为了促进学生掌握上课知识点,老师需要提前准备教案,准备教案课件的时刻到来了。在写好了教案课件计划后,新的工作才会如鱼得水!你们知道哪些教案课件的范文呢?以下是小编为大家收集的“认识二次函数”但愿对您的学习工作带来帮助。
34.1认识二次函数(第1课时)教案
教学任务分析
教学
目标
知识与技能
1.通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义;2.会用描点法画出二次函数的图象,能从图象上认识二次函数的性质;[
3.会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决简单的实际问题;
过程与方法
通过画二次函数的图象,提高动手能力;
经历画图、观察、分析、总结、归纳的过程,总结出二次函数的性质.
情感态度价值观
体会数形结合的思想方法;
重点
二次函数的图象和性质;
难点
函数性质的应用.
教学流程安排
活动说明
活动目的
活动1回顾一次函数
活动2二次函数概念学习
活动3解析
活动4观察
活动5布置作业
为二次函数的学习做准备
学二次函数的有关概念
巩固二次函数
小结复习
加强练习
课前准备
教具
学具
补充材料
电脑、投影仪
课件资源、投影仪
教学过程设计
问题与情景
师生行为
设计意图
活动1:
1.我们以前学过函数,函数是用来描述一个量与另一个量之间的对应关系的,大家回忆一下,我们到现在都学过哪些函数?
2.请描述一下你对一次函数、反比例函数是如何理解的.
3.在现实生活中,我们除了接触到一次函数、反函数,我们还会遇到另外一种函数——二次函数,现在我们就来认识二次函数.
活动2:
我们看引言中正方体的表面积的问题.
正方体的六个面是全等的正方形(图26.1–1),设正方体的棱长为x,表面积为y,显然对于x的每一个值,y都有一个对应值,即y是x的函数,它们的具体关系可以表示为
y=6x2①
我们再来看几个问题.
问题1多边形的对角线数d与边数n有什么关系?
问题2某工厂一种产品现在的年产量是20件,计划今后两年增加产量.如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x的值而确定,y与x之间的关系应怎么样表示?
小组讨论,引导学生找出其中的量与量之间的关系,列出函数式.
活动3:解析
问题1由图26.1–2可以想出,如果多边形有n条边,那么它有________个顶点.从一个顶点出发,连接与这点不相邻的各顶点,可以作_________条对角线.
因为像线段MN与NM那样,连接相同两顶点的对角线是同一条对角线,所以多边形的对角线总数
,
即
.②
②式表示了多边形的对角线数d与边数n之间的关系,对于n的每一个值,d都有一个对应值,即d是n的函数.
问题2这种产品的原产量是20件,一年后的产量是_________件,再经过一年后的产量是_________件,即两年后的产量为
y=20(1+x)2,
即
y=20x2+40x+20.③
③式表示了两年后的产量y与计划增产的倍数x之间的关系,对于x的每一个值,y都有一个对应值,即y是x的函数.
活动4:观察
函数①②③有什么共同点?与我们已学过的正比例函数,反比例函数和一次函数有什么不同?
在上面的问题中,函数都是用自变量的二次式表示的.一般地,形如
y=ax2+bx+c(a,b,c是常数,a≠0)
的函数,叫做二次函数(quadraticfunction).其中,x是自变量,a,b,c分别是函数表达式的二次项系数、一次项系数和常数项.
现在我们学习过的函数有:一次函数y=ax+b(a≠0),其中包括正比例函数y=kx(k≠0),反比例函数和二次函数y=ax2+bx+c(a≠0).
可以发现,这些函数的名称都反映了函数表达式与自变量的关系.
活动5:练习
1.一个圆柱的高等于底面半径,写出它的表面积S与半径r之间的关系式.
2.n支球队参加比赛,每两队之间进行一场比赛.写出比赛场次数m与球队数n之间的关系式.
活动6:小结
学生讨论,总结出本节所学的知识.
师引导设问
学生回答
师引导设问
学生活动:一般地,形如y=kx+b(k、b是常数,k≠0)的函数是一次函数,例如:y=2x+1,y=x等都是一次函数.形如y=(k≠0)的函数就是反函数,例如:y=.
引导设问
学生解答,教师点评
学生解答教师点评
学生解答教师巡视指导
学生解答教师点评
学生回答教师点评
学生解答教师点评
并给予鼓励
生回答问题,教师点评.
