牛顿第三定律、超重和失重
◎知识梳理
1.牛顿第三定律
(1).作用力和反作用力一定是同种性质的力,而平衡力不一定;
(2).作用力和反作用力作用在两个物体上,而一对平衡力作用在一个物体上
(3).作用力和反作用力同时产生、同时变化、同时消失;而对于一对平衡力,其中一个力变化不一定引起另外一个力变化
两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在一条直线上,公式可写为。
作用力与反作用力的二力平衡的区别
内容作用力和反作用力二力平衡
受力物体作用在两个相互作用的物体上作用在同一物体上
依赖关系同时产生,同时消失相互依存,不可单独存在无依赖关系,撤除一个、另一个可依然存在,只是不再平衡
叠加性两力作用效果不可抵消,不可叠加,不可求合力两力运动效果可相互抵消,可叠加,可求合力,合力为零;形变效果不能抵消
力的性质一定是同性质的力可以是同性质的力也可以不是同性质的力
2.超重和失重
超重现象是指:NG或TG;加速度a向上;
失重现象是指:GN或GT;加速度a向下;
完全失重是指:T=0或N=0;加速度a向下;大小a=g
3.力学基本单位制:(在国际制单位中)
基本单位和导出单位构成单位制.
a:长度的单位——米;b:时间的单位——秒;c:质量的单位——千克
4.牛顿运动定律只适应于宏观低速,且只适应于惯性参照系。
◎例题评析
【例15】弹簧下端挂一个质量m=1kg的物体,弹簧拉着物体在下列各种情况下,弹簧的示数:(g=10m/s2)
(1)、弹簧秤以5m/s的速度匀速上升或下降时,示数为。
(2)、弹簧秤以5m/s2的加速度匀加速上升时,示数为。
(3)、弹簧秤以5m/s2的加速度匀加速下降时,示数为。
(4)、弹簧秤以5m/s2的加速度匀减速上升时,示数为。
(5)、弹簧秤以5m/s2的加速度匀减速下降时,示数为。
【分析与解答】(1)10N(2)15N(3)5N(4)5N(5)15N
【例16】如图所示,浸在液体中的小球固定在轻弹簧的一端,弹簧另一端固定在容器底部,已知小球密度ρ,液体密度为ρ1(ρρ1),体积为V,弹簧劲度系数为K,求下列两种情况下弹簧的形变量:(1)整个系统匀速上升;(2)整个系统自由下落。
【分析与解答】:(1)小球受力为:重力,弹簧弹力,液体浮力,设小球体积为V,弹簧形变量为,整个系统匀速上升,小球受力平衡,则:
(2)在整个系统自由下落时,在地面的观察者看来,小球自由下落,由于物体处于完全失重状态,浮力消失,f=0,因此F也为零,即。
【例17】电梯地板上有一个质量为200kg的物体,它对地板的压力随时间变化的图象如图所示.则电梯从静止开始向上运动,在7s内上升的高度为多少?
【分析与解答】:以物体为研究对象,在运动过程中只可能受到两个力的作用:重力mg=2000N,地板支持力F.在0~2s内,F>mg,电梯加速上升,2~5s内,F=mg,电梯匀速上升,5~7s内,F<mg,电梯减速上升.
若以向上的方向为正方向,由上面的分析可知,在0~2s内电梯的加速度和上升高度分别为
a1==m/s2=5m/s2
电梯在t=2s时的速度为
v=a1t1=5×2m/s=10m/s,
因此,在2~5s内电梯匀速上升的高度为
h2=vt2=10×3m=30m.
电梯在5~7s内的加速度为
a2==m/s2=-5m/s2
即电梯匀减速上升,在5~7s内上升的高度为
h3=vt3+a2t32
=10×2m-×5×22m=10m
所以,电梯在7s内上升的总高度为
h=h1+h2+h3=(10+30+10)m=50m.
答案:50m
◎能力训练5
1.某同学要在升降机内用天平来称量质量,下列哪些情况可以实现?
