88教案网

几何概型

经验告诉我们,成功是留给有准备的人。高中教师要准备好教案,这是老师职责的一部分。教案可以让讲的知识能够轻松被学生吸收,让高中教师能够快速的解决各种教学问题。关于好的高中教案要怎么样去写呢?小编经过搜集和处理,为您提供几何概型,希望能对您有所帮助,请收藏。

总课题概率总课时第24课时
分课题几何概型(一)分课时第1课时
教学目标了解几何概型的基本特点;会进行简单的几何概率计算.
重点难点几何概型概率的求法.
引入新课
1.(1)取一根长度为的绳子,拉直后在任意位置剪断,那么剪的两段长都
不小于的概率有多大?
(2)射箭比赛的箭靶涂有五个彩色得分环,从外向内为白色、黑色、蓝色、红色、靶心为金色,金色靶心叫“黄心”,奥运会的比赛靶面直径为,靶心直径为,运动员在外射箭,假设射箭都能中靶,且射中靶面内任一点都是等可能的,那么射中黄心的概率为多少?
在这两个问题中,有多少个基本事件?属于古典概型吗?
能否用古典概型的方法求解?怎么办?

2.几何概型的定义及特点:

3.几何概型概率的计算:

4.几何概型与古典概型的联系与区别:

例题剖析
例1取一个边长为的正方形及其内切圆,随机向正方形内丢一粒豆子,
求豆子落入圆内的概率.

例2甲、乙两人约定于6时到7时之间在某地会面,并约定先到者应等候
另一个人一刻钟,过时立即离去,求两人能会面的概率.

例3在1高产小麦种子中混入了一粒带麦锈病的种子,从中随机取出10,
含有麦锈病种子的概率是多少?

巩固练习
1.在区间上随机取实数,则实数在区间的概率是_________.

2.向面积为的内任投一点,则随机事件“的面积小于”的
概率为____________.

3.某袋黄豆种子共100kg,现加入20kg黑豆种子并拌匀,从中随机取一粒,
则这粒种子是黄豆的概率是多少?是黑豆的概率是多少?

课堂小结
几何概型及其概率的求法.
课后训练
班级:高二()班姓名:____________
一基础题
1.在区间上任意取实数,则实数不大于20的概率是____________.

2.在面积为的场地上有一个面积为的水池,现在向此场地投入个气
球,估计落在水池上方的气球个数为____________.

3.有一杯升的水,其中含有个细菌,用一个小杯从这杯水中取出升水,
则水杯水中含有这个细菌的概率为____________.

4.某人午休醒来,发觉表停了,他打开收音机想听电台整点报时,
求他等待的时间短于分钟的概率.

5.已知地铁列车每分钟一班,在车站停分钟,
求乘客到达站台立即乘上车的概率.

二提高题
6.如图,在一个边长为、()的矩形内画一个梯形,梯形上、下底分别
为与,高为,向该矩形内随机投一点,求所投的点落在梯形内部的概率.

三能力题
7.在长方体中随机取点,求点落在四棱锥(其
中是长方体对角线的交点)内的概率.
Jab88.com

精选阅读

苏教版高二数学几何概型知识点


苏教版高二数学几何概型知识点

1.几何概型的定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型。

2.几何概型的概率公式:P(A)=构成事件A的区域长度(面积或体积);

试验的全部结果所构成的区域长度(面积或体积)

3.几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等.

4.几何概型与古典概型的比较:一方面,古典概型具有有限性,即试验结果是可数的;而几何概型则是在试验中出现无限多个结果,且与事件的区域长度(或面积、体积等)有关,即试验结果具有无限性,是不可数的。这是二者的不同之处;另一方面,古典概型与几何概型的试验结果都具有等可能性,这是二者的共性。

通过以上对于几何概型的基本知识点的梳理,我们不难看出其要核是:要抓住几何概型具有无限性和等可能性两个特点,无限性是指在一次试验中,基本事件的个数可以是无限的,这是区分几何概型与古典概型的关键所在;等可能性是指每一个基本事件发生的可能性是均等的,这是解题的基本前提。因此,用几何概型求解的概率问题和古典概型的基本思路是相同的,同属于“比例法”,即随机事件A的概率可以用“事件A包含的基本事件所占的图形的长度、面积(体积)和角度等”与“试验的基本事件所占总长度、面积(体积)和角度等”之比来表示。下面就几何概型常见类型题作一归纳梳理。

