88教案网

高一数学必修二第五章三角恒等变换导学案(湘教版)

作为优秀的教学工作者,在教学时能够胸有成竹,作为教师就要在上课前做好适合自己的教案。教案可以让学生们有一个良好的课堂环境,帮助教师能够井然有序的进行教学。您知道教案应该要怎么下笔吗?下面是小编为大家整理的“高一数学必修二第五章三角恒等变换导学案(湘教版)”,仅供您在工作和学习中参考。

三角函数
两角和与差的三角函数
【考点阐述】
两角和与差的正弦、余弦、正切.二倍角的正弦、余弦、正切.
【考试要求】
(3)掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式.
(4)能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明.
【考题分类】
(一)选择题(共5题)
1.(海南宁夏卷理7)=()
A.B.C.2D.
解:,选C。
2.(山东卷理5文10)已知cos(α-)+sinα=
(A)-(B)(C)-(D)
解:,,
3.(四川卷理3文4)()
(A)(B)(C)(D)
【解】:∵
故选D;
【点评】:此题重点考察各三角函数的关系;
4.(浙江卷理8)若则=()
(A)(B)2(C)(D)
解析:本小题主要考查三角函数的求值问题。由可知,两边同时除以得平方得,解得或用观察法.
5.(四川延考理5)已知,则()
(A)(B)(C)(D)
解:,选C
(二)填空题(共2题)
1.(浙江卷文12)若,则_________。
解析:本小题主要考查诱导公式及二倍角公式的应用。由可知,;而。答案:
2.(上海春卷6)化简:.
(三)解答题(共1题)
1.(上海春卷17)已知,求的值.
[解]原式……2分
.……5分
又,,……9分
.……12分

相关知识

高二数学下册《三角恒等变换》复习学案


高二数学下册《三角恒等变换》复习学案

三角恒等变换知识点:

知识结构:

1.两角和与差的正弦、余弦和正切公式

重点:通过探索和讨论交流,导出两角差与和的三角函数的十一个公式,并了解它们的内在联系。

难点:两角差的余弦公式的探索和证明。

2.简单的三角恒等变换

重点:掌握三角变换的内容、思路和方法,体会三角变换的特点.

难点:公式的灵活应用.

三角函数几点说明:

1.对弧长公式只要求了解,会进行简单应用,不必在应用方面加深.

2.用同角三角函数基本关系证明三角恒等式和求值计算,熟练配角和sin和cos的计算.

3.已知三角函数值求角问题,达到课本要求即可,不必拓展.

4.熟练掌握函数y=Asin(wx+j)图象、单调区间、对称轴、对称点、特殊点和最值.

5.积化和差、和差化积、半角公式只作为练习,不要求记忆.

6.两角和与差的正弦、余弦和正切公式

练习题:

1.已知sin2α=-2425,α∈-π4,0,则sinα+cosα=()

A.-15

B.15

C.-75

D.75

解析∵α∈-π4,0,∴cosα0sinα且cosα|sinα|,则sinα+cosα=1+sin2α=1-2425=15.

答案B

2.若sinπ4+α=13,则cosπ2-2α等于()

A.429

B.-429

C.79

D.-79

解析据已知可得cosπ2-2α=sin2α

=-cos2π4+α=-1-2sin2π4+α=-79.

答案D

高中数学必修四3.2三角恒等变换小结导学案


3.2三角恒等变换小结
【学习目标】
1.能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.
2.能运用两角和与差的正弦、余弦、正切公式以及二倍角公式进行简单的恒等变换。
【知识梳理】
1.熟练掌握公式:
两角和与差的正弦、余弦和正切公式
二倍角的正弦、余弦、正切公式

2.几个公式变形:
=__________=_______________
tan±tan
=tan(±)(1tantan)

3.形如asinα+bcosα的化简:
asinα+bcosα=a2+b2sin(α+φ),
其中cosφ=_____,sinφ=______,
即tanφ=ba.