A.升降机匀速下降
B.升降机减速下降
C.升降机做自由落体运动
D.升降机减速上升,但加速度数值小于重力加速度
2.如图所示,一根细线一端固定在容器的底部,另一端系一木球,木块浸没在水中,整个装置在台秤上,现将细线割断,在木球上浮的过程中不计水的阻力,则台秤上的示数:
A.增大B.减小C.不变D.无法确定
3.如图,在倾角为θ的斜面上,放置质量为2m和m两木块,中间连一尚未发生形变的轻弹簧,两木块同时由静止释放,在斜面光滑和不光滑两种情况下,弹簧(两木块与斜面的摩擦因数相同)
A.均被压缩B.均被拉长C.前者保持原长,后者被压缩D.均保持原长
4.某人在地面上最多能举起60kg的重物,当此人站在以5m/s2的加速度加速上升的升降机中,最多能举起多少千克的重物?(g取10m/s2)
5.一种能获得强烈失重、超重感觉的巨型娱乐设施中,用电梯把乘有10多人的座舱送到大约二十几层楼高的高处,然后让座舱自由落下,落到一定位置时,制动系统开始启动,座舱匀减速运动到地面时刚好停下.已知座舱开始下落时的高度为76m,当落到离地面28m时开始制动.若某人手托着质量为5kg的铅球进行这个游戏,问:
(1)当座舱落到离地高度40m左右的位置时,托着铅球的手感觉如何?
(2)当座舱落到离地高度15m左右的位置时,手要用多大的力才能托住铅球?(g取10m/s2)
●模拟测试
一、选择题
1.牛顿是物理学史上最伟大的科学家,他的一生对物理学产生了巨大的贡献,但他还是虚心地说“我之所以比别人看得远些,是因为我站在了巨人的肩上。”牛顿所说的巨人是指
(A)亚里士多德;(B)伽利略;(C)笛卡尔;(D)法拉第。
2.意大利的物理学家伽利略提出“著名的斜面试验”,逐渐增大斜面倾角并由此推理得出的结论是
A.自由落体运动是一种匀变速直线运动.B.无论物体是否运动,都具有惯性.
C.力不是维持物体运动的原因.D.力是使物体产生加速度的原因.
3.在人类登上月球之前,科学家曾经担心人类踏上月球表面的时候,会使月面上的灰尘扬起来淹没宇航员,尘土长时间内不会沉下来,科学家的担心是因为考虑到
A.月球上的重力加速度较小.B.月球上没有水.
C.月球上没有空气.D.月球上的温差太大.
4.如图所示,小车内有一个光滑的斜面,当小车在水平轨道上做匀变速直线运动时,小物块A恰好能与斜面保持相对静止.在小车运动过程中的某时刻,突然使小车停止,则物体A的运动可能
(A)沿斜面加速下滑
(B)沿斜面减速上滑
(C)仍与斜面保持相对静止
(D)离开斜面做平抛运动
5.如图所示,ab、cd是竖直平面内两根固定的细杆,a、b、c、d位于同一圆周上,圆周半径为R,b点为圆周的最低点,c点为圆周的最高点。现有两个小滑环A、B分别从a、c处由静止释放,滑环A经时间t1从a点到达b点,滑环B经时间t2从c点到达d点;另有一小球C从b点以初速度v0=4gR沿bc连线竖直上抛,到达最高点时间为t3,不计一切阻力与摩擦,且A、B、C都可视为质点,则t1、t2、t3的大小关系为
(A)t1=t2=t3
(B)t1=t2>t3
(C)t2>t1>t3
(D)A、B、C三物体的质量未知,因此无法比较
6.如图所示,在空雪碧瓶底四周钻几个小孔,盛满水后,让盛满水的雪碧瓶自由下落,则下落过程中不可能出现的图是
7.竖直向上射出的子弹,达到最高点后又返回原处,假设整个运动过程中,子弹受到的阻力与速度的大小成正比,则整个过程中,加速度大小的变化是
A.始终变大B.始终变小
C.先变大后变小D.先变小后变大
8.质量为m1和m2的两个物体,由静止开始从同一高度下落,运动中所受阻力分别为f1和f2,如果物体m1先落在地面,那是因为………………………
A.m1m2B.f1f2
C.D.
