88教案网

完全平方公式(2)学案(新版北师大版)

每个老师不可缺少的课件是教案课件,大家在仔细规划教案课件。认真做好教案课件的工作计划,才能规范的完成工作!你们了解多少教案课件范文呢?以下是小编为大家收集的“完全平方公式(2)学案(新版北师大版)”仅供您在工作和学习中参考。

1.6完全平方公式(2)
一、学习目标
1.会运用完全平方公式进行一些数的简便运算
二、学习重点:运用完全平方公式进行一些数的简便运算
三、学习难点:灵活运用平方差和完全平方公式进行整式的简便运算
四、学习设计
(一)预习准备
(1)预习书p26-27
(2)思考:如何更简单迅捷地进行各种乘法公式的运算?[
(3)预习作业:1.利用完全平方公式计算
(1)(2)(3)(4)

2.计算:
(1)(2)Jab88.COm

(二)学习过程
平方差公式和完全平方公式的逆运用
由反之
反之
1、填空:
(1)(2)(3)
(4)(5)
(6)
(7)若,则k=
(8)若是完全平方式,则k=
例1计算:1.2.

现在我们从几何角度去解释完全平方公式:
从图(1)中可以看出大正方形的边长是a+b,
它是由两个小正方形和两个矩形组成,所以
大正方形的面积等于这四个图形的面积之和.
则S==
即:
如图(2)中,大正方形的边长是a,它的面积是;矩形DCGE与矩形BCHF是全等图形,长都是,宽都是,所以它们的面积都是;正方形HCGM的边长是b,其面积就是;正方形AFME的边长是,所以它的面积是.从图中可以看出正方形AEMF的面积等于正方形ABCD的面积减去两个矩形DCGE和BCHF的面积再加上正方形HCGM的面积.也就是:(a-b)2=.这也正好符合完全平方公式.
例2.计算:
(1)(2)

变式训练:
(1)(2)

(3)(4)(x+5)2–(x-2)(x-3)

(5)(x-2)(x+2)-(x+1)(x-3)(6)(2x-y)2-4(x-y)(x+2y)

拓展:1、(1)已知,则=
(2)已知,求________,________
(3)不论为任意有理数,的值总是()
A.负数B.零C.正数D.不小于2
2、(1)已知,求和的值。

(2)已知,求的值。

(3).已知,求的值

回顾小结
1.完全平方公式的使用:在做题过程中一定要注意符号问题和正确认识a、b表示的意义,它们可以是数、也可以是单项式,还可以是多项式,所以要记得添括号。
2.解题技巧:在解题之前应注意观察思考,选择不同的方法会有不同的效果,要学会优化选择。

延伸阅读

1.8完全平方公式(2)


作为老师的任务写教案课件是少不了的,大家在认真写教案课件了。各行各业都在开始准备新的教案课件工作计划了,我们的工作会变得更加顺利!你们知道哪些教案课件的范文呢?为此,小编从网络上为大家精心整理了《1.8完全平方公式(2)》,供大家参考,希望能帮助到有需要的朋友。

1.8完全平方公式(2)

教学目标:

1.经历探索完全平方公式的过程,进一步发展符号感和推理能力.

2.会运用完全平方公式进行一些数的简便运算.

3.综合运用平方差和完全平方公式进行整式的简便运算.教学重点:

1.运用完全平方公式进行一些数的简便运算;

2.综合运用平方差和完全平方公式进行整式的简便运算.教学难点:灵活运用平方差和完全平方公式进行整式的简便运算.活动准备:学生熟记公式

教学过程:

(一)课前复习:

算下列各题:

1.;2.;3.;4.;

5.;6.;7..

通过教科书中一个有趣的分糖果场景,使学生进一步巩固,同时帮助学生进一步理解与的关系.(二)提出问题,引入新课:

若没有计算器的情况下,你能很快算出9982的结果吗?(三)新课:

1.例:利用完全平方公式计算:(1)1022;(2)1972.

先分析,再课件演示解答过程

2.练习:利用完全平方公式计算:(1)982;(2)2032.

3.例:计算:(1);(2).

方法一:按运算顺序先用完全平方公式展开,再合并同类项;

方法二:先利用平方差公式,再合并同类项.

注意:(2)中按完全平方公式展开后,必须加上括号

4.练习:计算:(1);

(2);

(3).

5.例:计算:(1);

(2).

练习:.

