88教案网

平面向量数量积的坐标表示、模、夹角

一名优秀的教师在教学方面无论做什么事都有计划和准备,高中教师在教学前就要准备好教案,做好充分的准备。教案可以让讲的知识能够轻松被学生吸收,帮助高中教师能够井然有序的进行教学。你知道怎么写具体的高中教案内容吗?以下是小编收集整理的“平面向量数量积的坐标表示、模、夹角”,供大家参考,希望能帮助到有需要的朋友。

平面向量数量积的坐标表示、模、夹角
教学目的:
⑴要求学生掌握平面向量数量积的坐标表示
⑵掌握向量垂直的坐标表示的充要条件,及平面内两点间的距离公式.
⑶能用所学知识解决有关综合问题.
教学重点:平面向量数量积的坐标表示
教学难点:平面向量数量积的坐标表示的综合运用
授课类型:新授课
教具:多媒体、实物投影仪
教学过程:
一、复习引入:
1.两个非零向量夹角的概念
已知非零向量a与b,作=a,=b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.
2.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a||b|cos叫a与b的数量积,记作ab,即有ab=|a||b|cos,
(0≤θ≤π).并规定0与任何向量的数量积为0.
3.向量的数量积的几何意义:
数量积ab等于a的长度与b在a方向上投影|b|cos的乘积.
4.两个向量的数量积的性质:
设a、b为两个非零向量,e是与b同向的单位向量.
1ea=ae=|a|cos;2abab=0
3当a与b同向时,ab=|a||b|;当a与b反向时,ab=|a||b|.特别的aa=|a|2或
4cos=;5|ab|≤|a||b|

5.平面向量数量积的运算律
交换律:ab=ba
数乘结合律:(a)b=(ab)=a(b)
分配律:(a+b)c=ac+bc
二、讲解新课:
⒈平面两向量数量积的坐标表示
已知两个非零向量,,试用和的坐标表示.
设是轴上的单位向量,是轴上的单位向量,那么,
所以
又,,,所以
这就是说:两个向量的数量积等于它们对应坐标的乘积的和.即
2.平面内两点间的距离公式
一、设,则或.
(2)如果表示向量的有向线段的起点和终点的坐标分别为、,那么(平面内两点间的距离公式)
二、向量垂直的判定
设,,则
三、两向量夹角的余弦()
cos=
四、讲解范例:
五、设a=(5,7),b=(6,4),求ab及a、b间的夹角θ(精确到1o)
例2已知A(1,2),B(2,3),C(2,5),试判断△ABC的形状,并给出证明.
例3已知a=(3,1),b=(1,2),求满足xa=9与xb=4的向量x.
解:设x=(t,s),
由∴x=(2,3)
例4已知a=(1,),b=(+1,-1),则a与b的夹角是多少?
分析:为求a与b夹角,需先求ab及|a||b|,再结合夹角θ的范围确定其值.
解:由a=(1,),b=(+1,-1)
有ab=+1+(-1)=4,|a|=2,|b|=2.
记a与b的夹角为θ,则cosθ=
又∵0≤θ≤π,∴θ=
评述:已知三角形函数值求角时,应注重角的范围的确定.
例5如图,以原点和A(5,2)为顶点作等腰直角△OAB,使B=90,求点B和向量的坐标.
解:设B点坐标(x,y),则=(x,y),=(x5,y2)
∵∴x(x5)+y(y2)=0即:x2+y25x2y=0
又∵||=||∴x2+y2=(x5)2+(y2)2即:10x+4y=29

∴B点坐标或;=或
例6在△ABC中,=(2,3),=(1,k),且△ABC的一个内角为直角,
求k值.
解:当A=90时,=0,∴2×1+3×k=0∴k=
当B=90时,=0,==(12,k3)=(1,k3)
∴2×(1)+3×(k3)=0∴k=
当C=90时,=0,∴1+k(k3)=0∴k=
六、课堂练习:
1.若a=(-4,3),b=(5,6),则3|a|2-4ab=()
A.23B.57C.63D.83
2.已知A(1,2),B(2,3),C(-2,5),则△ABC为()
A.直角三角形B.锐角三角形C.钝角三角形D.不等边三角形
3.已知a=(4,3),向量b是垂直a的单位向量,则b等于()
A.或?B.或
C.或?D.或
4.a=(2,3),b=(-2,4),则(a+b)(a-b)=.
5.已知A(3,2),B(-1,-1),若点P(x,-)在线段AB的中垂线上,则x=.
6.已知A(1,0),B(3,1),C(2,0),且a=,b=,则a与b的夹角为.
七、小结(略)
八、课后作业(略)
九、板书设计(略)
十、课后记:M.jAb88.Com