9.如图所示,物体静止于光滑水平面M上,力F作用于物体O点,现要使物体沿着OO‘方向做匀加速运动(F和OO’都在M平面内),那么必须同时再加一个力F1,这个力的最小值为…………………………………………………………………………
A.
B.
C.
D.
10.一质点由静止开始,先做匀加速运动,接着做匀速运动,最后做末速度为零的匀减速运动,三个过程所经历的时间之比为3:4:1,全过程中的最大速度为v.则全过程的平均速度为
A.V/3B.V/4C.3V/4D.4V/5
二.填空题
11.一电梯启动时匀加速上升,加速度为2m/s2,制动时匀减速上升,加速度为-1m/s2,上升高度为52米。则当上升的最大速度为6m/s时,电梯升到楼顶的最短时间是s。如果电梯先加速上升,最后减速上升,全程共用时间为16s,则上升的最大速度是m/s。
12.放在水平地面上的一物块,受到方向不变的水平推力F的作用,F的大小与时间t的关系和物块速度v与时间t的关系如图所示。取重力加速度g=10m/s2。由此两图线可以求得物块的质量m=kg和物块与地面之间的动摩擦因数
μ=。
13.缆车沿着坡度为300的山坡以加速度a上行。在缆车中放一个与山坡表面平行的斜面,
斜面上放一个质量为m的小物块,小物块相对斜面静止,如图。小物块受到的摩擦力大小为_____________,方向___________________。(设缆车保持竖直状态运行)
三.计算题
14(12分).如图,倾角θ=370的光滑斜面底端有一挡板,斜面上有质量分别为mA=1kg、mB=2kg的两物块A、B,用劲度系数为K=200N/m的轻弹簧相连,并处于静止状态。现用一沿斜面向上的恒力F拉动物块A,经时间t=0.2s使B恰离开挡板,此时A的加速度大小为aA=1m/s2.(取sin370=0.6,cos370=0.8,g=10m/s2)求:
(1)从开始到B刚离开挡板时A移动的位移?
(2)作用在物体A上拉力F的大小?
15.如图所示,木块重60N,放在倾角θ=37°的斜面上,用F=10N的水平力推木块,木块恰能沿斜面匀速下滑,求:
(1)木块与斜面间的摩擦力大小;
(2)木块与斜面间的动摩擦因数.
(sin37°=0.6,cos37°=0.8)
16.(12分)A、B两个物体用细绳相连在一起,用竖直向上的拉力F将它们向上提起,如图所示.细绳能承受的最大拉力为100N,两个物体的质量都为5kg,要使绳子在提起两物体的过程中绳不被拉断,求拉力F的范围.(g取10m/s)
17.喷气式飞机在高空飞行时发动机向后喷出高速气体,使飞机受到一向前的推力。飞机在某一高度飞行时,竖直方向合力为零,飞机在竖直方向除受重力外还受向上的升力,飞机所受向上的升力是由机翼上下表面的压力差产生的,飞机的机翼后部装有襟翼,调整襟翼的角度,可改变升力的大小。飞机飞行时还受空气阻力,实验证实飞机所受空气阻力与速度平方成正比,即f=Kv2,K为空气阻力系数,空气阻力系数与飞机的形状、大小、襟翼的角度等因素有关,当飞机载重增大时,所需升力也增大,调整襟翼的角度可增大升力,这时空气阻力系数也将增大。
有一总质量为M的喷气式客机在上海机场升空到某一高度后水平飞向北京,升空到这一高度时客机的速度为V1,加速度为a1。经一段时间速度变为V2,此时的加速度为a2,再经一段时间速度变为V3,此时客机所受合力为零。客机加速过程中推力不变,由于客机加速过程时间较短,客机耗油量忽略不计,空气阻力系数恒为K,求:
(1)机翼上下表面的有效面积均为S,加速过程中机翼上下表面的压强差△P为多少?
(2)a1与a2的比值为多少?