学生讨论
回忆到现在都学过的函数
回忆一次函数、反比例函数的概念
引出二次函数
从实际情境中感受二次函数
认识二次函数
加深对二次函数的认识
学二次函数的概念
加深一次函数、正比例函数、反比例函数、二次函数的认识
对二次函数的概念进行巩固
总结本节知识
老师会对课本中的主要教学内容整理到教案课件中,大家开始动笔写自己的教案课件了。是时候对自己教案课件工作做个新的规划了,这样接下来工作才会更上一层楼!你们了解多少教案课件范文呢?下面是小编精心收集整理,为您带来的《二次函数的性质教案》,欢迎大家与身边的朋友分享吧!
20.4二次函数的性质
教学目标:
1.从具体函数的图象中认识二次函数的基本性质.
2.了解二次函数与二次方程的相互关系.
3.探索二次函数的变化规律,掌握函数的最大值(或最小值)及函数的增减性的概念,会求二次函数的最值,并能根据性质判断函数在某一范围内的增减性
教学重点:二次函数的最大值,最小值及增减性的理解和求法.
教学难点:二次函数的性质的应用.
教学过程:
一、复习引入
二次函数:y=ax2+bx+c(a0)的图象是一条抛物线,它的开口由什么决定呢?
补充:当a的绝对值相等时,其形状完全相同,当a的绝对值越大,则开口越小,反之成立.
二、新课教学:
1.探索填空:根据下边已画好抛物线y=-2x2的顶点坐标是,对称轴是,在侧,即x_____0时,y随着x的增大而增大;在侧,即x_____0时,y随着x的增大而减小.当x=时,函数y最大值是____.当x____0时,y0.
2.探索填空::据上边已画好的函数图象填空:抛物线y=2x2的顶点坐标是,对称轴是,在侧,即x_____0时,y随着x的增大而减少;在侧,即x_____0时,y随着x的增大而增大.当x=时,函数y最小值是____.当x____0时,y0
3.归纳:二次函数y=ax2+bx+c(a≠0)的图象和性质
(1).顶点坐标与对称轴
(2).位置与开口方向
(3).增减性与最值
当a﹥0时,在对称轴的左侧,y随着x的增大而减小;在对称轴的右侧,y随着x的增大而增大;当时,函数y有最小值。当a﹤0时,在对称轴的左侧,y随着x的增大而增大;在对称轴的右侧,y随着x的增大而减小。当时,函数y有最大值
4.探索二次函数与一元二次方程
二次函数y=x2+2x,y=x2-2x+1,y=x2-2x+2的图象如图所示.
(1).每个图象与x轴有几个交点?
(2).一元二次方程x2+2x=0,x2-2x+1=0有几个根?验证一下一元二次方程x2-2x+2=0有根吗?
(3).二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?
归纳:(3).二次函数y=ax2+bx+c的图象和x轴交点有三种情况:
①有两个交点,
②有一个交点,
③没有交点.
当二次函数y=ax2+bx+c的图象和x轴有交点时,交点的横坐标就是当y=0时自变量x的值,即一元二次方程ax2+bx+c=0的根.
当b2-4ac﹥0时,抛物线与x轴有两个交点,交点的横坐标是一元二次方程0=ax2+bx+c的两个根x1与x2;当b2-4ac=0时,抛物线与x轴有且只有一个公共点;当b2-4ac﹤0时,抛物线与x轴没有交点。
举例:求二次函数图象y=x2-3x+2与x轴的交点A、B的坐标。
结论1:方程x2-3x+2=0的解就是抛物线y=x2-3x+2与x轴的两个交点的横坐标。因此,抛物线与一元二次方程是有密切联系的。
即:若一元二次方程ax2+bx+c=0的两个根是x1、x2,则抛物线y=ax2+bx+c与轴的两个交点坐标分别是A(x1,0),B(x2,0)
5.例题教学:例1:已知函数
⑴写出函数图像的顶点、图像与坐标轴的交点,以及图像与y轴的交点关于图象对称轴的对称点。然后画出函数图像的草图;
(2)自变量x在什么范围内时,y随着x的增大而增大?何时y随着x的增大而减少;并求出函数的最大值或最小值。
归纳:二次函数五点法的画法
三、巩固练习:请完成同步练习
四、学习感想:
1、你能正确地说出二次函数的性质吗?