几何概型及均匀随机数的产生


3.3.2几何概型及均匀随机数的产生

一、教材分析
1.几何概型是不同于古典概型的又一个最基本、最常见的概率模型,其概率计算原理通俗、简单,对应随机事件及试验结果的几何量可以是长度、面积或体积.
2.如果一个随机试验可能出现的结果有无限多个,并且每个结果发生的可能性相等,那么该试验可以看作是几何概型.通过适当设置,将随机事件转化为几何问题,即可利用几何概型的概率公式求事件发生的概率.
二、教学目标
(1)正确理解几何概型的概念;
(2)掌握几何概型的概率公式;
(3)会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型;
(4)了解均匀随机数的概念;
(5)掌握利用计算器(计算机)产生均匀随机数的方法;
(6)会利用均匀随机数解决具体的有关概率的问题.
三、教学重点难点
1、几何概型的概念、公式及应用;
2、利用计算器或计算机产生均匀随机数并运用到概率的实际应用中.
四、学情分析
五、教学方法
1.自主探究,互动学习
2.学案导学:见后面的学案。
3.新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习
六、课前准备
1、通过对本节知识的探究与学习,感知用图形解决概率问题的方法,掌握数学思想与逻辑推理的数学方法;2、教学用具:投灯片,计算机及多媒体教学.七、课时安排:1课时
七、教学过程
1、创设情境:在概率论发展的早期,人们就已经注意到只考虑那种仅有有限个等可能结果的随机试验是不够的,还必须考虑有无限多个试验结果的情况。例如一个人到单位的时间可能是8:00至9:00之间的任何一个时刻;往一个方格中投一个石子,石子可能落在方格中的任何一点……这些试验可能出现的结果都是无限多个。
2、基本概念:(1)几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型;
(2)几何概型的概率公式:
P(A)=;
(3)几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等.
3、例题分析:
课本例题略
例1判下列试验中事件A发生的概度是古典概型,还是几何概型。
(1)抛掷两颗骰子,求出现两个“4点”的概率;
(2)如课本P132图3.3-1中的(2)所示,图中有一个转盘,甲乙两人玩转盘游戏,规定当指针指向B区域时,甲获胜,否则乙获胜,求甲获胜的概率。
分析:本题考查的几何概型与古典概型的特点,古典概型具有有限性和等可能性。而几何概型则是在试验中出现无限多个结果,且与事件的区域长度有关。
解:(1)抛掷两颗骰子,出现的可能结果有6×6=36种,且它们都是等可能的,因此属于古典概型;
(2)游戏中指针指向B区域时有无限多个结果,而且不难发现“指针落在阴影部分”,概率可以用阴影部分的面积与总面积的比来衡量,即与区域长度有关,因此属于几何概型.
例2某人欲从某车站乘车出差,已知该站发往各站的客车均每小时一班,求此人等车时间不多于10分钟的概率.
分析:假设他在0~60分钟之间任何一个时刻到车站等车是等可能的,但在0到60分钟之间有无穷多个时刻,不能用古典概型公式计算随机事件发生的概率.可以通过几何概型的求概率公式得到事件发生的概率.因为客车每小时一班,他在0到60分钟之间任何一个时刻到站等车是等可能的,所以他在哪个时间段到站等车的概率只与该时间段的长度有关,而与该时间段的位置无关,这符合几何概型的条件.
解:设A={等待的时间不多于10分钟},我们所关心的事件A恰好是到站等车的时刻位于[50,60]这一时间段内,因此由几何概型的概率公式,得P(A)==,即此人等车时间不多于10分钟的概率为.