(3)客机速度达V3后以这一速度匀速飞往北京,匀速飞行时客机发动机的平均功率为P,经时间t客机飞至北京上空时(高度未变),机翼上下表面的压强差减小为△P′。客机飞至北京上空时空气阻力系数变大、变小、还是不变?简要说明理由。客机从上海匀速飞至北京上空的过程中客机的耗油量为多少?克服阻力所做的功为多少?
18.如图所示,质量分别为=1kg和=2kg的A、B两物块并排放在光滑水平面上,若对A、B分别施加大小随时间变化的水平外力和,若=(9-2t)N,=(3+2t)N,则:
(1)经多长时间两物块开始分离?
(2)在同一坐标中画出两物块的加速度和随时间变化的图像?
(3)速度的定义为v=/st,“v-t”图像下的“面积”在数值上等于位移s;加速度的定义为a=v/t,则“a-t”图像下的“面积”在数值上应等于什么?
(4)由加速度和随时间变化图像可求得A、B两物块分离后2s其相对速度为多大?
一位优秀的教师不打无准备之仗,会提前做好准备,作为高中教师就要根据教学内容制定合适的教案。教案可以更好的帮助学生们打好基础,帮助高中教师提高自己的教学质量。怎么才能让高中教案写的更加全面呢?下面是小编为大家整理的“超重和失重”,希望能对您有所帮助,请收藏。
教学目标
1、知识目标:
(1)知道什么是超重和失重.
(2)知道产生超重和失重的条件.
2、能力目标:观察能力、对知识的迁移能力
3、情感目标:培养学生学习兴趣,开阔视野.
教学建议
教材分析
本节通过对运动的升降机中测力计的示数变化,讨论了什么是超重现象、失重现象以及完全失重现象,并指出了它们的产生条件.
教法分析
1、通过实例让学生分清“实重”和“视重”.从而建立超重和失重的概念.同时认识到物体的重力大小是不会随运动状态变化而变化的.
2、依据力和运动的关系明确给出超重和失重的产生条件.
3、借助实验和课件建立感性认识,辅助理解;与实际生活紧密联系,激发学习兴趣.
教学设计示例
教学重点:超重和失重的概念及产生条件.
教学难点:视重和实重的区别.
示例:
(一)什么是超重和失重
视频:台秤称物体视重.
问题:1、物体的实际重力变化了没有?2、台秤的视数变化了没有?怎样变的?3、物体的重力和台秤的视数反映的力从性质上说有什么不同?
通过学生的观察和讨论引出(分析时要建立如课本所示的模型):
实重:即物体的实际重力,它不随物体运动状态变化而变化的.
视重:指物体对支持物的压力或悬挂它的物体的拉力,它随物体运动状态变化而变化.
超重:视重大于实重的现象.
失重:视重小于实重的现象.
完全失重:视重等于零的现象.
(二)超重和失重的产生条件
分析典型例题1,总结出物体超重还是失重仅与其运动的加速度方向有关,而与其运动方向无关.
超重产生条件:物体存在竖直向上的加速度.设物体向上的加速度为,则该物体的视重大小为.
失重产生条件:物体存在竖直向下的加速度.设物体向下的加速度为,则该物体的视重大小为.当时,=0,出现完全失重现象.
当物体运动加速度=0时,视重等于实重,即物体对水平面的压力或悬绳对物体的拉力大小等于物体的重力.
为了加强感性认识,提供课件:完全失重现象.(也可作该实验)
探究活动
题目:做一个关于失重或超重的实验装置(或设计一个小实验)
(提示:用火柴盒和发光二极管演示完全失重现象)
组织:自愿结组.
方式:展示、比赛,评出优胜奖.
评价:培养学生动手能力和学习兴趣.
