88教案网

《锐角三角函数的定义》知识点整理

老师职责的一部分是要弄自己的教案课件,到写教案课件的时候了。我们要写好教案课件计划,新的工作才会如鱼得水!有多少经典范文是适合教案课件呢?小编特地为大家精心收集和整理了“《锐角三角函数的定义》知识点整理”,但愿对您的学习工作带来帮助。

《锐角三角函数的定义》知识点整理m.JAb88.cOM

锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),(余割csc)都叫做角A的锐角三角函数。
正弦等于对边比斜边
余弦等于邻边比斜边
正切等于对边比邻边
余切等于邻边比对边
正割等于斜边比邻边
余割等于斜边比对边
正切与余切互为倒数
它的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。
由于三角函数的周期性,它并不具有单值函数意义上的反函数。
它有六种基本函数(初等基本表示):
函数名正弦余弦正切余切正割余割
在平面直角坐标系xOy中,从点O引出一条射线OP,设旋转角为θ,设OP=r,P点的坐标为(x,y)有
正弦函数sinθ=y/r
余弦函数cosθ=x/r
正切函数tanθ=y/x
余切函数cotθ=x/y
正割函数secθ=r/x
余割函数cscθ=r/y
(斜边为r,对边为y,邻边为x。)
以及两个不常用,已趋于被淘汰的函数:
正矢函数versinθ=1-cosθ
余矢函数coversθ=1-sinθ

相关推荐

锐角三角函数的应用


老师会对课本中的主要教学内容整理到教案课件中,大家在认真写教案课件了。只有制定教案课件工作计划,可以更好完成工作任务!你们了解多少教案课件范文呢?下面是由小编为大家整理的“锐角三角函数的应用”,供您参考,希望能够帮助到大家。

31.3锐角三角函数的应用
教学目标
1.能够把数学问题转化成数学问题。
2.能够错助于计算器进行有三角函数的计算,并能对结果的意义进行说明,发展数学的应用意识和解决问题的能力。
过程与方法
经历探索实际问题的过程,进一步体会三角函数在解决实际问题过程中的应用。
情感态度与价值观
积极参与探索活动,并在探索过程中发表自己的见解,体会三角函数是解决实际问题的有效工具。
重点:能够把数学问题转化成数学问题,能够借助于计算器进行有三角函数的计算。
难点:能够把数学问题转化成解直角三角形问题,会正确选用适合的直角三角形的边角关系。
教学过程
一、问题引入,了解仰角俯角的概念。
提出问题:某飞机在空中A处的高度AC=1500米,此时从飞机看地面目标B的俯角为18°,求A、B间的距离。
提问:1.俯角是什么样的角?,如果这时从地面B点看飞机呢,称∠ABC是什么角呢?这两个角有什么关系?
2.这个△ABC是什么三角形?图中的边角在实际问题中的意义是什么,求的是什么,在这个几何图形中已知什么,又是求哪条线段的长,选用什么方法?
教师通过问题的分析与讨论与学生共同学习也仰角与俯角的概念,也为运用新知识解决实际问题提供了一定的模式。
二、测量物体的高度或宽度问题.
1.提出老问题,寻找新方法
我们学习中介绍过测量物高的一些方法,现在我们又学习了锐角三角函数,能不能利用新的知识来解决这些问题呢。
利用三角函数的前提条件是什么?那么如果要测旗杆的高度,你能设计一个方案来利用三角函数的知识来解决吗?
学生分组讨论体会用多种方法解决问题,解决问题需要适当的数学模型。
2.运用新方法,解决新问题.
⑴从1.5米高的测量仪上测得古塔顶端的仰角是30°,测量仪距古塔60米,则古塔高()米。
⑵从山顶望地面正西方向有C、D两个地点,俯角分别是45°、30°,已知C、D相距100米,那么山高()米。
⑶要测量河流某段的宽度,测量员在洒一岸选了一点A,在另一岸选了两个点B和C,且B、C相距200米,测得∠ACB=45°,∠ABC=60°,求河宽(精确到0.1米)。
在这一部分的练习中,引导学生正确来图,构造直角三角形解决实际问题,渗透建模的数学思想。
三、与方位角有关的决策型问题
1.提出问题
一艘渔船正以30海里/时的速度由西向东追赶鱼群,在A处看见小岛C在北偏东60°的方向上;40nin后,渔船行驶到B处,此时小岛C在船北偏东30°的方向上。已知以小岛C为中心,10海里为半径的范围内是多暗礁的危险区。这艘渔船如果继续向东追赶鱼群,有有进入危险区的可能?
2.师生共同分析问题按以下步骤时行:
⑴根据题意画出示意图,
⑵分析图中的线段与角的实际意义与要解决的问题,
⑶不存在直角三角形时需要做辅助线构造直角三角形,如何构造?
⑷选用适当的边角关系解决数学问题,
⑸按要求确定正确答案,说明结果的实际意义。
3.学生练习
某景区有两景点A、B,为方便游客,风景管理处决定在相距2千米的A、B两景点之间修一条笔直的公路(即线段AB)。经测量在A点北偏东60°的方向上在B点北偏西45°的方向上,有一半径为0.7千米
的小水潭,问水潭会不会影响公路的修建?为什么?