小结:在本例中,到站等车的时刻X是随机的,可以是0到60之间的任何一刻,并且是等可能的,我们称X服从[0,60]上的均匀分布,X为[0,60]上的均匀随机数.
练习:1.已知地铁列车每10min一班,在车站停1min,求乘客到达站台立即乘上车的概率。
2.两根相距6m的木杆上系一根绳子,并在绳子上挂一盏灯,求灯与两端距离都大于2m的概率.
解:1.由几何概型知,所求事件A的概率为P(A)=;
2.记“灯与两端距离都大于2m”为事件A,则P(A)==.
例3在1万平方千米的海域中有40平方千米的大陆架储藏着石油,假设在海域中任意一点钻探,钻到油层面的概率是多少?
分析:石油在1万平方千米的海域大陆架的分布可以看作是随机的而40平方千米可看作构成事件的区域面积,有几何概型公式可以求得概率。
解:记“钻到油层面”为事件A,则P(A)===0.004.
答:钻到油层面的概率是0.004.
例4在1升高产小麦种子中混入了一种带麦诱病的种子,从中随机取出10毫升,则取出的种子中含有麦诱病的种子的概率是多少?
分析:病种子在这1升中的分布可以看作是随机的,取得的10毫克种子可视作构成事件的区域,1升种子可视作试验的所有结果构成的区域,可用“体积比”公式计算其概率。
解:取出10毫升种子,其中“含有病种子”这一事件记为A,则
P(A)===0.01.
答:取出的种子中含有麦诱病的种子的概率是0.01.
例5取一根长度为3m的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于1m的概率有多大?
分析:在任意位置剪断绳子,则剪断位置到一端点的距离取遍[0,3]内的任意数,并且每一个实数被取到都是等可能的。因此在任意位置剪断绳子的所有结果(基本事件)对应[0,3]上的均匀随机数,其中取得的[1,2]内的随机数就表示剪断位置与端点距离在[1,2]内,也就是剪得两段长都不小于1m。这样取得的[1,2]内的随机数个数与[0,3]内个数之比就是事件A发生的概率。
解法1:(1)利用计算器或计算机产生一组0到1区间的均匀随机数a1=RAND.
(2)经过伸缩变换,a=a1*3.
(3)统计出[1,2]内随机数的个数N1和[0,3]内随机数的个数N.
(4)计算频率fn(A)=即为概率P(A)的近似值.
解法2:做一个带有指针的圆盘,把圆周三等分,标上刻度[0,3](这里3和0重合).转动圆盘记下指针在[1,2](表示剪断绳子位置在[1,2]范围内)的次数N1及试验总次数N,则fn(A)=即为概率P(A)的近似值.
小结:用随机数模拟的关键是把实际问题中事件A及基本事件总体对应的区域转化为随机数的范围。解法2用转盘产生随机数,这种方法可以亲自动手操作,但费时费力,试验次数不可能很大;解法1用计算机产生随机数,可以产生大量的随机数,又可以自动统计试验的结果,同时可以在短时间内多次重复试验,可以对试验结果的随机性和规律性有更深刻的认识.
例6在长为12cm的线段AB上任取一点M,并以线段AM为边作正方形,求这个正方形的面积介于36cm2与81cm2之间的概率.
分析:正方形的面积只与边长有关,此题可以转化为在12cm长的线段AB上任取一点M,求使得AM的长度介于6cm与9cm之间的概率.
解:(1)用计算机产生一组[0,1]内均匀随机数a1=RAND.
(2)经过伸缩变换,a=a1*12得到[0,12]内的均匀随机数.
(3)统计试验总次数N和[6,9]内随机数个数N1
(4)计算频率.
记事件A={面积介于36cm2与81cm2之间}={长度介于6cm与9cm之间},则P(A)的近似值为fn(A)=.