2、你能用“五点法”快速地画出二次函数的图象吗?你能利用函数图象回答有关性质吗?
五、作业:作业本,课本作业题1、2、3、4。
一般给学生们上课之前,老师就早早地准备好了教案课件,大家在认真准备自己的教案课件了吧。只有规划好新的教案课件工作,新的工作才会更顺利!你们知道哪些教案课件的范文呢?下面是小编精心为您整理的“二次函数教案”,大家不妨来参考。希望您能喜欢!
20.1二次函数
一、教学目标:
1.知识与技能:
通过对多个实际问题的分析,让学生感受二次函数作为刻画现实世界有效模型的意义;通过观察和分析,学生归纳出二次函数的概念并能够根据函数特征识别二次函数.
2.数学思考:
学生能对具体情境中的数学信息作出合理的解释,能用二次函数来描述和刻画现实事物间的函数关系.
3.解决问题:
体验数学与日常生活密切相关,让学生认识到许多问题可以用数学方法解决,体验实际问题“数学化”的过程.
4.情感与态度:
通过观察、归纳、猜想、验证等教学活动,给学生创造成功机会,使他们爱学、乐学、学会,同时培养学生勇于探索,积极合作精神以及公平竞争的意识.
二、教学重点、难点:
教学重点:认识二次函数,经历探索函数关系、归纳二次函数概念的过程.
教学难点:根据函数解析式的结构特征,归纳出二次函数的概念.
三、教学方法和教学手段:
在确定二次函数的概念和寻求生活实例中的二次函数关系式的过程中,引导学生观察、比较、分析和概括,以小组讨论的形式,进行合作探究.
在教学手段方面,选择了多媒体课件辅助教学的方式.
四、教学过程:
师生活动设计意图
1、问题感知,情境切入.
教师展示实际问题:
“第18届世界杯足球赛”是今年夏天最“热”的一个话题,绿荫场上运动员挥汗如雨,绿荫场外教练员运筹帷幄.足球运动是一项对运动员状态(包括体能、速度和技术意识)要求很高的项目,一般情况下,足球运动员的状态会随着时间的变化而变化:比赛开始后,球员慢慢进入状态,中间有一段时间球员保持较为理想的状态,随后球员的状态慢慢下降.经实验分析可知:球员的状态综合指数y随时间t的变化规律有如下关系:
(1)比赛开始后第10分钟时与比赛开始后第50分钟时比较,什么时间球员的状态更好?
(2)比赛开始后多少分钟时,球员的状态最好,这样的最好状态能持续多少分钟?
通过学生之间的讨论,很容易得出第(1)问的答案:比赛开始后第10分钟时,y=140;比赛开始后第50分钟时,y=220;所以,比赛开始后第50分钟时球员的状态更好.
当学生开始进行第(2)问的解答时,遇到了不同的困难:
(1)不知道如何讨论当50t90时,y的变化范围?
(2)通过模仿一次函数的性质,学生求出了函数y=中,y的变化范围是.却无法说出这样做的数学依据是什么?
所有的困难都指向一个焦点问题:
y=是个什么样的函数?它具有什么样的独特性质?
因此,学生产生了研究函数y=的兴趣,教师趁势提出今天的学习内容.
以“世界杯足球赛”这样贴近学生生活实际的问题为背景,力求更好地激发学生的求知欲,使之成为主动、积极的探索者,并在解决实际问题的过程中体验成功的快乐,同时为新课的引出和学习奠定了基础.
这是一道结合实际的自编题,其中的数据来源于自己做的社会调查.足球运动是一项集体运动项目,对运动员的配合意识要求很高,所以运动员上场后30分钟左右才进入最佳状态,中场休息后状态仍能保持到最佳,50分钟后由于体能的下降影响了状态的发挥.
2、讲解新课,提炼知识.
(1)对比、分析
教师举出生活中的其它实例,感受二次函数的意义,进一步深化对二次函数概念的认识.
①如图,正方形中圆的半径是4cm,阴影部分的面积Q(cm2)和正方形的边长a(cm)的函数关系式是____________________.
②某种药品现价每盒26元,计划两年内每年的降价率都为p,那么,两年后这种药品每盒的价格M(元)和年降价率p的函数关系式是____________________.
