88教案网

机械能守恒定律的应用

作为杰出的教学工作者,能够保证教课的顺利开展,教师要准备好教案,这是教师需要精心准备的。教案可以更好的帮助学生们打好基础,帮助教师在教学期间更好的掌握节奏。那么,你知道教案要怎么写呢?下面的内容是小编为大家整理的机械能守恒定律的应用,但愿对您的学习工作带来帮助。

一、素质教育目标(一)知识教学点1.熟悉应用机械能守恒定律解题的步骤.2.明了应用机械能守恒定律分析问题的注意点.3.理解机械能守恒定律和动量守恒定律的应用差异.(二)能力训练点1.针对具体的物理现象和问题,正确应用机械能守恒定律.2.掌握解决力学问题的思维程序,总体把握解决力学问题的各种方法.(三)德育渗透点1.在解决物理问题的过程中,培养认真仔细有序的分析习惯。2.具体情况具体分析,提高思维的客观性,准确性。(四)美育渗透点通过具体问题的分析,使学生把知识向能力转化,增强自信,产生追求科学、追求真理的美好理想。二、学法引导采用学生自学教材、结合教师的点评,经过分析和讨论来形成一般的解题思想。三、重点·难点·疑点及解决办法1.重点机械能守恒定律的具体应用。2.难点同时应用动量守恒定律和机械能守恒定律分析解决较复杂的力学问题。3.疑点动量守恒定律和机械能守恒定律的应用差异。4.解决办法(1)分析典型例题,解剖麻雀,从而掌握机械能守恒定律应用的程序和方法。(2)比较研究,能准确选择解决力学问题的方法、灵活运用各种定律分析问题。四、课时安排1课时五、教具学具准备例题课件六、师生互动活动设计1.教师指导学生自学,引导归纳。2.学生自学,经过实例分析,定量计算来总结定律的使用条件和使用的方法。七、教学步骤(一)明确目标(略)(二)整体感知解决力学问题一般有三种方法,一是运用力对物体的瞬时作用效果——牛顿运动定律;二是运用力对物体的时间积累的作用效果——动量定律和动量守恒定律;三是运用力对物体的空间积累作用效果——动能定理和机械能守恒定律,根据题设条件提供的具体情况,选择不同的方法,是本节教学的内容之一.(三)重点、难点的学习与目标完成过程【引入新课】复习上节课的机械能守恒定律内容及数学表达式.【新课教学】现举例说明机械能守恒定律的应用.在离地面高h的地方,以的速度斜向上抛出一石块,的方向与水平成角,若空气阻力不计,求石块落至地面的速度大小.(看例题课件)设石块的质量为m,因空气阻力不计,石块在整个运动过程只受重力,只有重力做功,石块机械能保持守恒.现取地面为零重力势能面.石块在抛出点的机械能:石块在落地点的机械能:据列出等式可得:从以上解答可看出,应用机械能守恒定律解题简洁便利,显示出很大的优越性,不仅适合于直线运动,也适合于做曲线运动的物体,分析以上解题过程,还可归纳出1.应用机械能守恒定律解题的基本步骤(l)根据题意,选取研究对象(物体或相互作用的物体系)(2)分析研究对象在运动过程中所受各力的做功情况,判断是否符合机械能守恒的条件.(3)若符合定律成立的条件,先要选取合适的零势能的参考平面,确定研究对象在运动过程的初、末状态的机械能值.(4)根据机械能守恒定律列方程,并代人数值求解.2.在应用机械能守恒定律时,要注意其他力学定理、定律的运用,对物体的整个过程进行综合分析.再举一例.如图所示,光滑的倾斜轨道与半径为R的圆形轨道相连接,质量为。的小球在倾斜轨道上由静止释放,要使小球恰能通过圆形轨道的最高点,小球释放点离圆形轨道最低点多高?通过轨道点最低点时球对轨道压力多大?(看例题课本)

小球在运动过程中,受到重力和轨道支持力,轨道支持力对小球不做功,只有重力做功,小球机械能守恒.取轨道最低点为零重力势能面.因小球恰能通过圆轨道的最高点C,说明此时,轨道对小球作用力为零,只有重力提供向心力,根据牛顿第二定律可列得在圆轨道最高点小球机械能在释放点,小球机械能为根据机械能守恒定律列等式:解设同理,小球在最低点机械能小球在B点受到轨道支持力F和重力根据牛顿第二定律,以向上为正,可列据牛顿第三定律,小球对轨道压力为6mg.方向竖直向下.在较复杂的物理现象中,往往要同时应用动量守恒定律和机械能守恒定律,明确这两个定律应用上的差异,可正确运用它们,客观反映系统中物体间的相互作用,准确求出有关物理量.【例】在光滑的水平面上,置放着滑块A和B,它们的质量分别为和,B滑块与一轻弹簧相连,弹簧的另一端固定在竖直的墙上,滑块A以速度与静止的滑块B发生正碰后粘合一起运动并压缩弹簧,如图所示,求此过程中弹簧的最大弹性势能(看例课课件)

滑块A与B碰撞瞬间,对于滑块A、B组成的物体系,所受合外力为零,动量守恒,得在滑块A、B粘合一起运动压缩弹簧时,只有弹簧的弹力做功,A、B滑块和弹簧组成的系统机械能守恒,弹簧弹性势能最大时,滑块A、B动能为零.动能全部变为弹簧的弹性势能,则两式联立解,可得(四)总结、扩展1.在只有重力和弹力做功的情况下,可应用机械能守恒定律解题.也可以用动能定理解题,这两者并不矛盾.前者往往不深究过程的细节而使解答过程显得简捷,但后者的应用更具普遍性.2.动量守恒定律和机械能守恒定律的比较(l)两个定律的研究对象都是相互作用的物体组成的系统.两个定律的数学表达公式中的物理量都是相对于同一参照系的.(2)两定律研究的都是某一物理过程,注重的是运动过程初、末状态的物理量,而不深究运动过程中各物体间的作用细节.(3)两定律的成立条件不同,动量是否守恒,决定系统所受合外力是否为零,而不管内外力是否做功.而机械能是否守恒,决定于是否有重力和弹力以外的力做功,而不管这些力是内力还是外力.(4)动量守恒定律的数学表达公式是矢量式,要使运算简便,可先定正方向,把矢量运算变为代数运算,机械能守恒定律的数学表达公式是标量式,但要先选定零重力势能面,才能列出具体的机械能守恒公式.八、布置作业P151练习六(3)(4)(5)九、板书设计1.应用机械能守恒定律解题的基本步骤(1)选取研究对象(2)分析机械能守恒条件(3)选定参考平面,明确初末状态物体的机械能值(4)根据定律列方程式计算2.注重机械能守恒定律和其他力学定理、定律的综合应用.