高三物理《超重和失重现象》必备知识点
1.超重现象
定义:物体对支持物的压力大于物体所受重力的情况叫超重现象。
产生原因:物体具有竖直向上的加速度。
2.失重现象
定义:物体对支持物的压力(或对悬挂物的拉力)小于物体所受重力的情况叫失重现象。
产生原因:物体具有竖直向下的加速度。
3.完全失重现象
定义:物体对支持物的压力等于零的情况即与支持物或悬挂物虽然接触但无相互作用。
产生原因:物体竖直向下的加速度就是重力加速度,即只受重力作用,不会再与支持物或悬挂物发生作用。是否发生完全失重现象与运动方向无关,只要物体竖直向下的加速度等于重力加速度即可。
【超重和失重就是物体的重量增加和减小吗?】
答:不是。
只有在平衡状态下,才能用弹簧秤测出物体的重力,因为此时弹簧秤对物体的支持力(或拉力)的大小恰等于它的重力。假若系统在竖直方向有加速度,那么弹簧秤的示数就不等于物体的重力了,大于mg时叫“超重”小于mg叫“失重”(等于零时叫“完全失重”)。
注意:物体处于“超重”或“失重”状态,地球作用于物体的重力始终存在,大小也无变化。发生“超重”或“失重”现象与物体的速度V方向无关,只取决于物体加速度的方向。在“完全失重”(a=g)的状态,平常一切由重力产生的物理现象都会完全消失,比如单摆停摆、浸在水中的物体不受浮力等。
另外,“超重”或“失重”状态还可以从牛顿第二定律的独立性(是指作用于物体上的每一个力各自产生对应的加速度)上来解释。上述状态中物体的重力始终存在,大小也无变化,自然其产生的加速度(通常称为重力加速度g)是不发生变化的,自然重力不变。
4.6超重和失重学案(粤教版必修1)
1.力的合成和分解的两种重要方法是:_________________、____________________.
2.匀变速直线运动的规律:vt=______________,s=________________________,v2t-v20=2asv=________________=.
3.自由落体运动的规律:vt=______,s=________________,v2t=2gs
4.牛顿第二定律:F=ma,特点是:______性、矢量性、同向性.
5.(1)视重:重力是地球对物体的吸引作用,当物体挂在竖直方向放置的弹簧秤下或放在水平台秤上时,弹簧秤或台秤的示数称为“______”,大小等于测力计所受拉力或台秤所受的压力.视重实际上反映的是“弹力”,只有在平衡状态时,这个“弹力”即______与物体的______才有相等的关系.
(2)超重现象:当物体处于非平衡状态时,物体对________________(或对悬挂物的拉力)大于______________的情况,即______大于______时,称为超重现象.
(3)失重现象:当物体处于非平衡状态时,物体对__________________(或对悬挂物的拉力)小于______________的情况,即______小于______时,称为失重现象.
(4)完全失重:当物体处于非平衡状态时,物体对支持物的压力(或对悬挂物的拉力)________的状态,即视重________时,称为完全失重状态.
6.产生超重或失重现象的条件
(1)物体具有________________时产生超重现象.
(2)物体具有________________时产生失重现象.
(3)物体具有__________________时,物体出现完全失重状态.
超重和失重
[问题情境]
小星家住十八楼,每天上学放学均要乘垂直升降电梯上下楼.上学时,在电梯里,开始他总觉得有种“飘飘然”的感觉,背的书包也感觉变“轻”了.快到底楼时,他总觉得自己有种“脚踏实地”的感觉,背的书包也似乎变“重”了.这是什么原因呢?
[要点提炼]
1.视重:当物体挂在弹簧测力计下或放在水平台秤上时,弹簧测力计或台秤的示数称为“视重”,大小等于测力计所受的拉力或台秤所受的压力.
2.超重、失重的分析
特征
状态加速
度a视重(F)
与重力
(mg)关系运动情况受力示
意图
平衡a=0F=mg静止或____________
超重向上F=m(g+
a)mg向上________或向下______运动
失重向下F=m(g-
a)mg向下________或向上________运动
完全
失重a=gF=0自由落体运动、抛体运动、正常运行的卫星
[问题延伸]
超重和失重是常见的现象,那么当物体发生超重或失重现象时,物体的重力真的增加或减少了吗?超重和失重现象的实质是什么?你是怎样理解的?
例1弹簧上挂一个质量m=1kg的物体,在下列各种情况下,弹簧秤的示数各为多少?(取g=10m/s2)
(1)以v=5m/s的速度匀速下降;
(2)以a=5m/s2的加速度竖直加速上升;
(3)以a=5m/s2的加速度竖直加速下降;
(4)以重力加速度g竖直减速上升.