【自学探究】
一、两角和与差的三角函数公式的应用
例1:在△ABC中,角C=120°,tanA+tanB=233,则tanAtanB的值为().
A.14B.13C.12D.53

例2:化简:.

思考感悟:要熟练、准确地运用和、差、倍角公式,同时要熟悉公式的逆用及变形。
二、角的变换
例3、已知sin=-34,则sin2x=__________.

例4、已知0<β<π4<α<34π,cos=35,sin=513,求sin(α+β)的值.

思考感悟:
1.应着眼于“所求角”与“已知角”的和或差的关系,把“所求角”用“已知角”来表示,然后应用诱导公式.
2.常见的配角技巧:
α=(α+β)-β;π4+α=π2-;α=12;β=12;
三、三角函数式的化简、求值
例5:化简:(π<α<2π).
例6:已知34π<α<π,,求的值.

思考感悟:三角函数式的化简要遵循“三看”原则.
(1)一看“角”,找到之间的差别与联系,把角进行合理拆分;
(2)二看“函数名称”,看函数名称间的差异与联系,常见有“切化弦”;
(3)三看“结构特征”,可以帮我们找到变形的方向,常见的有“遇到分式要通分”等.
四、三角恒等式的证明
例7:求证:cos2α1tanα2-tanα2=14sin2α.

例8:已知0<α<π4,0<β<π4,且3sinβ=sin(2α+β),4tanα2=1-tan2α2,证明:α+β=π4.

思考感悟:
1.证明三角恒等式的实质是消除等式两边的差异,有目的的化繁为简、左右归一。
2.三角恒等式的证明主要有两种类型:绝对恒等式与条件恒等式.
(1)证明绝对恒等式要根据两边的特征,化繁为简,左右归一,变更论证,化异为同.
(2)条件恒等式的证明则要比较已知条件与求证等式间的联系,选择适当途径.常用代入法、消元法、两头凑等方法.

【课堂小结】

【当堂达标】
1.化简:sin2αsin2β+cos2αcos2β-12cos2αcos2β.

2.求值:sin50°(1+3tan10°)=__________.

3.已知sinβ=msin(2α+β)(m≠1),求证:tan(α+β)=1+m1-mtanα.

【课后作业】
1.cos2π8-12的值为()
A.1B.12C.22D.24

2.cos25π12+cos2π12+cos5π12cosπ12的值等于()
A.62B.32
C.54D.1+34

3.已知π<α<3π2,且sin(3π2+α)=45,则tanα2等于()
A.3B.2
C.-2D.-3

4.如果tanα2=13,那么cosα的值是()
A.35B.45
C.-35D.-45

5.在△ABC中,若sinBsinC=cos2A2,则此三角形为()
A.等边三角形B.等腰三角形
C.直角三角形D.等腰直角三角形

6.已知sinα=13,2π<α<3π,那么sinα2+cosα2=_____.

7.cos5π8cosπ8=_____.

8.tan19°+tan26°+tan19°tan26°=_____.

9.已知sin22α+sin2αcosα-cos2α=1,α∈(0,π2),求sinα、tanα.

10.已知sin(x-3π4)cos(x-π4)=-14,求cos4x的值.
【延伸探究】
11.已知函数
(1)求的最小正周期;
(2)当时,求的最小值及取得最小值时的集合.

12.把一段半径为R的圆木锯成横截面为矩形的木料,怎样锯法能使横截面的面积最大?(分别设边与角为自变量)

