88教案网

三角形的外角和

老师职责的一部分是要弄自己的教案课件,大家在认真准备自己的教案课件了吧。只有制定教案课件工作计划,才能对工作更加有帮助!你们知道多少范文适合教案课件?考虑到您的需要,小编特地编辑了“三角形的外角和”,大家不妨来参考。希望您能喜欢!

9.1三角形
第4课时三角形的外角和(2)
教学目的
使学生能熟练灵活地利用三角形内角和,外角和以及外角的两条性质进行有关计算.
重点:利用三角形的内角和与外角的两条性质来求三角形的内角或外角.
难点:比较复杂图形,灵活应用三角形外角的性质.
教学过程
一、复习提问
1.三角形的内角和与外角和各是多少?
2.三角形的外角有哪些性质?
二、新授
例1.在△ABC中,∠A=12∠B=13∠C,求△ABC各内角的度数.
分析:由已知条件可得∠B=2∠A,∠C=3∠A所以可以根据三角形的内角和等于180°来解决.
做一做:如图,在△ABC中,AD⊥BC,AE平分∠BAC,∠B=80°,
∠C=46°A
(1)你会求∠DAE的度数吗?与你的同伴交流.
(2)你能发现∠DAE与∠B、∠C之间的关系吗?
(2)若只知道∠B-∠C=20°,你能求出∠DAE的度数吗?
分析:(1)∠DAE是哪个三角形的内角或外角?
(2)在△ADE中,已知什么?要求∠DAE,必需先求什么?
BDEC
(3)∠AED是哪个三角形的外角?
(4)在△AEC中已知什么?要求∠AEB,只需求什么?
(5)怎样求∠EAC的度数?
三、巩固练习
如图,△ABC中,∠BAC=50°,∠B=60°,AD是△ABC的角平分线,求∠ADC,
∠ADB的度数.

2.已知在△ABC中,∠A=2∠B-10°,∠B=∠C+20°.求三角形的各内角的度数.
四、小结
三角形的内角和,外角的性质反映了三角形的三个内角外角是互相联系与制约的,我们可以用它来求三角形的内角或外角,解题时,有时还需添加辅助线,有时结合代数,用方程来解比较方便.
五、作业
补充作业

精选阅读

关注三角形的外角


§6.6关注三角形的外角
●教学目标
(一)教学知识点
1.三角形的外角的概念.2.三角形的内角和定理的两个推论.
(二)能力训练要求
1.经历探索三角形内角和定理的推论的过程,进一步培养学生的推理能力.
2.理解掌握三角形内角和定理的推论及其应用.
(三)情感与价值观要求
通过探索三角形内角和定理的推论的活动,来培养学生的论证能力,拓宽他们的解题思路.从而使他们灵活应用所学知识.
●教学重点三角形内角和定理的推论.
●教学难点三角形的外角、三角形内角和定理的推论的应用.
●教学过程
Ⅰ.巧设现实情境,引入新课
回忆:上节课我们证明了三角形内角和定理,大家来回忆一下:它的证明思路是什么?(通过作辅助线,把三角形中处于不同位置的三个内角集中在一起,拼成一个平角.这样就可以证明三角形的内角和等于180°).
那三角形的外角有什么性质呢?我们这节课就来研究三角形的外角及其应用.
Ⅱ.讲授新课
1、三角形的外角
三角形的一边与另一边的延长线组成的角,叫做三角形的外角.
2、外角的特征:
(1)顶点在三角形的一个顶点上.
(2)一条边是三角形的一边.如:
(3)另一条边是三角形某条边的延长线.
(4)一个三角形有6个外角。
3、外角的性质
议一议
如图,∠1是△ABC的一个外角,∠1与图中的其他角有什么关系呢?
误区:三角形的一个外角等于两个内角的和.它也大于三角形的一个内角.如:
(1)(2)
图(1)中,∠ACD是△ABC的外角,从图中可知:△ACB是钝角三角形.∠ACB∠ACD.所以∠ACD不可能等于△ABC内的任两个内角的和.
图(2)中的△ABC是直角三角形,∠ACD是它的一个外角,它与∠ACB相等.
三角形的一个外角等于和它不相邻的两个内角的和.
三角形的一个外角大于任何一个和它不相邻的内角.
4、什么叫推论
由一个公理或定理直接推导出的定理叫做这个公理或定理的推论。
5、三角形内角和定理的推论的应用
图6-59
[例1]已知,如图6-59,在△ABC中,AD平分外角∠EAC,∠B=∠C,求证:AD∥BC.
6、若证明两个角不相等、或大于、或小于时,该如何证呢?
图6-60
[例2]已知,如图6-60,在△ABC中,∠1是它的一个外角,E是边AC上一点,延长BC到D,连接DE.
求证:∠1∠2.
Ⅲ.课堂练习
Ⅳ.课时小结
主要研究了三角形内角和定理的推论:
推论1:三角形的一个外角等于和它不相邻的两个内角的和.
推论2:三角形的一个外角大于任何一个和它不相邻的内角.
Ⅴ.课后作业
2.预习提纲
用自己的语言梳理本章知识.
Ⅵ.活动与探究
1.如图,求证:(1)∠BDC∠A.
(2)∠BDC=∠B+∠C+∠A.
如果点D在线段BC的另一侧,结论会怎样?

