一位优秀的教师不打无准备之仗,会提前做好准备,作为教师就要早早地准备好适合的教案课件。教案可以让上课时的教学氛围非常活跃,帮助教师提前熟悉所教学的内容。那么如何写好我们的教案呢?小编收集并整理了“高二数学集合的概念教案3”,希望对您的工作和生活有所帮助。
第1课时集合的概念
一、集合
1.集合是一个不能定义的原始概念,描述性定义为:某些指定的对象就成为一个集合,简称.集合中的每一个对象叫做这个集合的.
2.集合中的元素属性具有:
(1)确定性;(2);(3).
3.集合的表示法常用的有、和韦恩图法三种,有限集常用,无限集常用,图示法常用于表示集合之间的相互关系.
二、元素与集合的关系
4.元素与集合是属于和的从属关系,若a是集合A的元素,记作,若a不是集合B的元素,记作.但是要注意元素与集合是相对而言的.
三、集合与集合的关系
5.集合与集合的关系用符号表示.
6.子集:若集合A中都是集合B的元素,就说集合A包含于集合B(或集合B包含集合A),记作.
7.相等:若集合A中都是集合B的元素,同时集合B中都是集合A的元素,就说集合A等于集合B,记作.
8.真子集:如果就说集合A是集合B的真子集,记作.
9.若集合A含有n个元素,则A的子集有个,真子集有个,非空真子集有个.
10.空集是一个特殊而又重要的集合,它不含任何元素,是任何集合的,是任何非空集合的,解题时不可忽视.
例1.已知集合,试求集合的所有子集.
例2.
例2.设集合,,,求实数a的值.
例3.已知集合A={x|mx2-2x+3=0,m∈R}.?(1)若A是空集,求m的取值范围;?(2)若A中只有一个元素,求m的值;?(3)若A中至多只有一个元素,求m的取值范围.?
例4.若集合A={2,4,},B={1,a+1,,、},且A∩B={2,5},试求实数的值.
变式训练1.若a,bR,集合求b-a的值.
变式训练2:(1)P={x|x2-2x-3=0},S={x|ax+2=0},SP,求a取值?
(2)A={-2≤x≤5},B={x|m+1≤x≤2m-1},BA,求m。
变式训练3.(1)已知A={a+2,(a+1)2,a2+3a+3}且1∈A,求实数a的值;?
(2)已知M={2,a,b},N={2a,2,b2}且M=N,求a,b的值.?
变式训练4.已知集合A={a,a+d,a+2d},B={a,aq,},其中a≠0,若A=B,求q的值
1.本节的重点是集合的基本概念和表示方法,对集合的认识,关键在于化简给定的集合,确定集合的元素,并真正认识集合中元素的属性,特别要注意代表元素的形式,不要将点集和数集混淆.
2.利用相等集合的定义解题时,特别要注意集合中元素的互异性,对计算的结果要加以检验.
3.注意空集φ的特殊性,在解题时,若未指明集合非空,则要考虑到集合为空集的可能性.
4.要注意数学思想方法在解题中的运用,如化归与转化、分类讨论、数形结合的思想方法在解题中的应用.
一名爱岗敬业的教师要充分考虑学生的理解性,教师要准备好教案为之后的教学做准备。教案可以让学生们能够在上课时充分理解所教内容,减轻教师们在教学时的教学压力。优秀有创意的教案要怎样写呢?下面是小编为大家整理的“高二数学算法概念010”,但愿对您的学习工作带来帮助。
10.1算法概念
一、教学内容分析
随着计算机在社会各方面的普及,软件的地位日渐突出;软件通常所指的就是计算机可以执行命令的集合,即程序.算法初步就是针对编写计算机程序而设计的一章教学内容.我们知道数学可以培养学生逻辑思维能力和抽象思维能力,算法和编程同样需要很强的逻辑思维能力和抽象思维能力,从这个方面来说,它是数学学科实际应用的一个重要内容.通过本章的学习,可以让学生体会到计算机是一个重要的工具,通过程序的编写和执行,学生可以体会到人的思维在计算机上得到延续.
二、教学目标设计
1.了解算法的基本概念,能够叙述一些简单问题的算法;
2.理解算法与计算机(器)应用之间的关系,通过简单的算法设计初步认识算法的作用.
三、教学重点及难点
重点:理解算法的作用:算法是解决“做什么”和“怎么做”的问题;
难点:设计算法,认识算法的几个特性.
四、教学流程设计
五、教学过程设计
(一)算法的引入
做任何事情都有一定的步骤.例如,你要买电视机,先要选好货物,然后付款,开票,取货.(最好再举出一些更专业的例子)用二分法求函数的零点,也是一套按一定步骤的解题方法.不要以为只有“计算”的问题,才是算法.广义地说,为解决一个问题而采取的方法和步骤,就称为“算法”.
(二)设计几个算法
例1设计算法:求.
解法1①先求,得到结果;
②将步骤①得到的乘积再乘以3,得到结果6;
③将6再乘以4,得到24;
④将24再乘以5,得到120.这就是最后的结果.
[说明]一共4个步骤依次执行,这种结构为顺序结构.这样的算法虽然是正确的,但是太过繁琐.如果是,需要999个步骤,这种做法显然是不可取的.