八、反思总结,当堂检测。

九、发导学案、布置预习。
完成本节的课后练习及课后延伸拓展作业。
设计意图:布置下节课的预习作业,并对本节课巩固提高。教师课后及时批阅本节的延伸拓展训练。
十、板书设计

十一、教学反思
本课的设计采用了课前下发预习学案,学生预习本节内容,找出自己迷惑的地方。课堂上师生主要解决重点、难点、疑点、考点、探究点以及学生学习过程中易忘、易混点等,最后进行当堂检测,课后进行延伸拓展,以达到提高课堂效率的目的。
1、几何概型是区别于古典概型的又一概率模型,使用几何概型的概率计算公式时,一定要注意其适用条件:每个事件发生的概率只与构成该事件区域的长度成比例;
2、均匀随机数在日常生活中,有着广泛的应用,我们可以利用计算器或计算机来产生均匀随机数,从而来模拟随机试验,其具体方法是:建立一个概率模型,它与某些我们感兴趣的量(如概率值、常数)有关,然后设计适当的试验,并通过这个试验的结果来确定这些量。
在后面的教学过程中会继续研究本节课,争取设计的更科学,更有利于学生的学习,也希望大家提出宝贵意见,共同完善,共同进步!
十二、学案设计(见下页)
中数学组编写人:孙文森审稿人:庞红玲李怀奎
3.3.2几何概型及均匀随机数的产生

课前预习学案
一、预习目标
1.了解几何概型的概念及基本特点;
2.掌握几何概型中概率的计算公式;
3.会进行简单的几何概率计算.
二、预习内容
1.基本事件的概念:一个事件如果事件,就称作基本事件.
基本事件的两个特点:
10.任何两个基本事件是的;
20.任何一个事件(除不可能事件)都可以.
2.古典概型的定义:古典概型有两个特征:
10.试验中所有可能出现的基本事件;
20.各基本事件的出现是,即它们发生的概率相同.
具有这两个特征的概率称为古典概率模型.简称古典概型.
3.古典概型的概率公式,设一试验有n个等可能的基本事件,而事件A恰包含其中的m个基本事件,则事件A的概率P(A)定义为:

问题情境:
试验1.取一根长度为的绳子,拉直后在任意位置剪断.
试验2.射箭比赛的箭靶涂有五个彩色得分环.从外向内为白色,黑色,蓝色,红色,靶心是金色.
奥运会的比赛靶面直径为,靶心直径为.运动员在外射箭.假设射箭都能射中靶面内任何一点都是等可能的.

问题:对于试验1:剪得两段的长都不小于的概率有多大?
试验2:射中黄心的概率为多少?
新知生成:
1.几何概型的概念:

2.几何概型的基本特点:

3.几何概型的概率公式:
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点疑惑内容

课内探究学案
一、学习目标
1.了解几何概型的概念及基本特点;
2.掌握几何概型中概率的计算公式;
3.会进行简单的几何概率计算.
学习重难点:
重点:概率的正确理解
难点:用概率知识解决现实生活中的具体问题。
二、学习过程
例题学习:
例1判下列试验中事件A发生的概度是古典概型,还是几何概型。
(1)抛掷两颗骰子,求出现两个“4点”的概率;
(2)如课本P135图中的(2)所示,图中有一个转盘,甲乙两人玩转盘游戏,规定当指针指向B区域时,甲获胜,否则乙获胜,求甲获胜的概率。
例2某人欲从某车站乘车出差,已知该站发往各站的客车均每小时一班,
求此人等车时间不多于10分钟的概率.

例3在1万平方千米的海域中有40平方千米的大陆架储藏着石油,
假设在海域中任意一点钻探,钻到油层面的概率是多少?

例4在1升高产小麦种子中混入了一种带麦诱病的种子,从中随机取出10毫升,
则取出的种子中含有麦诱病的种子的概率是多少?