§6.6关注三角形的外角


§6.6关注三角形的外角
●教学目标
(一)教学知识点
1.三角形的外角的概念.
2.三角形的内角和定理的两个推论.
(二)能力训练要求
1.经历探索三角形内角和定理的推论的过程,进一步培养学生的推理能力.
2.理解掌握三角形内角和定理的推论及其应用.
(三)情感与价值观要求
通过探索三角形内角和定理的推论的活动,来培养学生的论证能力,拓宽他们的解题思路.从而使他们灵活应用所学知识.
●教学重点
三角形内角和定理的推论.
●教学难点
三角形的外角、三角形内角和定理的推论的应用.
●教学方法
启发、诱导法.
●教具准备
投影片四张
第一张:想一想(记作投影片§6.6A)
第二张:推论(记作投影片§6.6B)
第三张:例1(记作投影片§6.6C)
第四张:例2(记作投影片§6.6D)
●教学过程
Ⅰ.巧设现实情境,引入新课
上节课我们证明了三角形内角和定理,大家来回忆一下:它的证明思路是什么?
在证明这个定理时,先把△ABC的一边BC延长,这时在△ABC外得到∠ACD,我们把∠ACD叫做三角形ABC的外角.
那三角形的外角有什么性质呢?我们这节课就来研究三角形的外角及其应用.
Ⅱ.讲授新课
那什么叫三角形的外角呢?
像∠ACD那样,三角形的一边与另一边的延长线组成的角,叫做三角形的外角.
外角的特征有三条:
(1)顶点在三角形的一个顶点上.如:∠ACD的顶点C是△ABC的一个顶点.
(2)一条边是三角形的一边.如:∠ACD的一条边AC正好是△ABC的一条边.
(3)另一条边是三角形某条边的延长线.如:∠ACD的边CD是△ABC的BC边的延长线.
把三角形各边向两方延长,就可以画出一个三角形所有的外角.由此可知:一个三角形有6个外角,其中有三个与另外三个相等,所以研究时,只讨论三个外角的性质.
下面大家来想一想、议一议(出示投影片§6.6A)
图6-57
如图6-57,∠1是△ABC的一个外角,∠1与图中的其他角有什么关系呢?能证明你的结论吗?
很好.由此我们得到了三角形的外角的性质(出示投影片§6.6B)
三角形的一个外角等于和它不相邻的两个内角的和.
三角形的一个外角大于任何一个和它不相邻的内角.
.在这里,我们通过三角形内角和定理直接推导出两个新定理,像这样,由一个公理或定理直接推导出的定理叫做这个公理或定理的推论(corollary).
因此这两个结论称为三角形内角和定理的推论.它可以当做定理直接使用.
注意:应用三角形内角和定理的推论时,一定要理解其意思.即:“和它不相邻”的意义.
下面我们来研究三角形内角和定理的推论的应用(出示投影片§6.6C)
[
图6-59
[例1]已知,如图6-59,在△ABC中,AD平分外角∠EAC,∠B=∠C,求证:AD∥BC.
现在大家来想一想:若证明两个角不相等、或大于、或小于时,该如何证呢?(出示投影片§6.6D)
图6-60
[例2]已知,如图6-60,在△ABC中,∠1是它的一个外角,E是边AC上一点,延长BC到D,连接DE.
求证:∠1∠2.
[师生共析]一般证明角不等时,应用“三角形的一个外角大于任何一个和它不相邻的内角”来证明.所以需要找到三角形的外角.
证明:∵∠1是△ABC的一个外角(已知)
∴∠1∠3(三角形的一个外角大于任何一个和它不相邻的内角)
∵∠3是△CDE的一个外角(已知)
∴∠3∠2(三角形的一个外角大于任何一个和它不相邻的内角)
∴∠1∠2(不等式的性质)
[师]很好.下面我们通过练习来进一步熟悉掌握三角形内角和定理的推论.
Ⅲ.课堂练习
(一)课本P201随堂练习1
图6-61
1.已知,如图6-61,在△ABC中,外角∠DCA=100°,∠A=45°.
求∠B和∠ACB的度数.
解:∵∠DCA=∠A+∠B(三角形的一个外角等于和它不相邻的两个内角的和)
∠DCA=100°,∠A=45°(已知)
∴∠B=∠DCA-∠A=100°-45°=55°(等式的性质)
∵∠DCA+∠ACB=180°(1平角=180°)
∴∠ACB=180°-∠DCA(等式的性质)
∵∠DCA=100°(已知)
∴∠ACB=80°(等量代换)
(二)看课本P199~200然后小结
Ⅳ.课时小结
本节课我们主要研究了三角形内角和定理的推论:
推论1:三角形的一个外角等于和它不相邻的两个内角的和.
推论2:三角形的一个外角大于任何一个和它不相邻的内角.
在计算角的度数、证明两个角相等或角的和差倍分时,常常用到三角形内角和定理及推论1.
在几何中证明两角不等的定理只有推论2,所以遇到有证明角不等的题目一定要设法用到它去证明.
Ⅴ.课后作业
(一)课本P201习题6.71、2、3
●板书设计
§6.6关注三角形的外角
一、三角形的外角