高二数学三角恒等变换34


第三章三角恒等变换

一、课标要求:
本章学习的主要内容是两角和与差的正弦、余弦、和正切公式,以及运用这些公式进行简单的恒等变换.
三角恒等变换位于三角函数与数学变换的结合点上.通过本章学习,要使学生在学习三角恒等变换的基本思想和方法的过程中,发展推理能力和运算能力,使学生体会三角恒等变换的工具性作用,学会它们在数学中的一些应用.
1.了解用向量的数量积推导出两角差的余弦公式的过程,进一步体会向量方法的作用;
2.理解以两角差的余弦公式导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,了解它们的内在联系;
3.运用上述公式进行简单的恒等变换,以引导学生推导半角公式,积化和差、和差化积公式(不要求记忆)作为基本训练,使学生进一步提高运用转化的观点去处理问题的自觉性,体会一般与特殊的思想,换元的思想,方程的思想等数学思想在三角恒等变换中的应用.
二、编写意图与特色
1.本章的内容分为两节:“两角和与差的正弦、余弦和正切公式”,“简单的三角恒等变换”,在学习本章之前我们学习了向量的相关知识,因此作者的意图是选择两角差的余弦公式作为基础,运用向量的知识来予以证明,降低了难度,使学生容易接受;
2.本章是以两角差的余弦公式作为基础来推导其它的公式;
3.本章在内容的安排上有明暗两条线,明线是建立公式,学会变换,暗线是发展推理和运算的能力,因此在本章全部内容的安排上,特别注意恰时恰点的提出问题,引导学生用对比、联系、化归的观点去分析、处理问题,强化运用数学思想方法指导设计变换思路的意识;
4.本章在内容的安排上贯彻“删减繁琐的计算、人为技巧化的难题和过分强调细枝末叶的内容”的理念,严格控制了三角恒等变换及其应用的繁、难程度,尤其注意不以半角公式、积化和差、和差化积公式作为变换的依据,而只把这些公式的推导作为变换的基本练习.
三、教学内容及课时安排建议
本章教学时间约8课时,具体分配如下:
3.1两角和与差的正弦、余弦、和正切公式约3课时
3.2简单的恒等变换约3课时
复习约2课时

§3.1两角和与差的正弦、余弦和正切公式
一、课标要求:
本节的中心内容是建立相关的十一个公式,通过探索证明和初步应用,体会和认识公式的特征及作用.
二、编写意图与特色
本节内容可分为四个部分,即引入,两角差的余弦公式的探索、证明及初步应用,和差公式的探索、证明和初步应用,倍角公式的探索、证明及初步应用.
三、教学重点与难点
1.重点:引导学生通过独立探索和讨论交流,导出两角和差的三角函数的十一个公式,并了解它们的内在联系,为运用这些公式进行简单的恒等变换打好基础;
2.难点:两角差的余弦公式的探索与证明.

3.1.1两角差的余弦公式

一、教学目标
掌握用向量方法建立两角差的余弦公式.通过简单运用,使学生初步理解公式的结构及其功能,为建立其它和(差)公式打好基础.
二、教学重、难点
1.教学重点:通过探索得到两角差的余弦公式;
2.教学难点:探索过程的组织和适当引导,这里不仅有学习积极性的问题,还有探索过程必用的基础知识是否已经具备的问题,运用已学知识和方法的能力问题,等等.
三、学法与教学用具
1.学法:启发式教学
2.教学用具:多媒体
四、教学设想:
(一)导入:我们在初中时就知道,,由此我们能否得到大家可以猜想,是不是等于呢?
根据我们在第一章所学的知识可知我们的猜想是错误的!下面我们就一起探讨两角差的余弦公式
(二)探讨过程:
在第一章三角函数的学习当中我们知道,在设角的终边与单位圆的交点为,等于角与单位圆交点的横坐标,也可以用角的余弦线来表示,大家思考:怎样构造角和角?(注意:要与它们的正弦线、余弦线联系起来.)
展示多媒体动画课件,通过正、余弦线及它们之间的几何关系探索与、、、之间的关系,由此得到,认识两角差余弦公式的结构.
思考:我们在第二章学习用向量的知识解决相关的几何问题,两角差余弦公式我们能否用向量的知识来证明?
提示:1、结合图形,明确应该选择哪几个向量,它们是怎样表示的?
2、怎样利用向量的数量积的概念的计算公式得到探索结果?
展示多媒体课件
比较用几何知识和向量知识解决问题的不同之处,体会向量方法的作用与便利之处.
思考:,,再利用两角差的余弦公式得出
(三)例题讲解
例1、利用和、差角余弦公式求、的值.
解:分析:把、构造成两个特殊角的和、差.
点评:把一个具体角构造成两个角的和、差形式,有很多种构造方法,例如:,要学会灵活运用.
例2、已知,是第三象限角,求的值.
解:因为,由此得
又因为是第三象限角,所以
所以
点评:注意角、的象限,也就是符号问题.
(四)小结:本节我们学习了两角差的余弦公式,首先要认识公式结构的特征,了解公式的推导过程,熟知由此衍变的两角和的余弦公式.在解题过程中注意角、的象限,也就是符号问题,学会灵活运用.
(五)作业:

高中数学必修四第三章三角恒等变换章末小结导学案


第三章三角恒等变换章末小结

【复习目标】
进一步掌握三角恒等变换的方法,如何利用正、余弦、正切的和差公式与二倍角公式,对三角函数式进行化简、求值和证明:
【知识与方法】
1、熟练记忆三角恒等变换公式:

2、三角恒等变换过程与方法,实际上是对三角函数式中的角、名、形的变换,即:
(1)找差异:角、名、形的差别;
(2)建立联系:角的和差关系、倍半关系等,名、形之间可以用哪个公式联系起来;
(3)变公式:在实际变换过程中,往往需要将公式加以变形后运用或逆用公式。
如:升降幂公式;


tan±tan=tan(±)(1tantan);
1=sin2+cos2(1的代换);
拆角cos=coscos(-)-sinsin(-);
切化弦等。

3.asin+bcos=sin(+φ),其中cosφ=___,sinφ=___,即tanφ=ba.

【题型总结】
题型1、化简求值:综合使用三角函数的定义、性质、公式,求出三角函数式的值。
化简要求:________、________、__________、__________、__________、__________;
1、化简(1);

(2)sin2sin2+cos2cos2-cos2cos2。

2、求值:

题型2、条件求值:综合考虑要求值的式子和条件式的关联,对于已知条件式的应用及其变形是解决此类问题的关键。
3、已知=,=,求的值。
4.已知
求的值。
题型3、知值求角:
(1)先求角的某一个三角函数值:要注意象限角的范围与三角函数值的符号之间联系;
(2)尽量小的确定角的范围:通过已知的角的范围及其函数值的大小。
5.已知在中,
求角的大小。

6.设、为锐角,且3sin2+2sin2=1,3sin2-2sin2=0,求证:+2=。

题型4、恒等式的证明:是利用恒等变换公式将等式的左边变同于右边,或右边变同于,或都将左右进行变换使其左右相等。
7.已知,
求证:

8.求证

题型5、化成一个角的形式:
9.函数有最大值,最小值,则实数____,___。

10.函数的图象的一个对称中心是()
A.B.
C.D.

题型6、三角函数的综合应用,
11.已知△ABC的内角满足,若,且满足:,,为的夹角.求。

12.如图所示,某村欲修建一横断面为等腰梯形的水渠,为降低成本,必须尽量减少水与水渠壁的接触面。若水渠断面面积设计为定值m,渠深8米。则水渠壁的倾角应为多少时,方能使修建的成本最低?

【课时练习】
1.当时,函数的最小值是()
A.B.C.D.
2.在△ABC中,,则△ABC为)
A.锐角三角形B.直角三角形
C.钝角三角形D.无法判定
3.函数的最小正周期是()
A.B.
C.D.
4.已知那么的值为,的值为

5.已知,,则=__________。

6.函数在区间上的最小值为.

7.已知函数的定义域为,
(1)当时,求的单调区间;
(2)若,且,当为何值时,为偶函数.

8.已知函数
(1)求取最大值时相应的的集合;
(2)该函数的图象经过怎样的平移和伸缩变换可以得到的图象
【延伸探究】
9.已知函数
(1)写出函数的单调递减区间;
(2)设,的最小值是,最大值是,求实数的值.

文章来源:http://m.jab88.com/j/18255.html

更多

最新更新

更多