延伸阅读

高中数学必修四2.4.2平面向量数量积的坐标表示、模、夹角导学案


2.4.2平面向量数量积的坐标表示、模、夹角
【学习目标】
1.掌握平面向量数量积运算规律;能利用数量积的性质解决有关问题;
2.掌握向量共线、垂直的几何判断,会证明两向量垂直,能解决一些简单问题.
【知识梳理】
知识回顾:
1.两个向量的数量积的性质:
设与为两个非零向量.
(1)、=
(2)、当与同向时,=,
当与反向时,=
特别的:=_____或,
||≤||||,
cos=________
新知探究:
已知非零向量,,怎样用和的坐标表示?
1、平面两向量数量积的坐标表示:
=
即两个向量的数量积等于它们对应坐标的乘积的和.

2.平面内两点间的距离公式
(1)设,
则或.
(2)如果表示向量的有向线段的起点和终点的坐标分别为、,那么
(平面内两点间的距离公式)

3.向量垂直的判定:设,,则

4.两向量夹角的余弦()
cos==

思考感悟:
向量不能比较大小,也不能与数0比较大小,但能否有0(0)?

对点练习:
1.已知a→=(—3,4),b→=(5,2),则a→b→等于()
A.—14B.—7
C.7D.8

2.已知a→=(—3,4),b→=(5,2),c→=(1,—1),则(a→b→)c→等于()
A.—14B.—7
C.(7,—7)D.(—7,7)

3.已知A(—1,1),B(1,2),则|AB→|等于()
A.5B.
C.—1D.7

4.已知a→=(3,4),b→=(5,12),则a→,b→夹角的余弦为()
A.6365B.65
C.135D.13

【合作探究】
典例精析:
例1.已知向量,;
(1)求,;
(2)求的值;
(3)求的值;

变式1:已知向量,;
(1)求向量与的夹角;
(2)若向量与垂直,求的值;

例2.设=(5,7),=(6,4),求及、间的夹角θ的余弦值。

变式2:已知A(1,2),B(2,3),C(2,5),试判断△ABC的形状,并给出证明.

【课堂小结】
夹角为锐角(钝角)

【当堂达标】
1.已知向量=(1,-1),=(2,x),若=1,则x等于()
A.-1B.-12
C.12D.1
2.已知a→=(—4,3),b→=(5,6),则3|a→|2—4a→b→=()
A.23B.57C.63D.83

3.与a→=(3,4)垂直的单位向量是()
A.(45,35)B.(—45,—35)
C.(45,—35)或(—45,35)
D.(45,35)或(—45,—35)

4.已知|m→|=6,n→=(cosθ,sinθ),m→n→=9,则m→,n→的夹角为()
A.150B.120
C.60D.30

【课时作业】
1、已知A(—1,1),B(1,2),C(3,12),则AB→AC→等于()
A.52B.152C.—52D.—152

2.若a→=(—2,1)与b→=(—1,—m5)互相垂直,则m的值为()
A.—6B.8C.—10D.10

3.a→=(2,3),b→=(—3,5),则a→在b→方向上的投影为______.

4.已知三个点A(1,0),B(3,1),C(2,0),且a→=BC→,b→=CA→,则a→与b→的夹角为

5.已知A(3,2),B(-1,-1),若点P(x,-)在线段AB的中垂线上,则x=.

6.已知,,对以下两种情况分别求出m值,
(1)⊥,(2)∥。

8*.已知向量,向量求的最值,
9*.a→=(1,2),b→=(—3,2),当k为何值时:
(1)ka→+b→与a→—3b→垂直?
(2)ka→+b→与a→—3b→平行吗?平行时它们是同向还是反向?