变式训练1一个人站在磅秤上,在他蹲下的过程中,磅秤的示数将()
A.先小于体重,后大于体重,最后等于体重
B.先大于体重,后小于体重,最后等于体重
C.先小于体重,后等于体重
D.先大于体重,后等于体重
例2北京欢乐谷游乐场天地双雄是目前亚洲唯一的双塔太空梭.它是能体验强烈失重、超重感觉的娱乐设施,先把乘有十多人的座舱,送到76m高的地方,让座舱自由落下,当落到离地面28m时制动系统开始启动,座舱匀减速运动到地面时刚好停止.若某游客手中托着质量为1kg的饮料瓶进行这个游戏,g取9.8m/s2,问:
(1)当座舱落到离地面高度为40m的位置时,饮料瓶对手的作用力多大?
(2)当座舱落到离地面高度为15m的位置时,手要用多大的力才能托住饮料瓶?
图1
变式训练2如图1所示,电梯的顶部挂有一个弹簧秤,秤下端挂了一个重物,电梯匀速直线运动时,弹簧秤的示数为10N,在某时刻电梯中的人观察到弹簧秤的示数变为8N,关于电梯的运动,以下说法正确的是()
A.电梯可能向上加速运动,加速度大小为2m/s2
B.电梯可能向下加速运动,加速度大小为2m/s2
C.电梯可能向上减速运动,加速度大小为2m/s2
D.电梯可能向下减速运动,加速度大小为2m/s2
【即学即练】
1.下列说法中正确的是()
A.体操运动员双手握住单杠吊在空中不动时处于失重状态
B.蹦床运动员在空中上升和下落过程中都处于失重状态
C.举重运动员在举起杠铃后不动的那段时间内处于超重状态
D.游泳运动员仰卧在水面静止不动时处于失重状态
图2
2.如图2所示,斜面体始终处于静止状态,当物体沿斜面下滑时有()
A.匀速下滑时,M对地面压力等于(M+m)g
B.加速下滑时,M对地面压力小于(M+m)g
C.减速下滑时,M对地面压力小于(M+m)g
D.无论如何下滑,M对地面压力始终等于(M+m)g
图3
3.直升机悬停在空中向地面投放装有救灾物资的箱子,如图3所示.设投放初速度为零,箱子所受的空气阻力与箱子下落速度的平方成正比,且运动过程中箱子始终保持图示姿态.在箱子下落过程中,下列说法正确的是()
A.箱内物体对箱子底部始终没有压力
B.箱子刚从飞机上投下时,箱内物体受到的支持力最大
C.箱子接近地面时,箱内物体受到的支持力比刚投下时大
D.若下落距离足够长,箱内物体有可能不受底部支持力而“飘起来”
图4
4.升降机地板上放一个弹簧式台秤,秤盘上的物体质量为20kg.如图4所示.
(1)当升降机以4m/s的速度匀速上升时,台秤的读数是多少?
(2)当升降机以1m/s2的加速度匀加速竖直上升时,台秤的读数是多少?
(3)当升降机以1m/s2的加速度匀减速上升时,台秤的读数是多少?
参考答案
课前自主学习
1.平行四边形定则(或三角形定则)力的正交分解法
2.v0+atv0t+12at212(v0+vt)
3.gt12gt24.瞬时
5.(1)视重视重重力(2)支持物的压力物体所受重力视重重力(3)支持物的压力物体所受重力
视重重力(4)等于零等于零
6.(1)向上的加速度(2)向下的加速度(3)向下的加速度a=g
核心知识探究
[问题情境]
每个人在乘电梯时都会有这种感觉,这就是我们常说的超重、失重现象.只要你留心观察,在我们的日常生活中就会发现许多超重、失重现象.
[要点提炼]
2.匀速直线运动加速减速加速减速
[问题延伸](1)物体处于超重或失重状态时,物体所受的重力始终不变,只是物体对支持物的压力或对悬挂物的拉力发生了变化,看起来物重好像有所增大或减小,这是超重和失重的实质.