例题参考答案:
例1分析:本题考查的几何概型与古典概型的特点,古典概型具有有限性和等可能性。而几何概型则是在试验中出现无限多个结果,且与事件的区域长度有关。
解:(1)抛掷两颗骰子,出现的可能结果有6×6=36种,且它们都是等可能的,因此属于古典概型;
(2)游戏中指针指向B区域时有无限多个结果,而且不难发现“指针落在阴影部分”,概率可以用阴影部分的面积与总面积的比来衡量,即与区域长度有关,因此属于几何概型.
例2分析:假设他在0~60分钟之间任何一个时刻到车站等车是等可能的,但在0到60分钟之间有无穷多个时刻,不能用古典概型公式计算随机事件发生的概率.可以通过几何概型的求概率公式得到事件发生的概率.因为客车每小时一班,他在0到60分钟之间任何一个时刻到站等车是等可能的,所以他在哪个时间段到站等车的概率只与该时间段的长度有关,而与该时间段的位置无关,这符合几何概型的条件.
解:设A={等待的时间不多于10分钟},我们所关心的事件A恰好是到站等车的时刻位于[50,60]这一时间段内,因此由几何概型的概率公式,得P(A)==,即此人等车时间不多于10分钟的概率为.
小结:在本例中,到站等车的时刻X是随机的,可以是0到60之间的任何一刻,并且是等可能的,我们称X服从[0,60]上的均匀分布,X为[0,60]上的均匀随机数.
例3分析:石油在1万平方千米的海域大陆架的分布可以看作是随机的,而40平方千米可看作构成事件的区域面积,由几何概型公式可以求得概率。
解:记“钻到油层面”为事件A,则P(A)===0.004.
答:钻到油层面的概率是0.004.
例4
分析:病种子在这1升中的分布可以看作是随机的,取得的10毫克种子可视作构成事件的区域,1升种子可视作试验的所有结果构成的区域,可用“体积比”公式计算其概率。
解:取出10毫升种子,其中“含有病种子”这一事件记为A,则
P(A)===0.01.
答:取出的种子中含有麦诱病的种子的概率是0.01.

(三)反思总结

(四)当堂检测
1.在500ml的水中有一个草履虫,现从中随机取出2ml水样放到显微镜下观察,则发现草履虫的概率是()
A.0.5B.0.4C.0.004D.不能确定
2.平面上画了一些彼此相距2a的平行线,把一枚半径ra的硬币任意掷在这个平面上,求硬币不与任何一条平行线相碰的概率.
3.某班有45个,现要选出1人去检查其他班的卫生,若每个人被选到的机会均等,则恰好选中学生甲主机会有多大?
4.如图3-18所示,曲线y=-x2+1与x轴、y轴围成一个区域A,直线x=1、直线y=1、x轴围成一个正方形,向正方形中随机地撒一把芝麻,利用计算机来模拟这个试验,并统计出落在区域A内的芝麻数与落在正方形中的芝麻数。

参考答案:
1.C(提示:由于取水样的随机性,所求事件A:“在取出2ml的水样中有草履虫”的概率等于水样的体积与总体积之比=0.004)
2.解:把“硬币不与任一条平行线相碰”的事件记为事件A,为了确定硬币的位置,由硬币中心O向靠得最近的平行线引垂线OM,垂足为M,如图所示,这样线段OM长度(记作OM)的取值范围就是[o,a],只有当r<OM≤a时硬币不与平行线相碰,所以所求事件A的概率就是P(A)==
3.提示:本题应用计算器产生随机数进行模拟试验,请按照下面的步骤独立完成。
(1)用1~45的45个数来替代45个人;
(2)用计算器产生1~45之间的随机数,并记录;
(3)整理数据并填入下表
试验
次数5010015020025030035040045050060065070075080085090010001050
1出现
的频数
1出现
的频率
(4)利用稳定后1出现的频率估计恰好选中学生甲的机会。

4.解:如下表,由计算机产生两例0~1之间的随机数,它们分别表示随机点(x,y)的坐标。如果一个点(x,y)满足y≤-x2+1,就表示这个点落在区域A内,在下表中最后一列相应地就填上1,否则填0。
xy计数
0.5988950.9407940
0.5122840.1189611
0.4968410.7844170
0.1127960.6906341
0.3596000.3714411
0.1012600.6505121
………
0.9473860.9021270
0.1176180.3056731
0.5164650.2229071
0.5963930.9696950

课后练习与提高
1.已知地铁列车每10min一班,在车站停1min,求乘客到达站台立即乘上车的概率
2.两根相距6m的木杆上系一根绳子,并在绳子上挂一盏灯,求灯与两端距离都大于2m的概率。

3.在1万平方千米的海域中有40平方千米的大陆架储藏着石油,假设在海域中任意一点钻探,钻到油层面的概率是多少?

4.某人午觉醒来,发现表停了,他打开收音机,想听电台报时,求他等待的时间不多于10分钟的概率。

5.取一根长为3米的绳子,拉直后在任意位置剪断,那么剪得两段的长都不少于1米的概率有多大?

