88教案网

复数的加法与减法导学案

俗话说,磨刀不误砍柴工。作为高中教师就要精心准备好合适的教案。教案可以让学生能够在教学期间跟着互动起来,帮助授课经验少的高中教师教学。那么如何写好我们的高中教案呢?下面的内容是小编为大家整理的复数的加法与减法导学案,欢迎您阅读和收藏,并分享给身边的朋友!

石油中学高中文科数学选修1-2导学案---复数
§3-2复数的加法与减法
学习目标:
掌握复数的加法与减法的运算法则,了解其几何意义,能用平行四边形法则和三角形法则解决一些简单的问题。
学习重点:复数的加法与减法的运算法则。
学习难点:复数的加法与减法的几何意义。
自主学习
一、知识再现:
1、复数、点、向量之间的对应关系:复数复平面内的点平面向量。
2、实数可以进性加减乘除四则运算,且运算结果仍是一个实数,那么复数呢?
3、复数的概念及其几何意义.

二、新课研究:
已知:z1=a+bi,z2=c+di(.a,b,c,d∈R.)
1、复数的加法:z1+z2=(a+bi)+(c+di)=(a+c)+(b+d)i.
2、复数的减法:z1-z2=(a+bi)-(c+di)=(a-c)+(b-d)i.
与多项式加(减)法是类似的.就是把复数的实部与实部,虚部与虚部分别相加(减),结果仍然是一个复数。
复数的运算满足交换率、结合律。
练习
1)计算:(5-6i)+(-2-i)-(3+4i)
2)计算:(1-2i)+(-2+3i)+(3-4i)+(-4+5i)+…+(-2002+2003i)+(2003-2004i)
3、复数加法的几何意义:
设复数z1=a+bi,z2=c+di,在复平面上所对应的向量为、,即、的坐标形式为=(a,b),=(c,d)以、为邻边作平行四边形OZ1ZZ2,则对角线OZ对应的向量是,
∴=+=(a,b)+(c,d)=(a+c,b+d)=(a+c)+(b+d)i
复数减法的几何意义:复数减法是加法的逆运算,设z=(a-c)+(b-d)i,所以z-z1=z2,z2+z1=z,由复数加法几何意义,以为一条对角线,为一条边画平行四边形,那么这个平行四边形的另一边OZ2所表示的向量就与复数z-z1的差(a-c)+(b-d)i对应由于,所以,两个复数的差z-z1与连接这两个向量终点并指向被减数的向量对应.

三、例题讲解
例1已知复数z1=2+i,z2=1+2i在复平面内对应的点分别为A、B,求对应的复数z,z在平面内所对应的点在第几象限?
解:z=z2-z1=(1+2i)-(2+i)=-1+i,
∵z的实部a=-1<0,虚部b=1>0,
∴复数z在复平面内对应的点在第二象限内.
例2复数z1=1+2i,z2=-2+i,z3=-1-2i,它们在复平面上的对应点是一个正方形的三个顶点,求这个正方形的第四个顶点对应的复数.
分析一:利用,求点D的对应复数.

分析二:利用原点O正好是正方形ABCD的中心来解.M.jAb88.coM

四、课堂巩固
1、在复平面上复数-3-2i,-4+5i,2+i所对应的点分别是A、B、C,则平行四边形ABCD的对角线BD所对应的复数是
A.5-9iB.-5-3iC.7-11iD.-7+11i
2、已知复平面上△AOB的顶点A所对应的复数为1+2i,其重心G所对应的复数为1+i,则以OA、OB为邻边的平行四边形的对角线长为
A.3B.2C.2D.
3、复平面上三点A、B、C分别对应复数1,2i,5+2i,则由A、B、C所构成的三角形是
A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形
4、一个实数与一个虚数的差()
A.不可能是纯虚数B.可能是实数
C.不可能是实数D.无法确定是实数还是虚数
5、计算:(2x+3yi)-(3x-2yi)+(y-2xi)-3xi=________(x、y∈R).