扩展阅读

5.8.1机械能守恒定律应用(新课标)


本节教材分析
本节重点介绍机械能守恒定律的应用,要求学生知道应用机械能守恒定律解题的步骤以及用这个定律处理问题的优缺点,并会用机械能守恒定律解决简单的问题.另外,在本节中要学会据题设条件提供的具体情况,选择不同的方法,用机械能守恒定律以及学过的动量定理、动能定理、动量守恒定律等结合解决综合问题.
教学目标
一、知识目标
1.知道应用机械能守恒定律解题的步骤.
2.明确应用机械能守恒定律分析问题的注意点.
3.理解用机械能守恒定律和动能定理、动量守恒定律综合解题的方法.
二、能力目标
1.针对具体的物理现象和问题,正确应用机械能守恒定律.
2.掌握解决力学问题的思维程序,学会解决力学综合问题的方法.
三、德育目标
1.通过解决实际问题,培养认真仔细有序的分析习惯.
2.具体问题具体分析,提高思维的客观性和准确性.
教学重点
机械能守恒定律的应用.
教学难点
判断被研究对象在经历的研究过程中机械能是否守恒,在应用时要找准始末状态的机械能.
教学方法
1.自学讨论,总结得到机械能守恒定律的解题方法和步骤;
2.通过分析典型例题,掌握用机械能守恒定律、动能定律、动量守恒定律解决力学问题.
教学用具
自制的投影片、CAI课件
教学过程
出示本节课的学习目标:
1.会用机械能守恒定律解决简单的问题.
2.知道应用机械能守恒定律解题的步骤以及用该定律解题的优点.
3.会用机械能守恒定律以及与学过的动量定理、动能定理、动量守恒定律等结合解决综合问题.
学习目标完成过程:
一、导入新课?
1.用投影片出示复习思考题:
①机械能守恒定律的内容是什么?
②机械能守恒定律的数学表达形式是什么?
2.学生答:
①在只有重力做功的情形下,物体的动能和重力势能发生相互转化,但机械能的总量保持不变;在只有弹力做功的情形下,物体的动能和弹性势能发生相互转化,但机械能的总量保持不变.
②机械能守恒定律数学表达式有两种:
第一种:-=-即动能的增加量等于重力势能的减小量
第二种:+=+即半初态的机械能等于初动态的机械能.
3.引入:本节课我们来学习机械能守恒定律的应用.板书:机械能守恒定律的应用
二、新课教学
1.关于机械能守恒定律解题的方法和步骤:
(1)学生阅读本节课文的例1和例2
(2)用多媒体出示思考题
①两道例题中在解题方法上有哪些相同之处?
②例1中如果要用牛顿第二定律和运动学公式求解,该如何求解?
③你认为两种解法解例1,哪种方法简单?为什么?
(3)学生阅读结束后,解答上述思考题:
学生答:课文上的两道例题的解题方法上的相同之处有:
a:首先确定研究对象:例1中以下滑的物体作为研究对象;例2中以小球作为研究对象
b:对研究对象进行受力分析:
例1中的物体受到重力和斜面的支持力,例2中的小球受到重力和悬线的拉力
c:判定各个力是否做功,并分析是否符合机械能守恒的条件:
例1中的物体所受的支持力与物体的运动方向垂直,不做功,物体在下滑过程中只有重力做功,所以机械能守恒.
例2中的小球所受的悬线的拉力始终垂直于小球的运动方向,不做功,小球在摆动过程中,只有重力做功,所以小球的机械能守恒.
d:选取零势能面,写出初态和末态的机械能,列方程解答有关物理量.
(4)在实物投影仪上展示学生所做的用牛顿运动定律和运动学公式解答例1的过程:
解:物体受重力mg和斜面对物体的支持力F支,将重力mg沿平行于斜面方向和垂直于斜面
方向分解,得物体所受的合外力.
又v
∴vt==m/s=4.4m/s
(5)把上述解题过程与课本上的解题过程类比,得到应用机械能守恒定律解题,可以只考虑运动的初状态和末状态,不必考虑两个状态之间的过程的细节,所以用机械能守恒定律解题,在思路和步骤上比较简单.
(6)总结并板书运用机械能守恒定律解题的方法和步骤
①明确研究对象;
②分析研究对象在运动过程中的受力情况以及各力做功的情况,判断机械能是否守恒;
③确定运动的始末状态,选取零势能面,并确定研究对象在始、末状态时的机械能;
④根据机械能守恒定律列出方程,或再辅之以其他方程,进行求解.
2.用机械能守恒定律求解实际问题
(1)用投影片出示问题(一):
在课本例2中选择B点所在的水平面作为参考平面,则小球运动到最低点时的速度多大?
(2)学生解答
(3)在实物投影仪上展示学生的解答过程:
解:选择B点所在的水平面作为参考平面时:小球在B点具有的重力势能=0,动能=0,机械能E1=+=0
摆球到达最低点时,重力势能=-mgh=-mgl(1-cosθ),动能=,机械能E2=+=-mgl(1-cosθ)
由E2=E1=0,可得
=mg(1-cosθ)l
∴v=
3.得到的结果与例2结果相同,说明了什么?
学生答:说明了用机械能守恒定律解题时,计算结果与参考平面的选择无关.
4用投影片出示问题(二)
①物体的质量为m,沿着光滑的轨道滑下轨道形状如图所示,与斜轨道相接的圆轨道半径为R,要使物体
沿光滑的圆轨道恰能通过最高点,物体应从离轨道最低处多高的地方由静止开始滑下?
②出示分析思考题:
a:你选什么做为研究对象?
b:对选定的研究对象而言,对它做功的力有哪几个?符合物体机械能守恒的条件吗?
c:物体恰能通过圆轨道最高点的条件是什么?
③师生讨论后分组得到:
a:选物体作为研究对象.
b:物体在沿光滑的轨道滑动的整个过程中只有重力做功,故机械能守恒.
c:物体恰好能通过最高点的条件是mg=m
④学生书写解题过程,并在多媒体投影仪上展示解题过程:
解:物体在沿光滑的轨道滑动的整个过程中,只有重力做功,故机械能守恒,设物体应从离轨道最低点h高的地方开始由静止滑下,轨道的最低点处水平面为零势能面,物体在运动到圆周轨道的最高点时的速度为v,
则开始时物体的机械能为mgh,运动到圆轨道最高点时机械能为2mgR+mv2,据机械能守恒条件有:
mgh=2mgR+mv2
要使物体恰好通过圆轨道最高点,条件是
mg=m
联立上面两式可求出:h=2R+
5.用投影片出示问题(三)?
问题:如图所示,带有光滑的半径为R的圆弧轨道的滑块静止在光滑的水平面上,此滑块的质量为M,一只质量为m的小球由静止从A放开沿轨道下落,当小球从滑块B处水平飞出时,求下列两种情况下小球飞出的速度
A:滑块固定不动;
B:滑块可以在光滑的水平面上自由滑动.
①提出问题:
a:在本题的两问中物体和滑块运动时是否受到摩擦力的作用?
b:两问中,小球的机械能是否守恒?为什么?
c:如果不守恒,那么又该如何求解?
②学生分组讨论.
③抽查讨论结果:
学生甲:由于轨道和水平地面均光滑,所以小球和滑块在运动过程中均不受摩擦力的作用;
学生乙:在第一种情况下,小球要受到重力mg和滑块对小球的弹力的作用,且只有小球的重力做功,故小球的机械能守恒.
第二种情况下,小球下滑时,重力势能减少,同时小球和滑块的动能都增加,所以小球的机械能不守恒对于第3个问题,学生得不到正确的结果,教师可以进行讲解点拨:

在第二种情况下,小球的重力势能减小,同时小球和滑块的动能增加,据能的转化和守恒得到:小球重力势能的减小等于小球和滑块动能的增加,得到上述关系后,即可求解.
④用多媒体逐步展示解题过程
解:a:当滑块固定不动时,小球自滑块上的A点开始下滑的过程中,小球要受到重力mg和滑块对小球的弹力的作用,而做功的只有小球的重力,故小球的机械能守恒,设小球从B飞出时的水平速度为v,以过B处的水平面为零势能面,则小球在A、B两处的机械能分别为mgR和.据机械能守恒定律有:mgR=可得到,.
b:据机械能守恒定律可知:小球重力势能的减少等于小球和滑块动能的增加,即mgR=+
又因为小球和滑块构成的系统在水平方向上合外力为零,故系统在水平方向上动量也守恒,以小球飞出时速度v1的方向为正方向:
据动量守恒定律有:mv1-Mv2=0
解上面两式得出:v1=即:此时小球飞出的速度大小为
⑤师问:同学们,本题中的第1问还有其他求解方法吗?
学生充分讨论后,抽查解答.
学生答:还可以用动能定理求解:
小球从A到B下滑的过程中,小球的重力做的功mgR也就是小球的合外力的功(轨道对小球的弹力不做功),因而利用动能定理也可以建立方程:mgR=-0,解出v=.
⑥教师总结:能用机械能守恒定律解的题一般都能用动能定理解决.而且省去了确定是否守恒和选定零势能面的麻烦,反过来,能用动能定理来解决的题却不一定都能用机械能守恒定律来解决,在这个意义上讲,动能定理比机械能守恒定律应用更广泛更普遍.
三、巩固练习
1.如图所示,桌面高度为h,质量为m的小球从离桌面高H处自由落下,不计空气阻力,假设桌面处的重力势能为零,小球落到地面前的瞬间的机械能应为
A.mghB.mgHC.mg(H+h)D.mg(H-h)
2.一根长为L的均匀绳索一部分放在光滑水平面上,长为L1的另一部分自然垂在桌面下,如图所示,开始时绳索静止,释放后绳索将沿桌面滑下,求绳索刚滑离桌面时的速度
大小。
参考答案:
1.B2.v=
四、小结
通过本节课的学习,我们知道了:
1.应用机械能守恒定律解题的基本步骤:
①根据题意,选取研究对象(物体或相互作用的物体系);?
②分析研究对象在运动过程中所受各力的做功情况,判断是否符合机械能守恒的条件;
③若符合定律成立的条件,先要选取合适的零势能的参考平面,确定研究对象在运动过程的初、末状态的机械能值;
④据机械能守恒定律列方程,并代入数值求解.
2.在只有重力和弹力做功的条件下,可应用机械能守恒定律解题,也可以用动能定理解题,这两者并不矛盾,前者往往不分析过程的细节而使解答过程显得简捷,但后者的应用更具普遍性.
五、作业
1.课本P150练习六③④⑤
2.思考题
(1)物体在平衡力作用下运动
A.机械能一定不变
B.如果物体的势能有变化,则机械能一定有变化
C.如果物体的动能不变,则势能一定变化
D.如果物体的势能有变化,机械能不一定有变化
(2)一个人站在高h处,抛出一个质量为m的物体,物体落地时的速度为v,人对物体做的功为
A.mghB.mgh+mv2?C.D.
(3)以10m/s的速度将质量是m的物体竖直向上抛出,若空气阻力忽略,g=10m/s2,则①物体上升的最大高度是多少?

②上升到何处时重力势能和动能相等.
(4)如图所示:小球A用不可伸长的轻绳悬于O点,在O点的正下方有一固定的钉子B,OB=d,初始时小球A(与O同水平面)无初速释放,绳长为L,为使球能绕B点做圆周运动,试求d的取值范围.
(5)如图所示,A、B是两个质量相同的物体,用轻绳跨过定滑轮相连,先用手托住B,此时A、B的高度差为h,使B无初速释放,斜面倾角为θ,一切摩擦均不计,试求A、B运动到同一水平面上时速率是多少?
(6)如图所示,有一质量为M的静止小车,在光滑水平轨道上,小车的光滑水平面与光滑圆周导轨相切,导轨半径为R,其所在的竖直平面与小车将发生的运动平行,一质量为m的小球以某一水平速度v0进入圆周轨
道,当小球通过圆周导轨的最高点时,小球对导轨刚好没有压力,求小球进入小车时的速度v0.
参考答案:
(1)B?(2)D?(3)①5m?②2.5m?(4)L≤d<L?
(5)v=(6)v0=
六、板书设计

验证机械能守恒定律


一名优秀的教师在教学时都会提前最好准备,教师在教学前就要准备好教案,做好充分的准备。教案可以让学生更好的消化课堂内容,帮助教师提高自己的教学质量。优秀有创意的教案要怎样写呢?下面是小编为大家整理的“验证机械能守恒定律”,欢迎您参考,希望对您有所助益!