答案:M=26(1-p)2
(2)类比、迁移
教师顺势提问:对y=、Q=a2-16、M=26(1-p)2这三个函数你能用一个一般形式来表示吗?
教师参与到学生的分组讨论中去,合作交流,注意及时抓住学生智慧火花的闪现进行引导.教师鼓励学生用不同字母表示,只要把握概念的实质即可,必要时可提示学生,类比一次函数的知识.
(3)二次函数的认识
一般地,我们把形如y=ax2+bx+c(a≠0)(说明:括号内的条件,在第(4)步之后再补写)的函数叫做二次函数,其中a、b分别是二次项系数、一次项系数,c是常数项.
(4)加深理解
二次函数的定义给出后,教师引导学生分别讨论“a、b、c的取值范围”.学生就问题自由发言,教师充分引导学生发表自己的看法,只要合理,都应肯定.最后师生达到共识:
①a不能为0,因为当a=0时,右边不再是x的二次式;
②b、c都能为0,因为当b=0、c=0或b、c都为0时,右边仍是x的二次式.
教师对所得出的常量范围,进行概念补写.
通过两个实例的分析,让学生通过自己列解析式,来思考所列解析式的结构特征,为概括二次函数的定义打下基础.
引导学生侧重从解析式的特征思考,透过“引用不同字母”的表层现象,看到解析式的“结构一致”的本质.敞开思想,广泛议论,实现对二次函数本质的认识.
充分肯定学生的探究结果,使其树立“我也能发现数学”的信心.
教师的提问意在引起学生的思维冲突,使之产生探究的欲望.
遵循学生认知发展及知识系统的形成过程,由一般到特殊逐步为概念的理解铺平道路.
3、分层实践,能力升级.
[快速抢答]
下面各函数中,哪些是二次函数?
(1)①y=2x2②y=-x2+3
③y=(x≠0)④y=15x-1
⑤y=(x+1)2+2⑥y=3x2-2x-5
⑦y=-x(x2+4)⑧y=
答:①、②、⑤、⑥是二次函数
(2)请写出这些二次函数中a、b、c的值.
abc
①y=2x2200
②y=-x2+3
-
03
⑤y=(x+1)2+2
=x2+2x+3123
⑥y=3x2-2x-53-2-5
特别强调:只有把解析式⑤整理成一般形式,才能正确判断解析式中的a、b、c.
1.[轻松完成]:矩形的周长为20cm,它的面积S(cm2)和它的一边长a(cm)的函数关系式是怎样的?并求出此函数的定义域.
答案:S=a(10-a)=-a2+10a,
其中函数的定义域为:0a10.
2.[物理中的数学]:钢球从斜面顶端由静止(运动开始时的速度V0=0)开始沿斜面滚下,速度每秒增加1.5m/s
(1)写出即时速度Vt与时间t的函数关系式;
(2)写出平均速度与时间t的函数
关系式;(提示:本题中,平均速度)
(3)写出滚动的距离S(单位:米)与滚动的时间t(单位:秒)之间的关系式.(提示:本题中,距离S=平均速度时间t)
(4)请判断以上三个函数的类型,如果是二次函数,写出解析式中的a、b、c.
答案:
(1)Vt=1.5t;
(2)==;
(3)S=t=;
(4)函数Vt=1.5t和=是一次函数,函数S=是二次函数,解析式中的a=,b=0,c=0.
3.[请你帮个忙]:某果园有100棵橘子树,每一棵树平均结600个橘子.现准备多种一些橘子树以提高产量,但是如果多种树,那么树与树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橘子.那么,如何表示增种的橘子树的数量x(棵)与橘子总产量y(个)之间的函数关系式呢?判断这个函数的类型,如果是二次函数,写出解析式中的a、b、c.
答案:
解析式中的a=-5,b=100,c=60000.
4.你出题大家做如图,正方形ABCD的边长是5,E是AB上的一个动点,G是AD的延长线上一点,且BE=DG,GF∥AB,EF∥AD,_____________________________________________?
请同学们以小组为单位尝试编一道实际函数问题,列出的函数关系是可以是二次函数,也可以是一次函数.
估计学生可能想到:
①矩形AEGF的面积y与BE的长x
之间的关系可以用怎样的函数来表示?
答案:
②矩形AEMD的面积y与BE的
长x之间的关系可以用怎样的函数来表示?