五、归纳反思
六、合作探究
1、已知复数z1=a2-3+(a+5)I,z2=a-1+(a2+2a-1)i(a∈R)分别对应向量、(O为原点),若向量对应的复数为纯虚数,求a的值.
2、在复平面上复数-3-2i,-4+5i,2+i为平行四边形的三个顶点,求第四个顶点所对应的复数。

扩展阅读

数系的扩充与复数的引入导学案及练习题


一、基础过关
1.“复数a+bi(a,b∈R)为纯虚数”是“a=0”的()
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
2.下列命题正确的是()
A.若a∈R,则(a+1)i是纯虚数
B.若a,b∈R且ab,则a+ib+i
C.若(x2-1)+(x2+3x+2)i是纯虚数,则实数x=±1
D.两个虚数不能比较大小
3.以-5+2i的虚部为实部,以5i+2i2的实部为虚部的新复数是()
A.2-2iB.-5+5i
C.2+iD.5+5i
4.若(x+y)i=x-1(x,y∈R),则2x+y的值为()
A.12B.2C.0D.1
5.若复数z=(x2-1)+(x-1)i为纯虚数,则实数x的值为()
A.-1B.0C.1D.-1或1
二、能力提升
6.若sin2θ-1+i(2cosθ+1)是纯虚数,则θ的值为()
A.2kπ-π4(k∈Z)B.2kπ+π4(k∈Z)
C.2kπ±π4(k∈Z)D.k2π+π4(k∈Z)
7.z1=-3-4i,z2=(n2-3m-1)+(n2-m-6)i,且z1=z2,则实数m=______,n=______.
8.给出下列几个命题:
①若x是实数,则x可能不是复数;
②若z是虚数,则z不是实数;
③一个复数为纯虚数的充要条件是这个复数的实部等于零;
④-1没有平方根.
则其中正确命题的个数为________.
9.已知集合M={1,2,(a2-3a-1)+(a2-5a-6)i},N={-1,3},若M∩N={3},
则实数a=________.
10.实数m分别为何值时,复数z=2m2+m-3m+3+(m2-3m-18)i是(1)实数;(2)虚数;(3)纯虚数.

11.已知(2x-y+1)+(y-2)i=0,求实数x,y的值.

12.设z1=m2+1+(m2+m-2)i,z2=4m+2+(m2-5m+4)i,若z1z2,求实数m的取值范围.

复数的乘法与除法


经验告诉我们,成功是留给有准备的人。高中教师要准备好教案为之后的教学做准备。教案可以更好的帮助学生们打好基础,帮助高中教师在教学期间更好的掌握节奏。您知道高中教案应该要怎么下笔吗?为此,小编从网络上为大家精心整理了《复数的乘法与除法》,欢迎大家阅读,希望对大家有所帮助。