总课题机械能守恒定律总课时第26课时
课题验证机械能守恒定律课型实验课



标知识与技能
1、会用打点计时器打下的纸带计算物体运动的速度。
2、掌握验证机械能守恒定律的实验原理。
过程与方法
通过用纸带与打点计时器来验证机械能守恒定律,体验验证过程和物理学的研究方法。
情感、态度与价值观
通过实验验证,体会学习的快乐,激发学习的兴趣;通过亲身实践,树立“实践是检验真理的唯一标准”的科学观。培养学生的观察和实践能力,培养学生实事求是的科学态度。
教学
重点掌握验证机械能守恒定律的实验原理。
教学
难点验证机械能守恒定律的误差分析及如何减小实验误差的方法。
学法
指导实验探究
教学
准备
教学
设想预习导学→学生初步了解本节内容→实验探究→突出重点,突破难点→典型例题分析→巩固知识→达标提升
教学过程
师生互动补充内容或错题订正
任务一预习导学
⒈为进行验证机械能守恒定律的实验,有下列器材可供选用:铁架台,打点计时器,复写纸,纸带,秒表,低压直流电源,导线,电键,天平。其中不必要的器材有:;缺少的器材是。
⒉物体做自由落体运动时,只受力作用,其机械能守恒,若物体自由下落H高度时速度为V,应有MgH=,故只要gH=1/2V2成立,即可验证自由落体运动中物体的机械能守恒。
⒊在打出的各纸带中挑选出一条点迹,且第1、2两打点间距离接近的纸带。
⒋测定第N个点的瞬时速度的方法是:测出与N点相邻的前、后两段相等时间T内下落的距离SN和SN+1,,有公式VN=算出。
⒌在验证机械能守恒定律时,如果以v2/2为纵轴,以h为横轴,根据实验数据绘出的图线应是,才能验证机械能守恒定律,其斜率等于的数值。
任务二重点复习
1、推导出机械能守恒定律在本实验中的具体表达式。
在图1中,质量为m的物体从O点自由下落,以地作零重力势能面,下落过程中任意两点A和B的机械能分别为:
EA=,EB=
如果忽略空气阻力,物体下落过程中的机械能守恒,于是有:

上式亦可写成

为了方便,可以直接从开始下落的O点至任意一点(如图1中A点)来进行研究,这时应有:----本实验要验证的表达式,式中h是
高度,vA是物体在A点的
速度。
2、如何求出A点的瞬时速度vA?
(引导:根据做匀加速运动的物体在某一段时间t内的平均速度等于该时间中间时刻的瞬时速度可求出A点的瞬时速度vA。)
图2是竖直纸带由下而上实际打点后的情况。从O点开始依次取点1,2,3,……图中s1,s2,s3,……分别为0~2点,1~3点,2~4点……各段间的距离。
根据公式,t=2×0.02s(纸带上任意两个相邻的点间所表示的时间都是0.02s),可求出各段的平均速度。这些平均速度就等于是1,2,3,……各点相对应的瞬时速度v1,v2,v3,…….

3、如何确定重物下落的高度?
(引导:图2中h1,h2,h3,……分别为纸带从O点下落的高度。)

根据以上数值可以计算出任意点的重力势能和动能,从而验证机械能守恒定律。
任务三进行实验
一、在学生开始做实验之前,老师应强调如下几个问题:
1、该实验中选取被打点纸带应注意两点:一是第一点O为计时起点,O点的速度应为零。怎样判别呢?

2、是否需要测量重物的质量?

3、在架设打点计时器时应注意什么?为什么?

4、实验时,接通电源和释放纸带的顺序怎样?为什么?

5、测量下落高度时,某同学认为都必须从起始点算起,不能弄错。他的看法正确吗?为了减小测量h值的相对误差,选取的各个计数点要离起始点适当远些好,还是近些好?

二、学生进行分组实验。(学生讨论实验的步骤,教师巡回指导,帮助能力较差的学生完成实验步骤)(参考实验步骤)
1.把打点计时器安装在铁架台上,用导线将学生电源和打点计时器接好.
2.把纸带的一端用夹子固定在重锤上,另一端穿过打点计时器的限位孔,用手竖直提起纸带,使重锤停靠在打点计时器附近.
3.接通电源,待计时器打点稳定后再松开纸带,让重锤自由下落,打点计时器应该在纸带上打出一系列的点.
4.重复上一步的过程,打三到五条纸带.
5.选择一条点迹清晰且第l、2点间距离接近2mm的纸带,在起始点标上0,以后各点依次为1、2、3……用刻度尺测量对应下落的高度h1h2h3,……记人表格中.
6.用公式vn=hn+1+hn-1/2t,计算出各点的瞬时速度v1v2v3……并记录在表格中.
各计数点l23456
下落高度
速度
势能
动能
结论
7.计算各点的重力势能的减少量mgh。和动能的增加量1/2mvn2,并进行比较.看是否相等,将数值填人表格内.
任务四达标提升
(1)2.在《验证机械能守恒定律》的实验中,已知打点计时器所用电源的频率为50Hz,查得当地的重力加速度g=9.8m/s2,实验中得到一条点迹清楚的纸带如图7-10-1所示,把第一个点记作O,另选连续的4个点A、B、C、D作为测量的点,经测量A、B、C、D各点到O的距离分别为62.99cm、70.18cm、77.76cm、85.73cm.根据以上数据,可知重物由O点运动到C点,重力势能减少量等于J,动能的增加量等于J(取三位有效数字).在实验允许误差范围内,可认为重物下落过程中,机械能,(可设重物质量为m)
2.在《验证机械能守恒定律》的实验中,下列说法中正确的是()
A.要用天平称重锤质量
B.实验时,当松开纸带让重锤下落的同时,立即接通电源
C.要选用第1、2两点接近2mm的纸带
D.实验结果总是动能增加量略大于重力势能的减小量
(3)在做“验证机械能守恒定律”的实验时,用打点计时器打出纸带如图3所示,其中A点为打下的第一个点,0、1、2……为连续的计数点。现测得两相邻计数点之间的距离分别为s1、s2、s3、s4、s5、s6,已知相邻计数点间的打点时间间隔均为T。根据纸带测量出的距离及打点的时间间隔,可以求出此实验过程中重锤下落运动的加速度大小表达式为:
_________。在打第5号计数点时,纸带运动的瞬时速度大小的表达式为________。要验证机械能守恒定律,为减小实验误差,应选择打下第_________号和第__________号计数点之间的过程为研究对象。
(4)某次“验证机械能守恒定律”的实验中,用6V、50Hz的打点计时器打出的一条无漏点的纸带,如图4所示,O点为重锤下落的起点,选取的计数点为A、B、C、D,各计数点到O点的长度已在图上标出,单位为毫米,重力加速度取9.8m/s2,若重锤质量为1kg。
①打点计时器打出B点时,重锤下落的速度vB=m/s,重锤的动能EkB=
J。
②从开始下落算起,打点计时器打B点时,重锤的重力势能减小量为
J。
③根据纸带提供的数据,在误差允许的范围内,重锤从静止开始到打出B点的过程中,得到的结论是。

§7.8机械能守恒定律(1)