10*、以原点和A(5,2)为顶点作等腰直角△OAB,使B=90,求点B和向量的坐标.

【延伸探究】
已知在△ABC中,A(2,-1)、B(3,2)、C(-3,-1),AD为BC边上的高,求|AD→|与点D的坐标.

平面向量数量积的坐标表示教案、学案


古人云,工欲善其事,必先利其器。作为高中教师就要好好准备好一份教案课件。教案可以让学生更好的消化课堂内容,帮助授课经验少的高中教师教学。优秀有创意的高中教案要怎样写呢?经过搜索和整理,小编为大家呈现“平面向量数量积的坐标表示教案、学案”,仅供参考,欢迎大家阅读。

平面向量数量积的坐标表示
年级高一学科数学课题平面向量数量积的坐标表示
授课时间
学习重点在坐标形式下,掌握平面向量数量积的运算公式及其变式(夹角公式)
学习难点在坐标形式下,掌握平面向量数量积的运算公式及其变式及应用
学习目标
1.在坐标形式下,掌握平面向量数量积的运算公式及其变式(夹角公式);
2.理解模长公式与解析几何中两点之间距离公式的一致性.

教学过程
一自主学习
⑴向量数量积的交换律:.
⑵==.
⑶向量的数量积的分配律:
.
⑷=..
5已知两个非零向量.

结论:⑴若,则,或.

⑵若,,
则.

⑶若,
则.

⑷设是与的夹角,

二师生互动
例1已知,,,试判断的形状,并给出证明.

变式:已知四点,,,求证:四边形是直角梯形.
例2设,,求及之间的夹角余弦值.

练1.已知,,若,试求的值.

三巩固练习
1.已知,,则等于()
A.B.C.D.
2.若,,则与夹角的余弦为()
A.B.C.D.
3.若,,则等于()
A.B.C.D.
4.,,则=.
5.已知向量,,若,则.
6.下列各组向量中,可以作为基底的是()
A.
B.
C.
D.
7.若平面向量与向量的夹角是,且,则()
A.B.C.D.
8.已知向量,,,若,则与的夹角为()
A.B.C.D.
9.已知向量,,若与垂直,则实数.
10.已知向量,,若不超过,则的取值范围是.

11已知向量,求
⑴求与的夹角;
⑵若向量与垂直,求的值.

四课后反思

五课后巩固练习
1.已知,,,且,,求⑴;⑵、的夹角.

2.已知点和,问能否在轴上找到一点,使,若不能,说明理由;若能,求点坐标.

高二数学平面向量数量积的坐标表示26


作为优秀的教学工作者,在教学时能够胸有成竹,作为教师就要根据教学内容制定合适的教案。教案可以让学生能够听懂教师所讲的内容,帮助教师提高自己的教学质量。教案的内容要写些什么更好呢?下面是小编帮大家编辑的《高二数学平面向量数量积的坐标表示26》,希望能对您有所帮助,请收藏。

