上
D.x轴的非负半轴或y轴的非负半轴上
5.在0o~360o范围内,分别找出与下列各角终边相同的角,并指出它们是哪个象限的角.
(1)-265;(2)-1000o;(3)3900o.
6.已知是第三象限角,则-是第__________象限角.
*7.若是第二象限角,则,分别是第几象限的角?
8.已知角β的终边在直线3x-y=0上.
(1)写出角β的集合S;
(2)写出S中适合不等式-360°β720°的元素.
【延伸探究】
已知角x的终边落在图示阴影部分区域,写出角x组成的集合.
1.3三角函数的诱导公式(小结)
【学习目标】
1.理解正弦、余弦和正切的诱导公式;
2.能正确运用诱导公式将任意角的三角函数化为锐角的三角函数;
3.会解决有关三角函数求值、化简和恒等式证明问题.
预习课本P23---26页,理解记忆下列公式
【新知自学】
知识梳理:
公式一:
公式二:
公式三:
公式四:
记忆方法:“函数名不变,符号看象限”;
公式五:sin(90)=cos,
cos(90)=sin.
公式六:sin(90+)=cos,
cos(90+)=sin.
记忆方法:“正变余不变,符号看象限”;
注意:①公式中的指任意角;
②在角度制和弧度制下,公式都成立;
感悟:用诱导公式可将任意角的三角函数化为锐角的三角函数,其一般步骤是:
(1)______________;(2)________________;(3)_______________
对点练习:
1.化简的结果是()
A.B.
C.D.
2.sin(-)=_______________
3.若,则=________
题型一:利用诱导公式求值
例1.计算:.
变式1.求值:
题型二:利用诱导公式化简
例2.化简:().
变式2.化简:
题型三:利用诱导公式证明三角恒等式
例3.在△ABC中,求证:
.
变式3.在△ABC中,求证:
【课堂小结】
知识----方法---思想
【当堂练习】
1.求下列三角函数值:
(1);(2);
2.已知tanα=m,则
3.若α是第三象限角,则
=_________.
4.化简
【课时作业】
1.设,且为第二象限角,则的值为()
A.B.-
C.D.-
2.化简:得()
A.sin2+cos2B.cos2-sin2
C.sin2-cos2D.±(cos2-sin2)
3.下列三角函数值:①;②;③;④;⑤(其中).其中函数值与的值相等的是()
A.①②B.①③④
C.②③⑤D.①③⑤
4.设A、B、C是三角形的三个内角,下列关系恒成立的是()
A.cos(A+B)=cosC
B.sin(A+B)=sinC
C.tan(A+B)=tanC
D.sin=sin
5.已知sin(+α)=,则sin(-α)值为()
A.B.—C.D.—
6.已知值
7.已知sin是方程5x2-7x-6=0的根,则
的值是.
8.若,则。
9.已知,求
的值.
【延伸探究】
1.已知函数求的值。
2.已知cos(75°+α)=513,α是第三象限角,求sin(195°-α)+cos(α-15°)的值.
1.2.2同角三角函数的基本关系
【学习目标】
1.掌握同角三角函数的基本关系式;
2.灵活运用公式解决变形、求值、证明等问题.
【新知自学】
预习课本P30---33页的内容,
知识回顾:
1、知识回顾:(1)任意角的三角函数是如何定义的?
(2)在单位圆中,任意角的正弦、余弦、正切函数线分别是什么?
对于一个任意角是三个不同的三角函数,从联系的观点来看,三者之间应存在一定的内在联系,你能找出这种同角三角函数之间的基本关系吗?
新知梳理:
1、(1)同角三角函数的基本关系
①平方关系:=_______;(运用三角函数线,体现数形结合)
②商的关系:___________
().(运用定义)
(2)文字叙述:同一个角错误!未找到引用源。的正弦、余弦的_________等于1,商等于角错误!未找到引用源。的_______.
感悟:
在同角的三个三角函数中,可“知一求二”.
对点练习:
1.化简的结果是()
A.sinB.-sin
C.cosD.-cos
2.已知是第二象限角,且sin=,则cos=_________,tan=_________.
3.已知sin=,则
sin4-cos4=_______________.
4.化简:
(1)=;
【合作探究】
典例精析:
题型一:利用同角三角函数关系求值
例1.若sinθ=-45,tanθ0,求cosθ.
变式1.
(1)已知α是第二象限角且tanα=-512,求sinα、cosα的值.
(2)已知tanα=3,求sin2α+2sinαcosα的值.
题型二:利用同角三角函数关系化简、证明
例2.求证
变式2.化简
题型三:正余弦的和、差、积之间的转化
例3、已知sinθ+cosθ=15,θ∈(0,π),试分别求①sinθcosθ;②sinθ-cosθ;③tanθ+.的值。
变式2.已知sinαcosα=18,且π4απ2,则cosα-sinα=_______.
感悟:结合过去学过的代数公式,及其上边的关系式,小组内讨论:sin、sin、sin、这四个式子间的关系。
【课堂小结】
【当堂达标】
1.已知α是第四象限角,cosα=则sinα等于()
A.B.-C.D.-
2.若,,且,则的值为___.
3.已知tan=2,则
=_______________
4.已知sinα-cosα=12,求sin3α-cos3α的值.
【课时作业】
1.若cosα=,且α,则tanα=_____________.
2.化简:
(1)错误!未找到引用源。1-2sin40°cos40°=__________;
(2)=_______________.
3.已知,则tanα=()
A.-1B.C.D.1
4.已知tanα=3,求下列各式的值:
(1)4sinα-cosα3sinα+5cosα;(2)34sin2α+12cos2α.
5.求证:
6.求证:sin4α-cos4α=2sin2α-1.
7.若cosα0,化简1-sinα1+sinα+1+sinα1-sinα=_______________.
【延伸探究】
8.已知sinθ、cosθ是关于x的方程x2-ax+a=0的两个根(a∈R).
(1)求sin3θ+cos3θ的值;
(2)求tanθ+1tanθ的值.
文章来源:http://m.jab88.com/j/45278.html
更多