§7.8机械能守恒定律(1)
教学目标
知识与技能
1、知道什么是机械能,知道物体的动能和势能可以相互转化,知道能量的转换必须通过做功实现;
2、会正确推导物体在光滑曲面上运动过程中的机械能守恒,理解机械能守恒定律的内容、表达式、守恒的条件。
过程与方法
1、在具体的问题中会判定物体的机械能是否守恒;
2、初步学会从能量转化和守恒的观点来解释物理现象,分析问题。
情感、态度与价值观
通过能量转换与守恒的教学,培养学生学以致用的思想。
教学重点
理解机械能守恒定律的内容、表达式、守恒的条件。
教学难点
物体机械能是否守恒的判定
教具准备
单摆,弹簧振子,滚摆
教学过程
一、课前导学
演示单摆和弹簧振子,分析能量转化情况,引入新课。
二、质疑讨论
(一)动能和势能的相互转化
1、自由落体运动的物体运动过程中能量的转化情况是怎样的?
2、演示单摆和弹簧振子,分析能量转化情况。
小结:(1)动能和势能可以相互转化,转化时必定有重力或弹簧的弹力做功;
(2)在忽略阻力只有重力或弹簧的弹力做功的物体系统内总的机械能保持不变。
(二)机械能守恒定律
1、内容:
2、表达式:
3、守恒的条件:
4、理解:
(1)“守恒”的含义:指一个过程中某个量一直保持不变,而并非只是初、末两状态相同。
(2)我们可以分三个层次来表述机械能守恒定律:
A、只有重力做功的情形。这时弹性势能不改变。可表示为:
B、只有弹力做功的情形。这时重力势能不改变。可表示为:
其中Ek1和Ek2表示守恒过程中任意两个状态时的动能,EN1和EN2表示守恒过程中任意两个状态时的弹性势能。
C、同时有重力和弹力做功、但其它力不做功的情形。可表示为:
重力、弹力以外的力做正功,机械能增加;重力、弹力以外的力做负功,机械能减少。
通常在不涉及时间和加速度的情况下,应用机械能守恒定律解题较为简便。
要注意:机械能守恒定律是针对系统而言的,即便我们平时说某个物体具有重力势能,实际上是指由该物体和地球组成的系统所具有的重力势能。
三、反馈矫正
例1:分析下列情况下机械能是否守恒?
A、跳伞运动员从空中匀速下落过程
B、物体以8m/s2在空中下落过程
C、物体作平抛运动过程
D、物体在细线拉力作用下沿光滑斜面上滑过程
例2:把一个小球用细绳悬挂起来,就成为一个摆(如图),摆长为l,最大偏角为θ。小球运动到最低位置时的速度是多大?
讨论:1、最低点时绳的拉力;
2、利用机械能守恒定律解决问题的一般步骤.
(1)选取研究对象——系统或物体.
(2)根据研究对象所经历的物理过程.进行受力、做功分析,判断机械能是否守恒.
(3)恰当地选取参考平面,确定研究对象在过程的初末状态时的机械能.
(4)根据机械能守恒定律列方程,进行求解.
例3:如图所示,桌面高为A,质量为m的小球从离桌面高为H处自由落下,不计空气阻力,假设桌面处的重力势能为零,则小球落到地面前瞬间的机械能为()
A、mghB、mgHC、mg(H+h)D、mg(H—h)
四、巩固迁移
课课练108页1--6
§7.8机械能守恒定律(2)
教学目标
知识与技能
1、进一步理解机械能守恒定律的内容,表达式和适用条件;
2、在具体问题中,能判定机械能是否守恒,并能列出机械能守恒的方程式。
过程与方法
进一步利用机械能守恒定律来解题
情感、态度与价值观
应用机械能守恒定律解决具体问题
教学重点
在具体的问题中能判定机械能是否守恒,并能列出定律的数学表达式。
教学难点
机械能是否守恒的判断,机械能守恒定律的应用
教学过程
一、课前导学
1、机械能守恒定律的内容
2、应用机械能守恒定律解题的步骤
二、质疑讨论
1、机械能守恒的条件:只有重力或弹簧的弹力做功
理解:
(1)系统只受重力,弹力
(2)系统受重力,弹力外,还受其它力.但其它力都不做功
(3)系统受重力,弹力外,还受其它力.但其它力做功代数和为零
2、机械能守恒定律的表达式:
三、反馈矫正
例1:长为L的均匀链条,放在光滑的水平桌面上,且使其长度的1/4垂在桌边,如图所示,松手后链条从静止开始沿桌边下滑,则链条滑至刚刚离开桌边时的速度大小为多大?
解析:链条下滑时,因桌面光滑,没有摩擦力做功。整根链条总的机械能守恒,可用机械能守恒定律求解。设整根链条质量为m,则单位长度质量(质量线密度)为:m/L
设桌面重力势能为零,由机械能守恒定律得

点拨:求解这类题目时,一是注意零势点的选取,应尽可能使表达式简化,该题如选链条全部滑下时的最低点为零势能点,则初始势能就比较麻烦。二是灵活选取各部分的重心,该题最开始时的势能应取两部分(桌面上和桌面下)势能总和,整根链条的总重心便不好确定,最后刚好滑出桌面时的势能就没有必要再分,可对整根链条求出重力势能。
例2:课课练113页11题

例3:课课练114页17题

四、巩固迁移
1、课课练114页15题16题
2、课课练111页1--4题
§7.8《机械能守恒定律》习题
主备人:黄步海
教学目标
知识与技能
进一步理解机械能守恒定律的内容、表达式、守恒的条件。
过程与方法
应用机械能守恒定律解题
情感、态度与价值观
通过能量转换与守恒的教学,培养学生学以致用的思想。
教学重点
理解机械能守恒定律的内容,表达式.守恒的条件。
教学难点
物体机械能定律的应用
教学过程
一、课前导学
复习机械能守恒定律及其条件
二、质疑讨论
1、在只有重力和弹簧的弹力做功的情况下,物体的动能和势能发生相互转化,但机械能的总量保持不变.
2、对机械能守恒定律的理解:
(1)系统在初状态的总机械能等于末状态的总机械能.
即E1=E2或1/2mv12+mgh1=1/2mv22+mgh2
(2)物体(或系统)减少的势能等于物体(或系统)增加的动能,反之亦然。
即-ΔEP=ΔEK
(3)若系统内只有A、B两个物体,则A减少的机械能EA等于B增加的机械能ΔEB即-ΔEA=ΔEB
3、机械能守恒定律解题步骤
三、反馈矫正
例1质量为m的小球从离心轨道上由静止开始无摩擦滑下后进入竖直面内的圆形轨道,圆形轨道的半径为R,求:(1)要使小球能达到圆形轨道的最高点,h至少应为多大?(2)当h=4R时,小球运动到圆环的最高点速度是多大?此时圆环对小球的压力为多少?