第9课时
三、平面向量数量积的坐标表示、模、夹角
教学目的:
⑴要求学生掌握平面向量数量积的坐标表示
⑵掌握向量垂直的坐标表示的充要条件,及平面内两点间的距离公式.
⑶能用所学知识解决有关综合问题.
教学重点:平面向量数量积的坐标表示
教学难点:平面向量数量积的坐标表示的综合运用
授课类型:新授课
教具:多媒体、实物投影仪
教学过程:
一、复习引入:
1.两个非零向量夹角的概念
已知非零向量a与b,作=a,=b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.
2.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a||b|cos叫a与b的数量积,记作ab,即有ab=|a||b|cos,
(0≤θ≤π).并规定0与任何向量的数量积为0.
3.向量的数量积的几何意义:
数量积ab等于a的长度与b在a方向上投影|b|cos的乘积.
4.两个向量的数量积的性质:
设a、b为两个非零向量,e是与b同向的单位向量.
1ea=ae=|a|cos;2abab=0
3当a与b同向时,ab=|a||b|;当a与b反向时,ab=|a||b|.特别的aa=|a|2或
4cos=;5|ab|≤|a||b|
5.平面向量数量积的运算律
交换律:ab=ba
数乘结合律:(a)b=(ab)=a(b)
分配律:(a+b)c=ac+bc
二、讲解新课:
⒈平面两向量数量积的坐标表示
已知两个非零向量,,试用和的坐标表示.
设是轴上的单位向量,是轴上的单位向量,那么,
所以
又,,,所以
这就是说:两个向量的数量积等于它们对应坐标的乘积的和.即
2.平面内两点间的距离公式
一、设,则或.
(2)如果表示向量的有向线段的起点和终点的坐标分别为、,那么(平面内两点间的距离公式)
二、向量垂直的判定
设,,则
三、两向量夹角的余弦()
cos=
四、讲解范例:
五、设a=(5,7),b=(6,4),求ab及a、b间的夹角θ(精确到1o)
例2已知A(1,2),B(2,3),C(2,5),试判断△ABC的形状,并给出证明.
例3已知a=(3,1),b=(1,2),求满足xa=9与xb=4的向量x.
解:设x=(t,s),
由∴x=(2,3)
例4已知a=(1,),b=(+1,-1),则a与b的夹角是多少?
分析:为求a与b夹角,需先求ab及|a||b|,再结合夹角θ的范围确定其值.
解:由a=(1,),b=(+1,-1)
有ab=+1+(-1)=4,|a|=2,|b|=2.
记a与b的夹角为θ,则cosθ=
又∵0≤θ≤π,∴θ=
评述:已知三角形函数值求角时,应注重角的范围的确定.
例5如图,以原点和A(5,2)为顶点作等腰直角△OAB,使B=90,求点B和向量的坐标.
解:设B点坐标(x,y),则=(x,y),=(x5,y2)
∵∴x(x5)+y(y2)=0即:x2+y25x2y=0
又∵||=||∴x2+y2=(x5)2+(y2)2即:10x+4y=29

∴B点坐标或;=或
例6在△ABC中,=(2,3),=(1,k),且△ABC的一个内角为直角,
求k值.
解:当A=90时,=0,∴2×1+3×k=0∴k=
当B=90时,=0,==(12,k3)=(1,k3)
∴2×(1)+3×(k3)=0∴k=
当C=90时,=0,∴1+k(k3)=0∴k=
六、课堂练习:
1.若a=(-4,3),b=(5,6),则3|a|2-4ab=()
A.23B.57C.63D.83
2.已知A(1,2),B(2,3),C(-2,5),则△ABC为()
A.直角三角形B.锐角三角形C.钝角三角形D.不等边三角形
3.已知a=(4,3),向量b是垂直a的单位向量,则b等于()
A.或?B.或
C.或?D.或
4.a=(2,3),b=(-2,4),则(a+b)(a-b)=.
5.已知A(3,2),B(-1,-1),若点P(x,-)在线段AB的中垂线上,则x=.
6.已知A(1,0),B(3,1),C(2,0),且a=,b=,则a与b的夹角为.
七、小结(略)
八、课后作业(略)
九、板书设计(略)
课后记:

平面向量的数量积


俗话说,凡事预则立,不预则废。高中教师要准备好教案,这是教师工作中的一部分。教案可以让学生们充分体会到学习的快乐,减轻高中教师们在教学时的教学压力。您知道高中教案应该要怎么下笔吗?下面是小编精心为您整理的“平面向量的数量积”,仅供您在工作和学习中参考。

课题:2.4平面向量的数量积(2)
班级:姓名:学号:第学习小组
【学习目标】
1、掌握平面向量数量积的坐标表示;
2、掌握向量垂直的坐标表示的等价条件。
【课前预习】
1、(1)已知向量和的夹角是,||=2,||=1,则(+)2=,|+|=。
(2)已知:||=2,||=5,=-3,则|+|=,|-|=。
(3)已知||=1,||=2,且(-)与垂直,则与的夹角为
2、设轴上的单位向量,轴上的单位向量,则=,=,=,=,若=,=,则=+.=+。
3、推导坐标公式:=。
4、(1)=,则||=___________;,则||=。
(2)=;(3)⊥;(4)//。
5、已知=,=,则||=,||=,=,
=;=。