其特征②

二、三角形内角和定理的推论:
三角形的一个外角等于和它不相邻的两个内角的和.
三角形的一个外角大于任何一个和它不相邻的内角.
三、例题
例1例2
四、课堂练习
五、课时小结
六、课后作业

11.2与三角形有关的角11.2.2三角形的外角学案新版新人教版


每个老师不可缺少的课件是教案课件,大家在认真写教案课件了。只有写好教案课件计划,未来工作才会更有干劲!你们知道适合教案课件的范文有哪些呢?以下是小编为大家精心整理的“11.2与三角形有关的角11.2.2三角形的外角学案新版新人教版”,希望能为您提供更多的参考。

11.2.2三角形的外角
1.探索并了解三角形的外角的两条性质.
2.利用学过的定理论证这些性质.
3.利用三角形的外角性质解决与其有关的实际问题.
阅读教材P14~15,完成预习内容.
1.如图1,把△ABC的一边BC延长,得到∠ACD.像这样,三角形的一边与另一边的延长线组成的角,叫做____________.
图1
如图2,一个三角形有________个外角.每个顶点处有________个外角.
图2

2.如图1,△ABC中,∠A=80°,∠B=40°,∠ACD是△ABC的一个外角,则∠ACD=________.试猜想∠ACD与∠A,∠B的关系是____________.
3.试结合图形写出证明过程:
证明:过点C作CM∥AB,延长BC到D.
则∠1=∠A(两直线平行,内错角相等),
∠2=∠B(两直线平行,同位角相等),
所以∠1+∠2=∠A+∠B,
即________=∠A+∠B.
知识探究
一般地,由三角形内角和定理可以推出:
三角形的外角等于与它不相邻的________________.
自学反馈
1.判断下列∠1是哪个三角形的外角:
2.求下列各图中∠1的度数.
活动1小组讨论
1.如图∠1+∠2+∠3=?
解:∠1+∠BAC=180°,
∠2+∠ABC=180°,
∠3+∠ACB=180°,
三个式子相加得到:
∠1+∠2+∠3+∠BAC+∠ABC+∠ACB=540°.
而∠BAC+∠ABC+∠ACB=180°,
所以∠1+∠2+∠3=360°.
2.结论:三角形的外角和是360°.
活动2跟踪训练
1.求下列各图中∠1的度数.

2.求下列各图中∠1和∠2的度数.
3.已知三角形各外角的比为2∶3∶4,求它的每个外角的度数?
4.如图,AB∥CD,∠A=40°,∠D=45°,求∠1和∠2.
活动3课堂小结
三角形外角的性质:
1.三角形的一个外角等于与它不相邻的两个内角的和.
2.三角形的外角和是360°.
【预习导学】
1.三角形的外角622.120°∠A+∠B=∠ACD
3.∠ACD
知识探究
两个内角的和
自学反馈
1.略.2.略.
【合作探究】
活动2跟踪训练
1.∠1=90°∠1=80°∠1=95°.2.略.3.设三个外角度数分别为2x、3x、4x,由三角形外角和为360°,得2x+3x+4x=360°.解得x=40°.所以三个外角度数分别为80°,120°,160°.4.∠1=40°,∠2=85°.

文章来源:http://m.jab88.com/j/45088.html

更多

最新更新

更多