(2)发生超重或失重的现象与物体的速度方向无关,只取决于物体加速度的方向.
(3)物体具有向上的加速度,其运动状态可以是加速向上,也可以是减速下降,这时物体对支持物的压力将大于物体的重力,物体处于超重状态,超出的部分为ma;物体减速上升或加速下降时,具有向下的加速度,物体对支持物的压力将小于物体的重力,这时物体处于失重状态.
解题方法探究
例1(1)10N(2)15N(3)5N(4)0N
解析对物体受力分析,如图所示.
(1)匀速下降时,由平衡条件得F=mg=10N.
(2)取向上为正方向,由牛顿第二定律,知F-mg=ma,F=m(g+a)=15N.
(3)取向下方向为正方向,由牛顿第二定律,知mg-F=ma,F=m(g-a)=5N.
(4)取向下方向为正方向,由牛顿第二定律,知mg-F=mg,F=0N
处于完全失重状态.
变式训练1A[人蹲下的过程经历了加速向下,减速向下和静止这三个过程.
在加速向下时,人获得向下的加速度a,由牛顿第二定律得:
mg-FN=ma
FN=m(g-a)mg
由此可知弹力FN将小于重力mg.
在向下减速时,人获得向上的加速度a,由牛顿第二定律得:
FN-mg=ma
FN=m(g+a)mg
弹力FN将大于mg.
当人静止时,FN=mg.]
例2(1)0(2)41.16N
解析(1)在离地面高于28m时,座舱做自由落体运动,处于完全失重状态,因为40m28m所以饮料瓶对手没有作用力,由牛顿第三定律可知,手对饮料瓶也没有作用力.
(2)设手对饮料瓶的作用力为F,座舱自由下落高度为h1后的速度为v,制动时的加速度为a,制动高度为h2,由v2t-v20=2as得,v2t=2gh1,v2t=2ah2
联立解得,a=h1h2g
对饮料瓶根据牛顿运动定律F-mg=ma得,F=mg(h1h2+1)=mgh1+h2h2
代入数据得,F=41.16N.
变式训练2BC[由电梯做匀速直线运动时,可知重物的重力为10N,质量为1kg;当弹簧秤的示数变为8N时,则重物受到的合力为2N,方向竖直向下,由牛顿第二定律得物体产生向下的加速度,大小为2m/s2,因没有明确电梯的运动方向,故电梯可能向下加速,也可能向上减速.]
即学即练
1.B[当加速度方向竖直向下时,物体处于失重状态;当加速度方向竖直向上时,物体处于超重状态,蹦床运动员在空中上升和下降的过程中加速度方向均竖直向下,且a=g,为完全失重状态,所以B正确.而A、C、D中运动员均为平衡状态,F=mg,既不超重也不失重.]
2.AB[对M和m组成的系统,当m匀速下滑时,系统在竖直方向上没有加速度,所以不失重也不超重,对地面的压力等于系统的重力;当m加速下滑时,整个系统在竖直方向上有向下的加速度,处于失重状态,对地面的压力小于系统的重力.当m减速下滑时,系统在竖直方向上具有向上的加速度,处于超重状态,对地面的压力大于系统的重力.]
3.C[对于箱子和箱内物体组成的整体,a=M+mg-fM+m,随着下落速度的增大,空气阻力f增大,加速度a减小直至箱子做匀速运动时a=0.对箱内物体,mg-FN=ma,所以FN=m(g-a)将逐渐增大,故C正确,A、B、D错.]
4.(1)200N(2)220N(3)180N
解析选取物体为研究对象,它受两个力,重力mg和支持力FN,FN的大小即为台秤的读数.
(1)当升降机匀速上升时,a=0
所以FN-mg=0,FN=mg=200N.
(2)当升降机匀加速上升时,a方向向上,由牛顿第二定律得FN-mg=ma,FN=m(g+a)=220N.
(3)当升降机匀减速上升时,a方向向下,由牛顿第二定律得mg-FN=ma,FN=m(g-a)=180N.
文章来源:http://m.jab88.com/j/3798.html
更多