复数的乘法与除法教学目标
(1)把握复数乘法与除法的运算法则,并能熟练地进行乘、除法的运算;
(2)能应用i和的周期性、共轭复数性质、模的性质熟练地进行解题;
(3)让学生领悟到“转化”这一重要数学思想方法;
(4)通过学习复数乘法与除法的运算法则,培养学生探索问题、分析问题、解决问题的能力。
教学建议
一、知识结构
二、重点、难点分析
本节的重点和难点是复数乘除法运算法则及复数的有关性质.复数的代数形式相乘,与加减法一样,可以按多项式的乘法进行,但必须在所得的结果中把换成-1,并且把实部与虚部分合并.很明显,两个复数的积仍然是一个复数,即在复数集内,乘法是永远可以实施的,同时它满足并换律、结合律及乘法对加法的分配律.规定复数的除法是乘法的逆运算,它同多项式除法类似,当两个多项式相除,可以写成分式,若分母含有理式时,要进行分母有理化,而两个复数相除时,要使分母实数化,即分式的分子和分母都乘以分母的共轭复数,使分母变成实数.
三、教学建议
1.在学习复数的代数形式相乘时,复数的乘法法则规定按照如下法则进行.设是任意两个复数,那么它们的积:
也就是说.复数的乘法与多项式乘法是类似的,注重有一点不同即必须在所得结果中把换成一1,再把实部,虚部分别合并,而不必去记公式.
2.复数的乘法不仅满足交换律与结合律,实数集R中整数指数幂的运算律,在复数集C中仍然成立,即对任何,,及,有:
,,;
对于复数只有在整数指数幂的范围内才能成立.由于我们尚未对复数的分数指数幂进行定义,因此假如把上述法则扩展到分数指数幂内运用,就会得到荒谬的结果。如,若由,就会得到的错误结论,对此一定要重视。
3.讲解复数的除法,可以按照教材规定它是乘法的逆运算,即求一个复数,使它满足(这里,是已知的复数).列出上式后,由乘法法则及两个复数相等的条件得:
,
由此
,
于是
得出商以后,还应当着重向学生指出:假如根据除法的定义,每次都按上述做来法逆运算的办法来求商,这将是很麻烦的.分析一下商的结构,从形式上可以得出两个复数相除的较为简捷的求商方法,就是先把它们的商写成分式的形式,然后把分子与分母都乘以分母的共轭复数,再把结果化简即可.
4.这道例题的目的之一是练习我们对于复数乘法运算、乘方运算及乘法公式的操作,要求我们做到熟练和准确。从这道例题的运算结果,我们应该看出,也是1的一个立方根。因此,我们应该修正过去关于“1的立方根是1”的熟悉,想到1至少还有一个虚数根。然后再回顾例2的解题过程,发现其中所有的“”号都可以改成“±”。这样就能找出1的另一个虚数根。所以1在复数集C内至少有三个根:1,,。以上对于一道例题或练习题的反思过程,看起来并不难,但对我们学习知识和提高能力却十分重要。它可以有效地锻炼我们的逆向思维,拓宽和加深我们的知识,使我们对一个问题的熟悉更加全面。
5.教材194页第6题这是关于复数模的一个重要不等式,在研究复数模的最值问题中有着广泛的应用。在应用上述绝对值不等式过程中,要非凡注重等号成立的条件。
教学设计示例
复数的乘法
教学目标
1.把握复数的代数形式的乘法运算法则,能熟练地进行复数代数形式的乘法运算;
2.理解复数的乘法满足交换律、结合律以及分配律;
3.知道复数的乘法是同复数的积,理解复数集C中正整数幂的运算律,把握i的乘法运算性质.
教学重点难点
复数乘法运算法则及复数的有关性质.
难点是复数乘法运算律的理解.
教学过程设计
1.引入新课
前面学习了复数的代数形式的加减法,其运算法则与两个多项式相加减的办法一致.那么两个复数的乘法运算是否仍可与两个多项式相乘类似的办法进行呢?
教学中,可让学生先按此办法计算,然后将同学们运算所得结果与教科书的规定对照,从而引入新课.
2.提出复数的代数形式的运算法则:
.
指出这一法则也是一种规定,由于它与多项式乘法运算法则一致,因此,不需要记忆这个公式.
3.引导学生证实复数的乘法满足交换律、结合律以及分配律.
4.讲解例1、例2
例1求.
此例的解答可由学生自己完成.然后,组织讨论,由学生自己归纳总结出共轭复数的一个重要性质:.
教学过程中,也可以引导学生用以上公式来证实:
.
例2计算.
教学中,可将学生分成三组分别按不同的运算顺序进行计算.比如说第一组按进行计算;第二组按进行计算.讨论其计算结果一致说明了什么问题?
5.引导学生得出复数集中正整数幂的运算律以及i的乘方性质
教学过程中,可根据学生的情况,考虑是否将这些结论推广到自然数幂或整数幂.
6.讲解例3
例3设,求证:(1);(2)
讲此例时,应向学生指出:(1)实数集中的乘法公式在复数集中仍然成立;(2)复数的混合运算也是乘方,乘除,最后加减,有括号应先处括号里面的.
此后引导学生思考:(1)课本中关于(2)小题的注解;(2)假如,则与还成立吗?
7.课堂练习
课本练习第1、2、3题.
8.归纳总结
(1)学生填空:
;==.
设,则=,=,=,=.
设(或),则,.
(2)对复数乘法、乘方的有关运算进行小结.
9.作业
课本习题5.4第1、3题.