例2一根内壁光滑的细圆管,形状如下图所示,放在竖直平面内一个小球自A口的正上方高h处自由落下,第一次小球恰能
抵达B点;第二次落入A口后,自B口射出,恰能再进入
A口,则两次小球下落的高度之比h1:h2=______
例3:如图示,长为L的轻质硬棒的底端和中点各固定一个质量为m的小球,为使轻质硬棒能绕转轴O转到最高点,则底端小球在如图示位置应具有的最小速度v=。

例4:如图所示,一固定的楔形木块,其斜面的倾角θ=30°,另一边与地面垂直,顶上有一定滑轮。一柔软的细线跨过定滑轮,两端分别与物块A和B连结,A的质量为4m,B的质量为m,开始时将B按在地面上不动,然后放开手,让A沿斜面下滑而B上升。物块A与斜面间无摩擦。设当A沿斜面下滑S距离后,细线突然断了。求物块B上升离地的最大高度H.
四、巩固迁移
1、一个人站在阳台上,以相同的速率v分别把三个球竖直向上抛出、竖直向下抛出、水平抛出,不计空气阻力,则三球落地时的速率()
A、上抛球最大B、下抛球最大C、平抛球最大D、三球一样大
2、如图-1,小球自a点由静止自由下落,到b点时与弹簧接触,到c点时弹簧被压缩到最短,若不计弹簧质量和空气阻力,在小球由a→b→c的运动过程中()
A、物体从A下降到B的过程中,动能不断变小
B、物体从B上升到A的过程中,动能先增大后减小
C、物体由A下降到B的过程中,弹簧的弹性势能不断增大
D、物体由B上升到A的过程中,弹簧所减少的弹性势能等于物体所增加的动能与增加的重力势能之和
3、长为L质量分布均匀的绳子,对称地悬挂在轻小的定滑轮上,如图所示.轻轻地推动一下,让绳子滑下,那么当绳子离开滑轮的瞬间,绳子的速度为.
4、将质量为M和3M的两小球A和B分别拴在一根细绳的两端,绳长为L,开始时B球静置于光滑的水平桌面上,A球刚好跨过桌边且线已张紧,如图所示.当A球下落时拉着B球沿桌面滑动,桌面的高为h,且h<L.若A球着地后停止不动,求:(1)B球刚滑出桌面时的速度大小.(2)B球和A球着地点之间的距离.

7.9实验:验证机械能守恒定律
教学目标
知识与技能
1、会用打点计时器打下的纸带计算物体运动的速度;
2、掌握验证机械能守恒定律的实验原理。
过程与方法
通过用纸带与打点计时器来验证机械能守恒定律,体验验证过程和物理学的研究方法。
情感、态度与价值观
通过实验验证,体会学习的快乐,激发学习的兴趣;通过亲身实践,树立“实践是检验真理的唯一标准”的科学观。培养学生的观察和实践能力,培养学生实事求是的科学态度。
教学重点
掌握验证机械能守恒定律的实验原理。
教学难点
验证机械能守恒定律的误差分析及如何减小实验误差的方法。
教学过程
一、课前导学
⒈为进行验证机械能守恒定律的实验,有下列器材可供选用:铁架台,打点计时器,复写纸,纸带,秒表,低压直流电源,导线,电键,天平。其中不必要的器材有:;缺少的器材是。
⒉物体做自由落体运动时,只受力作用,其机械能守恒,若物体自由下落H高度时速度为V,应有MgH=,故只要gH=1/2V2成立,即可验证自由落体运动中物体的机械能守恒。
⒊在打出的各纸带中挑选出一条点迹,且第1、2两打点间距离接近
的纸带。
⒋测定第N个点的瞬时速度的方法是:测出与N点相邻的前、后两段相等时间T内下落的距离SN和SN+1,,有公式VN=算出。
⒌在验证机械能守恒定律时,如果以v2/2为纵轴,以h为横轴,根据实验数据绘出的图线应是,才能验证机械能守恒定律,其斜率等于的数值。
二、质疑讨论
1、推导出机械能守恒定律在本实验中的具体表达式。
在图1中,质量为m的物体从O点自由下落,以地作零重力势能面,下落过程中任意两点A和B的机械能分别为:
EA=,EB=
如果忽略空气阻力,物体下落过程中的机械能守恒,于是有
EA=EB,即=
上式亦可写成
该式左边表示物体由A到B过程中动能的增加,右边表示物体由A到B过程中重力势能的减少。等式说明,物体重力势能的减少等于动能的增加。为了方便,可以直接从开始下落的O点至任意一点(如图1中A点)来进行研究,这时应有:----本实验要验证的表达式,式中h是物体从O点下落至A点的高度,vA是物体在A点的瞬时速度。
2、如何求出A点的瞬时速度vA?
根据做匀加速运动的物体在某一段时间t内的平均速度等于该时间中间时刻的瞬时速度可求出A点的瞬时速度vA。图2是竖直纸带由下而上实际打点后的情况。从O点开始依次取点1,2,3,……图中s1,s2,s3,……分别为0~2点,1~3点,2~4点……各段间的距离。
根据公式,t=2×0.02s(纸带上任意两个相邻的点间所表示的时间都是0.02s),可求出各段的平均速度。这些平均速度就等于是1,2,3,……各点相对应的瞬时速度v1,v2,v3,…….例如:量出0~2点间距离s1,则在这段时间里的平均速度,这就是点1处的瞬时速度v1。依次类推可求出点2,3,……处的瞬时速度v2,v3,……。
3、如何确定重物下落的高度?图2中h1,h2,h3,……分别为纸带从O点下落的高度。根据以上数值可以计算出任意点的重力势能和动能,从而验证机械能守恒定律。
学生活动:学生看书明确实验的各项任务及实验仪器。复习《用打点计时器测速度》的实验,掌握用打点计时器测量匀变速直线运动速度的方法。