参考答案:1.由几何概型知,所求事件A的概率为P(A)=;
2.解:记“灯与两端距离都大于2m”为事件A,则P(A)==.
3.解:记“钻到油层面”为事件A,则P(A)===0.004.
答:钻到油层面的概率是0.004.
4.解:设A={等待的时间不多于10分钟},事件A恰好是打开收音机的时刻位于[50,60]时间段内,因此由几何概型的求概率公式得
P(A)=(60-50)/60=1/6
“等待报时的时间不超过10分钟”的概率为1/6
5.解:如上图,记“剪得两段绳子长都不小于1m”为事件A,把绳子三等分,于是当剪断位置处在中间一段上时,事件A发生。由于中间一段的长度等于绳子长的三分之一,所以事件A发生的概率P(A)=1/3。

古典概型


古典概型复习课
基础训练
1.将1枚硬币抛2次,恰好出现1次正面的概率是
2.任意说出星期一到星期日中的两天(不重复),其中恰有一天是星期六的概率是
3.某银行储蓄卡上的密码是一种4位数字号码,每位上的数字可在0,1,2,…,9这10个数字中选取,某人未记住密码的最后一位数字,若按下密码的最后一位数字,则正好按对密码的概率是
4.连续3次抛掷一枚硬币,则正、反面交替出现的概率是
5.在坐标平面内,点在x轴上方的概率是
典型例题
例1掷一颗骰子,观察掷出的点数,求掷得奇数点的概率。
分析:掷骰子有6个基本事件,具有有限性和等可能性,因此是古典概型。
解:这个试验的基本事件共有6个,即(出现1点)、(出现2点)……、(出现6点)
所以基本事件数n=6,
事件A=(掷得奇数点)=(出现1点,出现3点,出现5点),
其包含的基本事件数m=3
所以,P(A)====0.5
小结:利用古典概型的计算公式时应注意两点:
(1)所有的基本事件必须是互斥的;
(2)m为事件A所包含的基本事件数,求m值时,要做到不重不漏。
例2从含有两件正品a1,a2和一件次品b1的三件产品中,每次任取一件,每次取出后不放回,连续取两次,求取出的两件产品中恰有一件次品的概率。
解:每次取出一个,取后不放回地连续取两次,其一切可能的结果组成的基本事件有6个,即(a1,a2)和,(a1,b2),(a2,a1),(a2,b1),(b1,a1),(b2,a2)。其中小括号内左边的字母表示第1次取出的产品,右边的字母表示第2次取出的产用A表示“取出的两种中,恰好有一件次品”这一事件,则
A=[(a1,b1),(a2,b1),(b1,a1),(b1,a2)]
事件A由4个基本事件组成,因而,P(A)==
例3现有一批产品共有10件,其中8件为正品,2件为次品:
(1)如果从中取出一件,然后放回,再取一件,求连续3次取出的都是正品的概率;
(2)如果从中一次取3件,求3件都是正品的概率.
分析:(1)为返回抽样;(2)为不返回抽样.
解:(1)有放回地抽取3次,按抽取顺序(x,y,z)记录结果,则x,y,z都有10种可能,所以试验结果有10×10×10=103种;设事件A为“连续3次都取正品”,则包含的基本事件共有8×8×8=83种,因此,P(A)==0.512.
(2)解法1:可以看作不放回抽样3次,顺序不同,基本事件不同,按抽取顺序记录(x,y,z),则x有10种可能,y有9种可能,z有8种可能,所以试验的所有结果为10×9×8=720种.设事件B为“3件都是正品”,则事件B包含的基本事件总数为8×7×6=336,所以P(B)=≈0.467.
解法2:可以看作不放回3次无顺序抽样,先按抽取顺序(x,y,z)记录结果,则x有10种可能,y有9种可能,z有8种可能,但(x,y,z),(x,z,y),(y,x,z),(y,z,x),(z,x,y),(z,y,x),是相同的,所以试验的所有结果有10×9×8÷6=120,按同样的方法,事件B包含的基本事件个数为8×7×6÷6=56,因此P(B)=≈0.467.
小结:关于不放回抽样,计算基本事件个数时,既可以看作是有顺序的,也可以看作是无顺序的,其结果是一样的,但不论选择哪一种方式,观察的角度必须一致,否则会导致错误.
课堂精炼
1.从一副扑克牌(54张)中抽一张牌,抽到牌“K”的概率是。
答案:
2.将一枚硬币抛两次,恰好出现一次正面的概率是。
答案:
3.从标有1,2,3,4,5,6,7,8,9的9张纸片中任取2张,那么这2张纸片数字之积为偶数的概率为。
答案:4.同时掷两枚骰子,所得点数之和为5的概率为;
点数之和大于9的概率为。
答案:;
5.一个口袋里装有2个白球和2个黑球,这4个球除颜色外完全相同,从中摸出2个球,则1个是白球,1个是黑球的概率是。
答案:
6.先后抛3枚均匀的硬币,至少出现一次正面的概率为。
答案:
7.一个正方体,它的表面涂满了红色,在它的每个面上切两刀,可得27个小正方体,从中任取一个它恰有一个面涂有红色的概率是。
答案:
8.从1,2,3,4,5这5个数中任取两个,则这两个数正好相差1的概率是________。
答案:
9.口袋里装有两个白球和两个黑球,这四个球除颜色外完全相同,四个人按顺序依次从中摸出一球,试求“第二个人摸到白球”的概率。
答案:把四人依次编号为甲、乙、丙、丁,把两白球编上序号1、2,把两黑球也编上序号1、2,于是四个人按顺序依次从袋内摸出一个球的所有可能结果,可用树形图直观地表示出来如下:
从上面的树形图可以看出,试验的所有可能结果数为24,第二人摸到白球的结果有12种,记“第二个人摸到白球”为事件A,则。
10.袋中有红、白色球各一个,每次任取一个,有放回地抽三次,写出所有的基本事件,并计算下列事件的概率:(1)三次颜色恰有两次同色;(2)三次颜色全相同;
(3)三次抽取的球中红色球出现的次数多于白色球出现的次数。
答案:(红红红)(红红白)(红白红)(白红红)(红白白)(白红白)(白白红)(白白白)
(1)(2)(3)
11.已知集合,;
(1)求为一次函数的概率;(2)求为二次函数的概率。
答案:(1)(2)
12.连续掷两次骰子,以先后得到的点数为点的坐标,设圆的方程为;
(1)求点在圆上的概率;(2)求点在圆外的概率。
答案:(1)(2)
13.设有一批产品共100件,现从中依次随机取2件进行检验,得出这两件产品均为次品的概率不超过1%,问这批产品中次品最多有多少件?
答案:10件