答案:
③矩形BEMC的面积y与BE的长x之间的关系可以用怎样的函数来表示?
答案:
④矩形DMFG的面积y与BE的长x之间的关系可以用怎样的函数来表示?
答案:
⑤其它类型:六边形ABCMFG的周长y与BE的长x之间的函数关系;矩形AEGF的周长y与BE的长x之间的函数关系;……
这是一道概念辨析题,目的是让学生正确识别二次函数,同时认识二次函数解析式中a、b、c的意义.
通过求函数的定义域,让学生体会实际问题中的二次函数的特点。
通过这道题的安排,让学生体会到了二次函数应用的广泛性。同时,学生在列解析式的过程中,从对比的角度全面了解判定二次函数的方法,进一步了解不同函数的差异,从而对函数的本质有更深入了解。
这道实际问题的解决,培养了学生的观察能力和归纳能力,更重要的是让学生体验了实际问题“数学化”的过程.
兴趣是学习的动力源泉,学生在参与编题的过程中,培养了与人合作的精神和创新意识,通过学生多层次、多角度地解决问题的方式,使原本枯燥的数学课堂逐渐被开放、热烈,富于创造性的课堂气氛所代替,成为激发学生潜力的最佳土壤.
4、展示交流,总结新知.
(1)学生自己总结,并在班上交流
本节课——
我学会了……
使我感触最深的……
我感到最困难的是……
我最值得学习的同学是……
(2)结合学生所述,教师给予指导:
①正确理解“二次函数”定义,关注和定义有关的注意问题.
②生活中处处有数学的影子,只要留心观察身边的事物,开动脑筋,就能用数学知识解决许多的生活实际问题.
课堂小结以教师提问、学生自由讨论的形式进行,借此促进师生心灵的交流,学生对自己清醒的认识和总结,必然促进其自主学习,获得可持续发展的动力.
5、布置作业、巩固知识.
(1)阅读教材相应内容,完成课后习题第45--46页第1、2题.
(2)实践题:
推测植物的生长与温度的关系
科幻小说《实验室的故事》中,有这样一个情节:科学家把一种珍奇植物分别放在不同温度的环境中,经过一定时间后,测试出这种植物的增长情况(如下表)
温度t/℃-7-5-3-11357
植物高度
增长量L/mm12541494941251
由这些数据,科学家推测出植物的增加量L与温度t的函数关系,并由它推测出最适合这种植物增长的温度.
你能想出科学家是怎样推测的吗?请在直角坐标系里画出这个函数的大致图象,根据图象写出你的分析.
必做题促进知识的巩固,实践题供学有余力的学生完成,进一步培养发散思维及社会实践能力.
设置贴近学生生活的实际问题情境,并要求学生尝试画出二次函数的图象来解决实际问题,激发学生探究新知的欲望,为以后的教学埋下伏笔.
五、教案设计说明:
1.注意联系实际,渗透用教学的意识,力求呈现“问题情景——建立数学模型——解释、应用与拓展”的过程,让“人人学有价值的数学”.教学中以实际问题主线贯穿整个教学,强调具体问题的分析、抽象,渗透数学建模思想.注重问题的实际意义,选用贴近学生生活和具有时代气息的例题、习题,激发学生的兴趣,使学生体会二次函数在现实世界中的作用.
2.给学生提供探索和交流的空间,数学活动力求避免单纯的依赖模仿与记忆,而是一个生动活泼、主动和富有个性的过程.围绕本节课所学知识,设置有现实意义的、具有挑战性的开放型问题,激发学生积极思考,引导学生自主探索与合作交流,既能在探索中获取知识,又能不断丰富数学活动的经验,学会探索,学会学习,提高解决问题的能力,发展创新意识和实践能力.
3.谈化概念的形式记忆,关注概念的实际背景与形成过程,采用直观导入、动手操作的方法,借助直观形象,让学生能够理解概念,并初步学会应用.
4.内容设计有弹性,真正实现“不同的人在数学上得到不同的发展”.关注学生群体的差异,尊重学生的个体差异,满足多样化的学习需要,所设置的问题既能使所有学生参与,又有一定的拓展、探索余地和广阔的思维空间,使全体学生在获得必要发展的前提下,不同的学生获得不同的体验。
文章来源:http://m.jab88.com/j/76454.html
更多