三、反馈矫正
1、在学生开始做实验之前,应强调如下几个问题:
(1)该实验中选取被打点纸带应注意两点:一是第一点O为计时起点,O点的速度应为零。怎样判别呢?
(2)是否需要测量重物的质量?
(3)在架设打点计时器时应注意什么?为什么?
(4)实验时,接通电源和释放纸带的顺序怎样?为什么?
(5)测量下落高度时,某同学认为都必须从起始点算起,不能弄错。他的看法正确吗?为了减小测量h值的相对误差,选取的各个计数点要离起始点适当远些好,还是近些好?
参考:
(1)因为打点计时器每隔0.02s打点一次,在最初的0.02s内物体下落距离应为0.002m,所以应从几条纸带中选择第一、二两点间距离接近两年2mm的纸带进行测量;二是在纸带上所选的点就是连续相邻的点,每相邻两点时间间隔t=0.02s.
(2)因为不需要知道物体在某点动能和势能的具体数值,所以不必测量物体的质量m,而只需验证就行了。
(3)打点计时器要竖直架稳,使其两限位孔在同一竖直平面内,以尽量减少重物带着纸带下落时所受到的阻力作用。
(4)必须先接通电源,让打点计时器正常工作后才能松开纸带让重物下落。
(5)这个同学的看法是正确的。为了减小测量h值的相对误差,选取的各个计数点要离起始点适当远些好。
2、学生进行分组实验。
四、巩固迁移
(1)为进行“验证机械能守恒定律”的实验,有下列器材可供选用:铁架台,打点计时器,复写纸,纸带,秒表,低压直流电源,导线,电键,天平。其中不必要的器材有:;缺少的器材是。
(2)在验证机械能守恒定律时,如果以v2/2为纵轴,以h为横轴,根据实验数据绘出的图线应是,才能验证机械能守恒定律,其斜率等于的数值。
(3)在做“验证机械能守恒定律”的实验时,用打点计时器打出纸带如图3所示,其中A点为打下的第一个点,0、1、2……为连续的计数点。现测得两相邻计数点之间的距离分别为s1、s2、s3、s4、s5、s6,已知相邻计数点间的打点时间间隔均为T。根据纸带测量出的距离及打点的时间间隔,可以求出此实验过程中重锤下落运动的加速度大小表达式为_________。在打第5号计数点时,纸带运动的瞬时速度大小的表达式为________。要验证机械能守恒定律,为减小实验误差,应选择打下第_________号和第__________号计数点之间的过程为研究对象。
(4)某次“验证机械能守恒定律”的实验中,用6V、50Hz的打点计时器打出的一条无漏点的纸带,如图4所示,O点为重锤下落的起点,选取的计数点为A、B、C、D,各计数点到O点的长度已在图上标出,单位为毫米,重力加速度取9.8m/s2,若重锤质量为1kg。
①打点计时器打出B点时,重锤下落的速度vB=m/s,重锤的动能EkB=J。
②从开始下落算起,打点计时器打B点时,重锤的重力势能减小量为J。
③根据纸带提供的数据,在误差允许的范围内,重锤从静止开始到打出B点的过程中,得到的结论是。
参考答案:(1)不必要的器材有:秒表、低压直流电源、天平。缺少的器材是低压交流电源、重锤、刻度尺。(2)通过原点的直线、g.(3)(s6+s5+s4-s3-s2–s1)/9T2,(s5+s6)/2T,1、5.(4)①1.175,0.69,0.69②0.69,③机械能守恒。

机械能守恒定律(新课标)


一名优秀的教师在教学方面无论做什么事都有计划和准备,作为高中教师就要根据教学内容制定合适的教案。教案可以让讲的知识能够轻松被学生吸收,帮助高中教师缓解教学的压力,提高教学质量。所以你在写高中教案时要注意些什么呢?下面是小编帮大家编辑的《机械能守恒定律(新课标)》,供大家借鉴和使用,希望大家分享!