6.补例:若,则k=_________;

若是完全平方式,则k=________.(四)小结:

利用完全平方公式可以进行一些简便的计算,并体会公式中

的字母既可以表示单项式,也可以表示多项式.(五)作业:

第38页习题1、2、3

教后记:

简便计算完成得较好,但形如的计算多数同学没有掌握,不会分组拆项.

完全平方公式


2.2完全平方公式(1)
学习目标:
1、会推导完全平方公式,并能用几何图形解释公式;
2、利用公式进行熟练地计算;
3、经历探索完全平方公式的推导过程,发展符号感,体会“特殊——一般——特殊”的认知规律。
学习过程:
(一)自主探索
1、计算:(1)(a+b)2(2)(a-b)2

2、你能用文字叙述以上的结论吗?

(二)合作交流:你能利用下图的面积关系解释公式(a+b)2=a2+2ab+b2吗?与同学交流。

(三)试一试,我能行。
1、利用完全平方公式计算:
(1)(x+6)2(2)(a+2b)2(3)(3s-t)2

(四)巩固练习。利用完全平方公式计算:
A组:
(1)(x+y)2(2)(-2m+5n)2

(3)(2a+5b)2(4)(4p-2q)2

B组:
(1)(x-y2)2(2)(1.2m-3n)2

(3)(-a+5b)2(4)(-x-y)2

C组:
(1)1012(2)542(3)9972

(五)小结与反思
我的收获:

我的疑惑:

(六)达标检测
1、(a-b)2=a2+b2+.
2、(a+2b)2=.
3、如果(x+4)2=x2+kx+16,那么k=.
4、计算:
(1)(3m-)2(2)(x2-1)2

(2)(-a-b)2(4)(s+t)2

完全平方公式(1)导学案


老师会对课本中的主要教学内容整理到教案课件中,大家在认真写教案课件了。只有制定教案课件工作计划,可以更好完成工作任务!你们了解多少教案课件范文呢?下面是由小编为大家整理的“完全平方公式(1)导学案”,供您参考,希望能够帮助到大家。

八年级数学科期导学案
班级:学习小组:学生姓名:
课题14.2.2完全平方公式(1)课型新授任课教师周次第12周
年级八年级班级章节14.2.2课时第3课时时间



标知识与技能1、理解完全平方公式的意义,公式的结构特征,熟练运用公式进行计算;
2、经历探索、推导完全平方公式的过程,学会观察、抽象、归纳、概括;发展符号感和推理能力;
3、在合作交流中,体会从一般到特殊的认识事物;感悟类比、数形结合的思想方法。
过程与方法
情感态度
与价值观
学习重点完全平方公式的推导过程、结构特征、正确运用公式进行计算
学习难点灵活应用公式进行计算
学法指导自主探究合作交流

前导


学1、计算下列各式,你能发现什么规律?
(1)、。
(2)。
(3)、。
(4)、。
2、尝试归纳:
公式中的字母a、b可以表示,也可以表示单项式或。
3、(乘法的)完全平方公式用语言叙述是:
4、填表(理解公式的结构特点)
(a±b)2aba2±2ab+b2结果
(-2m+1)2
(2x-y-3)2
m2-8mn+16n2

示1、你能根据图(1)、图(2)中的面积说明完全平方公式吗?从中你有何体会与感悟?

2、平方差公式的结构有什么特点?平方差公式与多项式的乘法有何关系?

3、运用完全平方公式计算:
(1)(2)(3)(4)
4、思考:通过上题1中(3)、(4)题的运算,请问与相等吗?与相等吗?为什么?

5、运用完全平方公式计算
(1)1052(2)1982



究提出自己的疑问,运用集体智慧,共同解决



1、下列各式中计算正确的是()
A、(-m-n)2=m2+2nm+n2B、(a+2b)2=a2+2ab+4b2
C、(a2+b)2=a4+2a+1D、(a-b)2=a2-b2
2、化简(a+b)2-(a-b)2的结果是()
A、0B、-2abC、2abD、4ab
3、(x+y)(-x-y)的计算结果是()
A、-x2-y2B、-x2+y2C、-x2+2xy+y2D、-x2-2xy-y2
4、将正方形的边长由acm增加6cm,则正方形的面积增加了()
A.36cm2B.12acm2C.(36+12a)cm2D.以上都不
5、计算:(1)(-2x+5)2(2)(x-y)2(3)
能力提高已知,求的值。

文章来源:http://m.jab88.com/j/25492.html

更多

最新更新

更多