【课堂研讨】
例1、已知=,=,求(3-)(-2),与的夹角。

例2、已知||=1,||=,+=,试求:
(1)|-|(2)+与-的夹角

例3、在中,设=,=,且是直角三角形,求的值。

【学后反思】
1、平面向量数量积的概念及其几何意义;2、数量积的性质及其性质的简单应用。

课题:2.4平面向量的数量积检测案(2)
班级:姓名:学号:第学习小组
【课堂检测】
1、求下列各组中两个向量与的夹角:
(1)=,=(2)=,=
2、设,,,求证:是直角三角形。
3、若=,=,当为何值时:
(1)(2)(3)与的夹角为锐角

【课后巩固】
1、设,,是任意的非零向量,且相互不共线,则下列命题正确的有:
①()-()=②||-|||-
|③()-()不与垂直④(3+4)(3-4)=9||2-16||2
⑤若为非零向量,=,且≠,则⊥(-)
2、若=,=且与的夹角为钝角,则的取值范围是。
3、已知=,则与垂直的单位向量的坐标为。
4、已知若=,=,则+与-垂直的条件是
5、的三个顶点的坐标分别为,,,判断三角形的形状。

6、已知向量=,||=2,求满足下列条件的的坐标。
(1)⊥(2)

7、已知向量=,=。
(1)求|+|和|-|;(2)为何值时,向量+与-3垂直?
(3)为何值时,向量+与-3平行?

8、已知向量,,,其中分别为直角坐标系内轴与轴正方向上的单位向量。
(1)若能构成三角形,求实数应满足的条件;
(2)是直角三角形,求实数的值。

课题:2.4平面向量的数量积(2)
班级:姓名:学号:第学习小组
【学习目标】
3、掌握平面向量数量积的坐标表示;
4、掌握向量垂直的坐标表示的等价条件。
【课前预习】
1、(1)已知向量和的夹角是,||=2,||=1,则(+)2=,|+|=。
(2)已知:||=2,||=5,=-3,则|+|=,|-|=。
(3)已知||=1,||=2,且(-)与垂直,则与的夹角为
2、设轴上的单位向量,轴上的单位向量,则=,=,=,=,若=,=,则=+.=+。
3、推导坐标公式:=。
4、(1)=,则||=___________;,则||=。
(2)=;(3)⊥;(4)//。
5、已知=,=,则||=,||=,=,
=;=。

【课堂研讨】
例1、已知=,=,求(3-)(-2),与的夹角。

例2、已知||=1,||=,+=,试求:
(1)|-|(2)+与-的夹角

例3、在中,设=,=,且是直角三角形,求的值。

【学后反思】
1、平面向量数量积的概念及其几何意义;2、数量积的性质及其性质的简单应用。

课题:2.4平面向量的数量积检测案(2)
班级:姓名:学号:第学习小组
【课堂检测】
1、求下列各组中两个向量与的夹角:
(1)=,=(2)=,=

2、设,,,求证:是直角三角形。
3、若=,=,当为何值时:
(1)(2)(3)与的夹角为锐角

【课后巩固】
1、设,,是任意的非零向量,且相互不共线,则下列命题正确的有:
①()-()=②||-|||-
|③()-()不与垂直④(3+4)(3-4)=9||2-16||2
⑤若为非零向量,=,且≠,则⊥(-)
2、若=,=且与的夹角为钝角,则的取值范围是。
3、已知=,则与垂直的单位向量的坐标为。
4、已知若=,=,则+与-垂直的条件是
5、的三个顶点的坐标分别为,,,判断三角形的形状。

6、已知向量=,||=2,求满足下列条件的的坐标。
(1)⊥(2)

7、已知向量=,=。
(1)求|+|和|-|;(2)为何值时,向量+与-3垂直?
(3)为何值时,向量+与-3平行?

8、已知向量,,,其中分别为直角坐标系内轴与轴正方向上的单位向量。
(1)若能构成三角形,求实数应满足的条件;
(2)是直角三角形,求实数的值。

文章来源:http://m.jab88.com/j/12280.html

更多

最新更新

更多