□教学目标:
1.知道什么是机械能,知道物体的动能和势能可以相互转化。
2.理解机械能守恒定律的内容。
3.在具体问题中,能判定机械能是否守恒,并能列出机械能守恒的方程式。
4.学会在具体的问题中判这定物体的机械能是否守恒;
5.初步学会从能量转化和守恒的观点来解释物理现象,分析问题。
6.通过能量守恒的教学,使学生树立科学观点,理解和运用自然规律,并用
来解决实际问题。
□教学重点:
1、理解机械能守恒定律的内容。
2、在具体问题中能判定机械能是否守恒,并能列出定律的数学表达式。
□教学难点:
1.从能的转化和功能关系出发理解机械能守恒的条件。
2.能正确判断研究对象在所经历的过程中机械能是否守恒。
□教学方法:
1.关于机械能守恒定律的得出,采用师生共同演绎推导的方法,明确该定律
数学表达式公式的来龙去脉。
2.关于机械能守恒的条件,在教学时采用列举实例,具体情况具体分析的方
法。
□教学步骤:
1.用投影片出示思考题:
①本章中我们学习了哪几种形式的能?它们各是如何定义的?它们的大小各由什么决定?
②动能定理的内容和表达式是什么?
③重力所做的功与物体重力势能的变化之间有什么关系?
2.学生回答:
①本章我们学习了以下几种能:动能、重力势能、弹性势能。
②动能定理的内容是:物体所受合外力所做的功等于物体动能的改变,即:WG=mv22/2-mv12/2
③重力所做的功和物体重力势能之间变化的关系为:
WG=mgh1-mgh2
3.教师总结:
①同学们要注意动能定理中动能的变化量是末动能减去初动能,而重力做功与重力势能改变之间关系式中初位置的重力势能与末位置重力势能的差。
②引入:动能、重力势能、弹性势能属于力学范畴,统称为机械能,本节
课我们就来研究有关机械能的问题。
(一)引入新课
1.用多媒体展示下述物理情景:
A、运动员投出铅球;
B、弹簧的一端接在气垫导轨的一端,另一端和滑块相连,让滑块在水平的轨道上做往复运动。
2.学生分析上述物理情景中能量是如何转化的?
学生甲:
A.铅球在上升过程中,动能转化为重力势能;铅球在下落过程中,重力势能又转化为动能。
B.弹簧在和物块的往复运动过程中,动能和弹簧的弹性势能发生相互转化。
学生乙:
除了甲的叙述中动能和势能相互转化外,还有一部分转化为物体的内能。
3.教师讲:分析的很全面,但是在此过程中转化为内能的部分在总结能量中占的比例很小,我们一般不予考虑。
4.过渡:通过上述分析,我们得到动能和势能之间可以相互转化,那么在动能势能的转化过程中,动能和势能的和有什么变化呢?
(二)机械能守恒定律的推导
1.用多媒体出示两道思考题:
思考题一:如图所示,一个质量为m的物体自由下落,
经过高度为h1的A点时速度为v1,下落到高度h2为的B
点时速度为v2,试写出物体在A点时的机械能和在B点
时的机械能,并找到这二个机械能之间的数量关系。
思考题二:如图所示,一个质量为m的物体做平抛运动,经过高度为h1的A点时速度为v1,经过高度为h2的B点时速度为v2,写出物体在位置A、B时的机械能的表达式并找出这二个机械能之间的关系。
2.把学生分为二小组,一组做思考题一,另一组做思考题二,并进行小组赛。
3.教师对首先做完的小组进行激励评价,并抽有代表性的解答方案进行现场评点。
4.用实物投影仪对推导过程进行评析。
①推导过程一
解:∵机械能等于物体的动能和势能之和
∴A点的机械能等于:mv12/2+mgh1
B点的机械能等于:mv22/2+mgh2
又在自由落体运动中,物体只受重力的作用,据动能定理得:
WG=mv22/2-mv12/2
又据重力做功与重力势能的关系得到:
∴mv12/2-mgh2=mv12/2-mgh1
②学生评价:在上述推导过程中,在用重力做功和重力势能改变之间关系应是重力所做的功等于初位置的重力势能减去末位置的重力势能,所以推导的结果错误。
③推导结果②
解:A点的机械能等于:mv12/2+mgh
B点的机械能等于:mv22/2+mgh2
由于物体做平抛运动,只受重力作用,且重力做正功,据动能定理得:
WG=mv22/2-mv12/2
又据重力做功与重力势能的关系得到:
∴mv22/2-mv12/2=mgh1-mgh2
∴mv22/2+mgh2=mgh1+mv12/2
④教师评析:第二个推导过程是完全正确的。
5.用多媒体展示评析中得到的表达
mv22/2-mv12/2=mgh1-mgh2①
mv22/2+mgh2=mgh1+mv12/2②
学生讨论:上述两个表达式说明了什么?
讨论后学生回答。
学生甲:在表达式①中等号左边是物体动能的增加量,等号右边是物体重力势能减少量,该表达式说明:物体在下落过程中,重力做了多少正功,物体的重力势能就减小多少,同时物体的动能就增加多少。
学生乙:对于表达式②,等号左边是物体在末位置时的机械能;等号右边是物体在初位置时的机械能。该式表示:动能和势能之和即总的机械能保持不变。
6.师总结:同学们对上述两个表达式的含义理解得很好,我们分别用EK1和EK2表示物体的初动能和末动能,用EP1和EP2分别表示物体在初位置的重力势能和末位置的重力势能,则得到:EK1+EP1=EK2+EP2,也就是初位置的机械能等于末位置的机械能,即机械能是守恒的。
(三)机械能守恒的条件
1.上边我们通过推导得到了机械能是守恒的这一结论,下边同学们思考:
①在推导中,我们是以物体做自由落体和做平抛运动为例进行的,请问:上述二种运动有什么相同和不同之处?
学生答:相同点是在上述两种运动中物体只受重力作用;不同之处是物体运动的路线不同,自由落体运动是直线运动,而平抛运动是曲线运动。
②从上述两种运动中,你能猜想一下:机械能在什么情况下守恒吗?
学生答:物体只受重力作用。
学生还可能答:物体在运动中,只有重力做功,针对上述两种答案,师生评析后总结。
2.教师总结:
通过上述分析,我们得到:在只有重力做功的情况下,物体的动能和重力势能发生相互转化,但机械能的总量保持不变,这个结论叫机械能守恒定律。
板书:机械能守恒定律
①条件:只有重力做功。
②结论:机械能的总量保持不变。
3.用实物投影仪出示讨论题。
①所谓的只有重力做功与物体只受重力有什么不同。
学生:所谓的只有重力做功,包括两种情况:
a.物体只受重力,不受其他的力。
b.物体除重力外还受其他的力,但其他力不做功。
而物体只受重力仅包括一种情形。
②放开被压缩的弹簧,可以把跟它接触的小球弹出去,在这个过程中,能量是如何转化的?类比地,你能得到在这个过程中机械能守恒的条件吗?
4.得到结论:以上实验证实了在不计阻力影响,即物体只受重力作用时,小球在摆动中机械能守恒。
学生答:在小球被弹簧弹出的过程中,弹簧的弹性势能转化为小球的动能。
类比得到:如果有弹力做功,动能和弹性势能之和保持不变,即机械能守恒。
③所谓只有弹力做功,包括哪几种情况?
学生:包括以下两种情况:
第一种情况:物体只受弹力作用,不受其他的力;
第二种情况:物体除受弹力外还受其他的力,但其他的力不做功。
5.演示实验
上边我们通过推导得到了在只有重力或弹力做功的条件下,物体的机械能守恒,下边我们来做一个实验:
①介绍实验装置如图所示:
②做法:
a、把球拉到A点,然后放开,观察
小球摆动到右侧时的位置和位置A间的关系。
b、把球同样拉到A点,在O点用尺子挡一下观察小球摆动到右侧时的位置,并比较该位置和释放点A之间的关系。
③通过观察到的现象,分析后你得到什么结论?
6.学生总结现象
学生甲:在做法a中,小球可以摆到跟释放点A高度相同的C点;在做法b中,小球仍可以到达跟释放点A高度相同的C点。
学生乙:在做法a中,小球可以摆到跟释放点A高度几乎相同的C点,在做法b中,小球可以到达跟释放点A点高度几乎相同的C点。
7.针对上述结论展开讨论后得到:如果不考虑阻力作用,即物体只受到重力作用时,学生甲的结论正确;如果考虑空气阻力作用,学生乙的结论正确。
教师总结:在本实验中,我们对空气的阻力一般不考虑,因为阻力太小,对结果影响不大。
1、关于物体的机械能是否守恒的叙述,下列说法中正确的是:
A、做匀速直线运动的物体,机械能一定守恒;
B、做匀速变速直线运动的物体,机械能一定守恒;
C、外力对物体所做的功等于零时,机械能一定守恒;
D、物体若只有重力做功,机械能一定守恒。
2、在下列实例中运动的物体,不计空气阻力,机械能不守恒的是:
A、起重机吊起物体匀速上升;
B、物体做平抛运动;
C、圆锥摆球在水平面内做匀速圆周运动;
3、从离地高为Hm的阳台上以速度v竖直向上抛出质量为m的物体,它上升hm后又返回下落,最后落在地面上,则一列说法中正确的是(不计空气阻力,以地面为参考面)
A、物体在最高点时机械能为mg(H+h);
B、物体落地时的机械能为mg(H+h)+mv2/2;
C、物体落地时的机械能为mgH+mv2/2;
D、物体在落回过程中,以过阳台时的机械能为mgH+mv2/2.
(四)巩固练习:
(五)小结:本节课我们学习了机械能守恒定律
1.我们说机械能守恒的关键是:只有重力或弹力做功;
2.在具体判断机械能是否守恒时,一般从以下两方面考虑:
①对于某个物体,若只有重力做功,而其他力不做功,则该物体的机械能守恒。
②对于由两个或两个以上物体(包括弹簧在内组成的系统,如果系统只有重力做功或弹力做功,物体间只有动能、重力势能和弹性势能之间的相互转化,系统与外界没有机械能的转移,系统内部没有机械能与其他形式能的转化系统的机械能守恒。
3.如果物体或系统除重力或弹力之外还有其他力做功,那么机械能就要改变。
(六)机械能守恒定律
1、动能和势能统称为机械能。
2、机械能守恒定律:
①在只有重力做功的条件下,物体的动能和重力势能相互转化,但机械能的总量保持不变。
3、机械能守恒的条件:
①系统内只有重力或只有弹力何做功;
②系统内的摩擦力不做功,一功外力都不做功。
4、表达式:
②在只有弹力做功的条件下,物体的动能和弹性势能相互转化,但机械能的总量保持不变。

文章来源:http://m.jab88.com/j/22383.html

更多

最新更新

更多