解法2[分析]可以设计两个变量,一个代表乘数,一个变量代表被乘数.用循环算法来求结果.
①把1赋给变量;
②把2赋给变量;
③做,乘积仍放在变量中,可表示为;
④使的值加1,即;
⑤如果的值不大于5,返回重新执行步骤③以及其后的步骤④和⑤;否则,算法结束.最后的的值就是120.
[说明]不能理解为数学中的,同样不能理解为数学中的等式;解法2表示的算法具有通用性、灵活性,如只要把步骤⑤中的数值5改变为100,就可以求出的值.步骤③④⑤组成一个循环,在实现算法时,要反复多次执行③④⑤步骤,直到某一时刻,在执行步骤⑤时经过判断,乘数已超过规定的数值而不返回到步骤③为止.此时结束算法,变量的值就是所求的结果.
例2对于第七章阅读材料中所给出的Fibonacci数列:
计算并输出和前项的和.
[说明]该例题对于刚接触算法的同学有些过难了.有例1的铺垫,例2就可以很好的理解了.
例3对于任意五个数,设计算法
(1)求它们中的最大数;
(2)在求得最大数的同时,给出该数的序号.
[说明]如果,那么…;否则….该结构成为条件结构.
例4将任意给定的五个数按数值由小到大的顺序排列.
[说明]步骤①中,就可以实现最大值与的对换,顺序不能颠倒;如果是顺序执行,的值就消失了,这样就出现逻辑上的错误.
从几个实例中,可以体会到算法的一些特点:有限性(如不能出现程序无法终止的情况,如例1步骤⑤中把“的值不大于5”误写成了“的值大于-1”,程序就无法终止了);确定性(每一个步骤不能存在“二义性”);可行性;有输入和输出.
根据上面几个例子,介绍顺序结构;条件结构和循环结构.
(三)课堂小结
由学生总结交流:通过本节学习,你对算法的认识是什么?
(四)课后作业
补充:1、写出算法.
练习10.1两个题目.
一名合格的教师要充分考虑学习的趣味性,作为高中教师就要在上课前做好适合自己的教案。教案可以让学生们有一个良好的课堂环境,帮助授课经验少的高中教师教学。你知道怎么写具体的高中教案内容吗?考虑到您的需要,小编特地编辑了“高二数学参数方程的概念学案”,希望对您的工作和生活有所帮助。
第01课时
1.1.1参数方程的概念
学习目标
1.通过分析抛射物体运动中时间与物体位置的关系,了解一般曲线的参数方程,体会参数的意义
学习过程
一、学前准备
复习:在直角坐标系中求曲线的方程的步骤是什么?
二、新课导学
◆探究新知(预习教材P21~P22,找出疑惑之处)
问题1:由物理知识可知,物资投出机舱后,它的运动是下列两种运动的合成:
问题2:由方程组
,其中是重力加速度()
可知,在的取值范围内,给定的一个值,由方程组可以确定的值。
比如,当时,,。
归纳:一般地,在平面直角坐标系中,如果曲线上任意一点的坐标都是某个变数的函数(1),并且对于的每个允许值,由方程组(1)所确定的点都在这条曲线上,那么方程(1)叫做这条曲线的参数方程,联系变数的变数叫做参变数,简称参数。相对参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.
说明:(1)一般来说,参数的变化范围是有限制的。
(2)参数是联系变量x,y的桥梁,可以有实际意义,也可无实际意义。
◆应用示例
例1.已知曲线C的参数方程是(t为参数)
(1)判断点M1(0,1),M2(5,4)与曲线C的位置关系;
(2)已知点M3(6,a)在曲线C上,求a的值。
(教材P22例1)
解:
◆反馈练习
1.下列哪个点在曲线上()
A.(2,7)B.C.D.(1,0)
2.设炮弹的发射角为,发射的初速度为,请用发射后的时间表示炮弹发射后的位置。
3.如果上题中,当炮弹发出2秒时,①求炮弹的高度;②求出炮弹的射程。
三、总结提升
◆本节小结
1.本节学习了哪些内容?
答:了解一般曲线的参数方程,体会参数的意义
学习评价
一、自我评价
你完成本节导学案的情况为()
A.很好B.较好C.一般D.较差
课后作业
1、对于曲线上任一点,下列哪个方程是以为参数的参数方程()
A、B、
C、D、
2、已知曲线C的参数方程是,且点在曲线C上,则实数的值为()A、B、C、D、无法确定
3、关于参数方程与普通方程,下列说法正确的是()
①一般来说,参数方程中参数的变化范围是有限制的;
②参数方程和普通方程是同一曲线的两种不同表达形式;
③一个曲线的参数方程是唯一的;
④在参数方程和普通方程中,自由变量都是只有一个。
A、①②B、②
C、②③D、①②④
4、方程表示的曲线为()
A、一条直线B、两条射线
C、一条线段D、抛物线的一部分
5、一架救援飞机以100m/s的速度作水平直线飞行,在离灾区指定目标的水平距离还有1000m时投放救灾物资(不计空气阻力,重力加速度),问此时飞机飞行的高度约是多少?(精确到1m)
文章来源:http://m.jab88.com/j/28155.html
更多