高二数学必修三考点解析:几何概型


高二数学必修三考点解析:几何概型

【考点分析】
在段考中,多以选择题和填空题的形式考查几何概型的计算公式等知识点,也会以解答题的形式考查。在高考中有时会以选择题和填空题的形式考查几何概型的计算公式,有时也不考,一般属于中档题。
【知识点误区】
求几何概型时,注意首先寻找到一些重要的临界位置,再解答。一般与线性规划知识有联系。

【同步练习题】
1.已知函数f(x)=log2x,若在[1,8]上任取一个实数x0,则不等式1≤f(x0)≤2成立的概率是.
解析:区间[1,8]的长度为7,满足不等式1≤f(x0)≤2即不等式1≤log2x0≤2,解答2≤x0≤4,对应区间[2,4]长度为2,由几何概型公式可得使不等式1≤f(x0)≤2成立的概率是27.

点评:本题考查了几何概型问题,其与线段上的区间长度及函数被不等式的解法问题相交汇,使此类问题具有一定的灵活性,关键是明确集合测度,本题利用区间长度的比求几何概型的概率.
2.在区间[-3,5]上随机取一个数a,则使函数f(x)=x2+2ax+4无零点的概率是.

解析:由已知区间[-3,5]长度为8,使函数f(x)=x2+2ax+4无零点即判别式Δ=4a2-160,解得-2点评:本题属于几何概型,只要求出区间长度以及满足条件的区间长度,由几何概型公式解答.

文章来源:http://m.jab88.com/j/37745.html

更多

最新更新

更多