学生可以分组讨论来解决这一问题,提出不同的方法。
四、总结。
1.由学生谈利用三角函数知识来解决实际问题的步骤,再次体会建立数学模型解决问题的过程。
2.总结具体几种类型的图形构造直角三角形的方法:

《锐角三角函数》学案1


教案课件是老师上课中很重要的一个课件,大家正在计划自己的教案课件了。各行各业都在开始准备新的教案课件工作计划了,未来工作才会更有干劲!你们知道多少范文适合教案课件?以下是小编为大家精心整理的“《锐角三角函数》学案1”,仅供参考,欢迎大家阅读。

《锐角三角函数》学案1

教学目标:
1.探索直角三角形中锐角三角函数值与三边之间的关系。
2.掌握三角函数定义式:sinA=,cosA=,tanA=。
重点和难点
重点:三角函数定义的理解。
难点:直角三角形中锐角三角函数值与三边之间的关系及求三角函数值。
【教学过程】
一、情境导入
如图是两个自动扶梯,甲、乙两人分别从1、2号自动扶梯上楼,谁先到达楼顶?如果AB和A′B′相等而∠α和∠β大小不同,那么它们的高度AC和A′C′相等吗?AB、AC、BC与∠α,A′B′、A′C′、B′C′与∠β之间有什么关系呢?------导出新课
二、新课教学
1、合作探究
见课本
2、三角函数的定义
在Rt△ABC中,如果锐角A确定,那么∠A的对边与斜边的比、邻边与斜边的比也随之确定.
∠A的对边与邻边的比叫做∠A的正弦(sine),记作sinA,即sinA=
∠A的邻边与斜边的比叫做∠A的余弦(cosine),记作cosA,即cosA=
∠A的对边与∠A的邻边的比叫做∠A的正切(tangent),记作tanA,即
锐角A的正弦、余弦和正切统称∠A的三角函数.
注意:sinA,cosA,tanA都是一个完整的符号,单独的“sin”没有意义,其中A前面的“∠”一般省略不写。
师:根据上面的三角函数定义,你知道正弦与余弦三角函数值的取值范围吗?
师:(点拨)直角三角形中,斜边大于直角边.
生:独立思考,尝试回答,交流结果.
明确:0<sina<1,0<cosa<1.
巩固练习:课内练习T1、作业题T1、2
3、如图,在Rt△ABC中,∠C=90°,AB=5,BC=3,求∠A,∠B的正弦,余弦和正切.
分析:由勾股定理求出AC的长度,再根据直角三角形中锐角三角函数值与三边之间的关系求出各函数值。
师:观察以上计算结果,你发现了什么?
明确:sinA=cosB,cosA=sinB,tanA·tanB=1
4、课堂练习:课本课内练习T2、3,作业题T3、4、5、6
三、课堂小结:谈谈今天的收获
1、内容总结
(1)在RtΔABC中,设∠C=900,∠α为RtΔABC的一个锐角,则
∠α的正弦,∠α的余弦,
∠α的正切
(2)一般地,在Rt△ABC中,当∠C=90°时,sinA=cosB,cosA=sinB,tanA·tanB=1
2、方法归纳
在涉及直角三角形边角关系时,常借助三角函数定义来解
四、布置作业:
1.课后作业题
2.见作业本相关节次

锐角三角函数的简单应用


§7.6锐角三角函数的简单应用⑶

主备:李维明班级________姓名____________

一.学习目标:

1.使学生知道测量中坡度、坡角的概念,掌握坡度与坡角的关系;

2.能利用解直角三角形的知识,解决与坡度有关的实际问题,进一步培养学生把实际问题转化为数学问题的能力.

二.学习重点难点:

重点:坡度、坡角的概念,掌握坡度与坡角的关系.

难点:能利用解直角三角形的知识,解决与坡度有关的实际问题.

三.教学过程

知识迁移:

如右图所示,斜坡AB和斜坡A1B1哪一个倾斜程度比较大?显然,斜坡的倾斜程度比较大,说明∠A′>∠A.从图形可以看出>,即:>.

在修路、挖河、开渠和筑坝时,设计图纸上都要注明斜坡的倾斜程度.

1.坡度的概念,坡度与坡角的关系.

如右图,这是一张水库拦水坝的横断面的设计图,叫做坡度(或坡比).

记作i,即i=,坡度通常用l∶m的形式,如右上图,斜坡AB的坡度是:i=.

叫做坡角.从三角函数的概念可以知道,坡度与坡角的关系是i=,显然,

.