数系的扩充和复数的概念导学案


石油中学高二文科数学选修1-2导学案---复数
§3-1数系的扩充和复数的概念
学习目标:
1、了解引进复数的必要性;理解并掌握虚数的单位i
2、理解并掌握虚数单位与实数进行四则运算的规律
3、理解并掌握复数的有关概念(复数集、代数形式、虚数、纯虚数、实部、虚部)理解并掌握复数相等的有关概念
学习重点:
复数的概念,虚数单位i,复数的分类(实数、虚数、纯虚数)和复数相等等概念是本节课的教学重点.
学习难点:
虚数单位i的引进及复数的概念是本节课的教学难点.复数的概念是在引入虚数单位i并同时规定了它的两条性质之后,自然地得出的.在规定i的第二条性质时,原有的加、乘运算律仍然成立
自主学习
一、知识回顾:
数的概念是从实践中产生和发展起来的,由于计数的需要,就产生了1,2及表示“没有”的数0.自然数的全体构成自然数集N为了解决测量、分配中遇到的将某些量进行等分的问题,人们引进了分数;为了表示各种具有相反意义的量以及满足记数的需要,人们又引进了负数.这样就把数集扩充到有理数集Q.显然NQ.如果把自然数集(含正整数和0)与负整数集合并在一起,构成整数集Z,则有ZQ、NZ.如果把整数看作分母为1的分数,那么有理数集实际上就是分数集
有些量与量之间的比值,例如用正方形的边长去度量它的对角线所得的结果,无法用有理数表示,为了解决这个矛盾,人们又引进了无理数.所谓无理数,就是无限不循环小数.有理数集与无理数集合并在一起,构成实数集R.因为有理数都可看作循环小数(包括整数、有限小数),无理数都是无限不循环小数,所以实数集实际上就是小数集
因生产和科学发展的需要而逐步扩充,数集的每一次扩充,对数学学科本身来说,也解决了在原有数集中某种运算不是永远可以实施的矛盾,分数解决了在整数集中不能整除的矛盾,负数解决了在正有理数集中不够减的矛盾,无理数解决了开方开不尽的矛盾.但是,数集扩到实数集R以后,像x2=-1这样的方程还是无解的,因为没有一个实数的平方等于-1.由于解方程的需要,人们引入了一个新数,叫做虚数单位.并由此产生的了复数
二、新课研究:
1、虚数单位:
(1)它的平方等于-1,即;
(2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立.
2.与-1的关系:就是-1的一个平方根,即方程x2=-1的一个根,方程x2=-1的另一个根是-!
2、的周期性:4n+1=i,4n+2=-1,4n+3=-i,4n=1
3、复数的定义:形如的数叫复数,叫复数的实部,叫复数的虚部全体复数所成的集合叫做复数集,用字母C表示*
4、复数的代数形式:复数通常用字母z表示,即,把复数表示成a+bi的形式,叫做复数的代数形式
5、复数与实数、虚数、纯虚数及0的关系:对于复数,当且仅当b=0时,复数a+bi(a、b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数;当且仅当a=b=0时,z就是实数0.
6、复数集与其它数集之间的关系:NZQRC.
7、两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等
这就是说,如果a,b,c,d∈R,那么a+bi=c+dia=c,b=d
复数相等的定义是求复数值,在复数集中解方程的重要依据一般地,两个复数只能说相等或不相等,而不能比较大小.如3+5i与4+3i不能比较大小.
现有一个命题:“任何两个复数都不能比较大小”对吗?不对如果两个复数都是实数,就可以比较大小只有当两个复数不全是实数时才不能比较大小

