88教案网

高一数学必修二知识点总结:空间两直线的位置关系

一名优秀的教师在每次教学前有自己的事先计划,教师要准备好教案,这是每个教师都不可缺少的。教案可以让学生更好的消化课堂内容,有效的提高课堂的教学效率。关于好的教案要怎么样去写呢?为满足您的需求,小编特地编辑了“高一数学必修二知识点总结:空间两直线的位置关系”,欢迎您参考,希望对您有所助益!

高一数学必修二知识点总结:空间两直线的位置关系

空间两条直线只有三种位置关系:平行、相交、异面

1、按是否共面可分为两类:

(1)共面:平行、相交

(2)异面:

异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。

异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。

两异面直线所成的角:范围为(0°,90°)esp.空间向量法

两异面直线间距离:公垂线段(有且只有一条)esp.空间向量法

2、若从有无公共点的角度看可分为两类:

(1)有且仅有一个公共点——相交直线;(2)没有公共点——平行或异面

直线和平面的位置关系:

直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行

①直线在平面内——有无数个公共点

②直线和平面相交——有且只有一个公共点

直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。jAB88.cOM

空间向量法(找平面的法向量)

规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,所成的角为0°角

由此得直线和平面所成角的取值范围为[0°,90°]

最小角定理:斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角

三垂线定理及逆定理:如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直

直线和平面垂直

直线和平面垂直的定义:如果一条直线a和一个平面内的任意一条直线都垂直,我们就说直线a和平面互相垂直.直线a叫做平面的垂线,平面叫做直线a的垂面。

直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。

直线与平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。③直线和平面平行——没有公共点

直线和平面平行的定义:如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。

直线和平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。

直线和平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

精选阅读

高一数学下册《空间点直线平面之间的位置关系》知识点人教版


俗话说,凡事预则立,不预则废。作为高中教师准备好教案是必不可少的一步。教案可以保证学生们在上课时能够更好的听课,帮助高中教师缓解教学的压力,提高教学质量。所以你在写高中教案时要注意些什么呢?下面是由小编为大家整理的“高一数学下册《空间点直线平面之间的位置关系》知识点人教版”,希望能对您有所帮助,请收藏。

高一数学下册《空间点直线平面之间的位置关系》知识点人教版

1.平面

(1)平面概念的理解

直观的理解:桌面、黑板面、平静的水面等等都给人以平面的直观的印象,但它们都不是平面,而仅仅是平面的一部分。

抽象的理解:平面是平的,平面是无限延展的,平面没有厚薄。

(2)平面的表示法

①图形表示法:通常用平行四边形来表示平面,有时根据实际需要,也用其他的平面图形来表示平面。

②字母表示:常用等希腊字母表示平面。

(3)涉及本部分内容的符号表示有:

①点A在直线l内,记作;

②点A不在直线l内,记作;

③点A在平面内,记作;

④点A不在平面内,记作;

⑤直线l在平面内,记作;

⑥直线l不在平面内,记作;

注意:符号的使用与集合中这四个符号的使用的区别与联系。

(4)平面的基本性质

公理1:如果一条直线的两个点在一个平面内,那么这条直线上的所有点都在这个平面内。

符号表示为:.

注意:如果直线上所有的点都在一个平面内,我们也说这条直线在这个平面内,或者称平面经过这条直线。

公理2:过不在一条直线上的三点,有且只有一个平面。

符号表示为:直线AB存在唯一的平面,使得。

注意:“有且只有”的含义是:“有”表示存在,“只有”表示唯一,不能用“只有”来代替.此公理又可表示为:不共线的三点确定一个平面。

公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

注意:两个平面有一条公共直线,我们说这两个平面相交,这条公共直线就叫作两个平面的交线.若平面、平面相交于直线l,记作。

公理的推论:

推论1:经过一条直线和直线外的一点有且只有一个平面。

推论2:经过两条相交直线有且只有一个平面。

推论3:经过两条平行直线有且只有一个平面。

2.空间直线

(1)空间两条直线的位置关系

①相交直线:有且仅有一个公共点,可表示为;

②平行直线:在同一个平面内,没有公共点,可表示为a//b;

③异面直线:不同在任何一个平面内,没有公共点。

(2)平行直线

公理4:平行于同一条直线的两条直线互相平行。

符号表示为:设a、b、c是三条直线。

定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。

(3)两条异面直线所成的角

注意:①两条异面直线a,b所成的角的范围是(0°,90°]。

②两条异面直线所成的角与点O的选择位置无关,这可由前面所讲过的“等角定理”直接得出。

③由两条异面直线所成的角的定义可得出异面直线所成角的一般方法:

(i)在空间任取一点,这个点通常是线段的中点或端点。

(ii)分别作两条异面直线的平行线,这个过程通常采用平移的方法来实现。

(iii)指出哪一个角为两条异面直线所成的角,这时我们要注意两条异面直线所成的角的范围。

3.空间直线与平面

直线与平面位置关系有且只有三种:

(1)直线在平面内:有无数个公共点;

(2)直线与平面相交:有且只有一个公共点;

(3)直线与平面平行:没有公共点。

4.平面与平面

两个平面之间的位置关系有且只有以下两种:

(1)两个平面平行:没有公共点;

(2)两个平面相交:有一条公共直线。

练习题:

1.在下列命题中,不是公理的是()

A.平行于同一个平面的两个平面相互平行

B.过不在同一条直线上的三点,有且只有一个平面

C.如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内

D.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线

解析:B、C、D都是公理,只有A不是.

答案:A

2.设P表示一个点,a、b表示两条直线,α、β表示两个平面,给出下列四个命题,其中正确的命题是()

①P∈a,P∈αaα

②a∩b=P,bβαβ

③a∥b,aα,P∈b,P∈αbα

④α∩β=b,P∈α,P∈βP∈b

A.①②

B.②③

C.①④D.③④

解析:当a∩α=P时,P∈a,P∈α,但aα,∴①错;a∩β=P时,②错;

∵a∥b,P∈b,∴Pa,

∴由直线a与点P确定唯一平面α,

又a∥b,由a与b确定唯一平面β,但β经过直线a与点P,∴β与α重合,∴bα,故③正确;

两个平面的公共点必在其交线上,故④正确.

答案:D

人教版高一数学下册《直线圆的位置关系》知识点复习


古人云,工欲善其事,必先利其器。作为教师就要早早地准备好适合的教案课件。教案可以让学生更容易听懂所讲的内容,帮助教师营造一个良好的教学氛围。优秀有创意的教案要怎样写呢?下面是由小编为大家整理的“人教版高一数学下册《直线圆的位置关系》知识点复习”,希望能为您提供更多的参考。

人教版高一数学下册《直线圆的位置关系》知识点复习

由直线与圆的公共点的个数,得出以下直线和圆的三种位置关系:

(1)相交:直线与圆有两个公共点时,叫做直线和圆相交.这时直线叫做圆的割线.

(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切.这时直线叫做圆的切线,唯一的公共点叫做切点.

(3)相离:直线和圆没有公共点时,叫做直线和圆相离.

直线与圆的位置关系的数量特征

1、迁移:点与圆的位置关系

(1)点P在⊙O内dr.

2、归纳概括:

如果⊙O的半径为r,圆心O到直线l的距离为d,那么

(1)直线l和⊙O相交dr.