【例题解析】

Ⅰ.掌握坡度的概念

①某人沿着有一定坡度的坡面前进了10米,此时他与水平地面的垂直距离为25米,则这个坡面的坡度为__________.

②(10江苏宿迁)小明沿着坡度为1:2的山坡向上走了1000m,则他升高了_________.

Ⅱ.掌握两个常见的坡度

①(11甘肃兰州)某水库大坝的横断面是梯形,坝内斜坡的坡度i1=1∶3,坝外斜坡的坡度i2=1∶1,则两个坡角的和为.

②(11湖南衡阳)如图所示,河堤横断面迎水坡AB的坡比是1∶3,堤高BC=5m,则坡面AB的长度是.

Ⅲ.一道常规题型.

例1:如图,水坝的横截面是梯形ABCD,迎水坡BC的坡角为30°,背水坡AD的坡度i=1:1.2,坝顶宽DC=2.5米,坝高4.5米,又知堤坝的总长度为5km.

求:(1)背水坡AD的坡角(精确到0.1°);

(2)坝底宽AB的长(精确到0.1米).

思考1:在上题中,为了提高堤坝的防洪能力,市防汛指挥部决定加高堤坝,要求堤坝加高0.5米,已知堤坝的总长度为5km,(保持迎水坡与背水坡的坡度不变),需要多少方土?(结果保留根号)

思考2:上题中,为了提高堤坝的防洪能力,市防汛指挥部决定加固堤坝,要求坝顶CD加宽0.5米,背水坡AD的坡度改为1:1.4,求完成该项工程所需的土方(结果保留根号)

【课时作业】

1.如图,一束光线照在坡度为1:3的斜坡上,被斜坡上的平面镜反射成与地面平行的光线,则这束光线与坡面的夹角α是_________度.

2.如图是一个拦水大坝的横断面图,AD∥BC,

(1)若斜坡AB=10m,大坝高为8m,则斜坡AB的坡度iAB=.

(2)如果坡度iAB=1∶3,则坡角∠B=.

(3)如果坡度iAB=1∶2,AB=8m,则大坝高度为___.

3.如图,一段河坝的断面为梯形ABCD,试根据图中数据,求出坡角和坝底宽AD(单位米,结果保留根号)

4.(10四川泸州)如图5,某防洪指挥部发现长江边一处长500米,高10米,背水坡的坡角为45°的防洪大堤(横断面为梯形ABCD)急需加固.经调查论证,防洪指挥部专家组制定的加固方案是:沿背水坡面用土石进行加固,并使上底加宽3米,加固后背水坡EF的坡比i=1∶3.

(1)求加固后坝底增加的宽度AF;

(2)求完成这项工程需要土石多少立方米?(结果保留根号)

5.(10山东济南)我市某乡镇学校教学楼后面靠近一座山坡,坡面上是一块平地,如图所示,BC∥AD,斜坡AB=40米,坡角∠BAD=600,为防夏季因瀑雨引发山体滑坡,保障安全,学校决定对山坡进行改造,经地质人员勘测,当坡角不超过450时,可确保山体不滑坡,改造时保持坡脚A不动,从坡顶B沿BC削进到E处,问BE至少是多少米(结果保留根号)?

【能力拓展】

1.(11四川凉山州)在一次课题设计活动中,小明对修建一座87m长的水库大坝提出了以下方案;大坝的横截面为等腰梯形,如图,AD∥BC,坝高10m,迎水坡面AB的坡度i=5∶3,老师看后,从力学的角度对此方案提出了建议,小明决定在原方案的基础上,将迎水坡面AB的坡度进行修改,修改后的迎水坡面AE的坡度i=5∶6.

(1)求原方案中此大坝迎水坡AB的长.(结果保留根号)

(2)如果方案修改前后,修建大坝所需土石方总体积不变,在方案修改后,若坝顶沿EC方向拓宽2.7m,求坝顶将会沿AD方向加宽多少米?

2.(11江苏苏州)如图,小明在大楼30米高(即PH=30米)得窗口P处进行观测,测得山坡上A处的俯角为15°,山脚B处得俯角为60°,已知该山坡的坡度i(即tan∠ABC)为1∶3,点P、H、B、C、A在同一个平面上.点H、B、C在同一条直线上,且PH⊥HC.

(1)山坡坡角(即∠ABC)的度数等于________度;

(2)求A、B两点间的距离(结果精确到0.1米,参考数据:3≈1.732).

3.(2011湖北黄冈)如图,防洪大堤的横断面是梯形,背水坡AB的坡比i=1∶3(指坡面的铅直高度与水平宽度的比).且AB=20m.身高为1.7m的小明站在大堤A点,测得高压电线杆端点D的仰角为30°.已知地面CB宽30m,求高压电线杆CD的高度(结果保留三个有效数字,3≈1.732).

文章来源:http://m.jab88.com/j/9133.html

更多

最新更新

更多