例题讲解
例1请说出复数的实部和虚部,有没有纯虚数?
答:它们都是虚数,它们的实部分别是2,-3,0,-;虚部分别是3,,-,-;-i是纯虚数.
例2复数-2i+3.14的实部和虚部是什么?
答:实部是3.14,虚部是-2.
易错为:实部是-2,虚部是3.14!
例3实数m取什么数值时,复数z=m+1+(m-1)i是:
(1)实数?(2)虚数?(3)纯虚数?
[分析]因为m∈R,所以m+1,m-1都是实数,由复数z=a+bi是实数、虚数和纯虚数的条件可以确定m的值.
解:(1)当m-1=0,即m=1时,复数z是实数;
(2)当m-1≠0,即m≠1时,复数z是虚数;
(3)当m+1=0,且m-1≠0时,即m=-1时,复数z是纯虚数.
例4已知(2x-1)+i=y-(3-y)i,其中x,y∈R,求x与y.
解:根据复数相等的定义,得方程组,所以x=,y=4
课堂巩固
1、设集合C={复数},A={实数},B={纯虚数},若全集S=C,则下列结论正确的是()
A.A∪B=CB.A=BC.A∩B=D.B∪B=C
2、复数(2x2+5x+2)+(x2+x-2)i为虚数,则实数x满足()
A.x=-B.x=-2或-C.x≠-2D.x≠1且x≠-2
3、复数z1=a+|b|i,z2=c+|d|i(a、b、c、d∈R),则z1=z2的充要条件是______.
4、已知m∈R,复数z=+(m2+2m-3)i,当m为何值时,(1)z∈R;(2)z是虚数;(3)z是纯虚数;(4)z=+4i.
归纳反思

课后探究
1、设复数z=log2(m2-3m-3)+ilog2(3-m)(m∈R),如果z是纯虚数,求m的值.
2、若方程x2+(m+2i)x+(2+mi)=0至少有一个实数根,试求实数m的值.

向量的加法和减法例题讲解


例题讲解:向量的加法和减法
本单元重点要求学生掌握向量的几何与加减运算和数乘运算,故要安排范例与足够的练习,使学生对向量的线性运算有相当的掌握.向量共线论证与平面向量分解是用向量证明几何命题基础,也应配备适当例题,提高学生这方面能力,开始还要给出一些辨识相等向量的图形和使用向量各种表示记号的训练.
例1.如图5-4已知梯形ABCD中,两底角∠A=∠B=60°,E为AB中点,且ED∥BC,适当添加箭头后,写出分别与向量、、相等的向量.
由已知可断定(?)图中3个正三角形全等.
故与相等的向量有、.
与相等的向量有.
与相等的向量有.

例2.用五边形ABCDE,作出下列向量:
(1),,,;(2)+;
(3)+++;(4).
如图5-5
(1)略
(2)即
(3)原式=
过B作∥原式=
(4)原式==+=
还可以写更复杂的已知向量的线性组合让学生练,但也要适可而止.

例3.如图5-6,ABCD中E、F分别是BC、CD的中点,若记,,试用、表示向量、、和
从图中可知由、可先求出=2=2-2
若记=,=
则=,=
而有+=,
联立以上二式,可得==

∴=

例4.证明三角形中位线定理.
已知:图5-7中D、E分别是边AB、AC的中点,
求证:DE∥BC且DE=BC.
证明:D、E分别为AB、AC的中点

=
∴DE∥BC且DE=BC.

例5.图5-8,△ABC中,点C分OA边为1∶3,点D分OB边为2∶3,AD与BC交于点P,延长OP交AB于E,求E点分AB所成的比,
解:记,,则=,
∵点P在直线AD上,存在tR使=

∴=(1-t)+①
相仿由点P在BC上可得=(1-m)+②
比较①、②求出t=,
∴=+③
又由点E在AB上可有④
∵与共线,==⑤
比较④、⑤可得S=



则=2∶1
而点E分AB边的比为2∶1

文章来源:http://m.jab88.com/j/27991.html

更多

最新更新

更多