练习题:

1.直线L上的一点到圆心的距离等于⊙O的半径,则L与⊙O的位置关系是()

A.相离

B.相切

C.相交

D.相切或相交

2.圆的最大的弦长为12cm,如果直线与圆相交,且直线与圆心的距离为d,那么()

A.d6cm

B.6cmd12cm

C.d≥6cm

D.d12cm

3.P是⊙O外一点,PA、PB切⊙O于点A、B,Q是优弧AB上的一点,设∠APB=α,∠AQB=β,则α与β的关系是()

A.α=β

B.α+β=90°

C.α+2β=180°

D.2α+β=180°

4.在⊙O中,弦AB和CD相交于点P,若PA=4,PB=7,CD=12,则以PC、PD的长为根的一元二次方程为()

A.x2+12x+28=0

B.x2-12x+28=0

C.x2-11x+12=0

D.x2+11x+12=0

2017高一数学知识点总结:两个平面的位置关系


俗话说,居安思危,思则有备,有备无患。准备好一份优秀的教案往往是必不可少的。教案可以保证学生们在上课时能够更好的听课,帮助教师提高自己的教学质量。关于好的教案要怎么样去写呢?急您所急,小编为朋友们了收集和编辑了“2017高一数学知识点总结:两个平面的位置关系”,相信能对大家有所帮助。

2017高一数学知识点总结:两个平面的位置关系

高一数学知识点:两个平面的位置关系知识点
两个平面的位置关系:

(1)两个平面互相平行的定义:空间两平面没有公共点
(2)两个平面的位置关系:
两个平面平行-----没有公共点;两个平面相交-----有一条公共直线。
a、平行
两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。
两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行。
b、相交

二面角
(1)半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。
(2)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。二面角的取值范围为

(3)二面角的棱:这一条直线叫做二面角的棱。
(4)二面角的面:这两个半平面叫做二面角的面。
(5)二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。
(6)直二面角:平面角是直角的二面角叫做直二面角。
esp.两平面垂直
两平面垂直的定义:两平面相交,如果所成的角是直二面角,就说这两个平面互相垂直。记为perp;
两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直
两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于交线的直线垂直于另一个平面。
Attention:
二面角求法:直接法(作出平面角)、三垂线定理及逆定理、面积射影定理、空间向量之法向量法(注意求出的角与所需要求的角之间的等补关系)

高一数学下册《直线、圆的位置关系》知识点整理


一名优秀的教师在教学时都会提前最好准备,教师在教学前就要准备好教案,做好充分的准备。教案可以让学生更好的消化课堂内容,帮助教师提高自己的教学质量。优秀有创意的教案要怎样写呢?下面是小编为大家整理的“高一数学下册《直线、圆的位置关系》知识点整理”,欢迎您参考,希望对您有所助益!

高一数学下册《直线、圆的位置关系》知识点整理

直线和圆的位置关系

1.直线和圆位置关系的判定方法一是方程的观点,即把圆的方程和直线的方程联立成方程组,利用判别式Δ来讨论位置关系.

①Δ0,直线和圆相交.②Δ=0,直线和圆相切.③Δ0,直线和圆相离.

方法二是几何的观点,即把圆心到直线的距离d和半径R的大小加以比较.

①dR,直线和圆相离.

2.直线和圆相切,这类问题主要是求圆的切线方程.求圆的切线方程主要可分为已知斜率k或已知直线上一点两种情况,而已知直线上一点又可分为已知圆上一点和圆外一点两种情况.

3.直线和圆相交,这类问题主要是求弦长以及弦的中点问题.

切线的性质

⑴圆心到切线的距离等于圆的半径;⑵过切点的半径垂直于切线;⑶经过圆心,与切线垂直的直线必经过切点;⑷经过切点,与切线垂直的直线必经过圆心;当一条直线满足(1)过圆心;(2)过切点;(3)垂直于切线三个性质中的两个时,第三个性质也满足.

切线的判定定理

经过半径的外端点并且垂直于这条半径的直线是圆的切线.

切线长定理

从圆外一点作圆的两条切线,两切线长相等,圆心与这一点的连线平分两条切线的夹角。

文章来源:http://m.jab88.com/j/3254.html

更多

猜你喜欢

更多

最新更新

更多