每个老师不可缺少的课件是教案课件,大家在仔细设想教案课件了。教案课件工作计划写好了之后,这样我们接下来的工作才会更加好!你们会写一段适合教案课件的范文吗?下面是小编帮大家编辑的《一元二次方程》,仅供参考,大家一起来看看吧。
第二十二章一元二次方程
教材内容
本单元教学的主要内容:
1.一元二次方程及其有关概念,一元二次方程的解法(开平方法、配方法、公式法、分解因式法),
一元二次方程根与系数的关系,运用一元二次方程分析和解决实际问题.
2.本单元在教材中的地位和作用:
教学目标
1.一分析实际问题中的等量关系并求解其中未知数为背景,认识一元二次方程及其有关概念。
2.根据化归思想,抓住“降次”这一基本策略,熟练掌握开平方法、配方法、公式法和分解因式法等一元二次方程的基本解法.
3.经历分析和解决问题的过程,体会一元二次方程的教学模型作用,进一步提高在实际问题中运用方程这种重要数学工具的基本能力。
教学重点、难点
重点:
1.一元二次方程及其有关概念
2.一元二次方程的解法(开平方法、配方法、公式法、分解因式法)
3.一元二次方程根与系数的关系以及运用一元二次方程分析和解决实际问题。
难点:
1.一元二次方程及其有关概念
2.一元二次方程的解法(配方法、公式法、分解因式法),
3.一元二次方程根与系数的关系以及灵活运用
课时安排
本章教学时约需课时,具体分配如下(供参考)
22.1一元二次方程1课时
22.2降次7课时
22.3实际问题与一元二次方程3课时
教学活动、习题课、小结
22.1一元二次方程
教学目的
1.使学生理解并能够掌握整式方程的定义.
2.使学生理解并能够掌握一元二次方程的定义.
3.使学生理解并能够掌握一元二次方程的一般表达式以及各种特殊形式.
教学重点、难点
重点:一元二次方程的定义.
难点:一元二次方程的一般形式及其二次项系数、一次项系数和常数项的识别.
教学过程
复习提问
1.什么叫做方程?什么叫做一元一次方程?
2.指出下面哪些方程是已学过的方程?分别叫做什么方程?
(l)3x+4=l;(2)6x-5y=7;
3.结合上述有关方程讲解什么叫做“元”,什么叫做“次”.
引入新课
1.方程的分类:(通过上面的复习,引导学生答出)
学过的几类方程是
没学过的方程有x2-70x+825=0,x(x+5)=150.
这类“两边都是关于未知数的整式的方程,叫做整式方程.”像这样,我们把“只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程叫做一元二次方程.”
据此得出复习中学生未学过的方程是
(4)一元二次方程:x2-70x+825=0,x(x+5)=150.
同时指导学生把学过的方程分为两大类:
2.一元二次方程的一般形式
注意引导学生考虑方程x2-70x+825=0和方程x(x+5)=150,即x2+5x=150,
可化为:x2+5x-150=0.
从而引导学生认识到:任何一个一元二次方程,经过整理都可以化为
ax2+bx+c=0(a≠0)的形式.并称之为一元二次方程的一般形式.
其中ax2,bx,c分别称为二次项、一次项、常数项;a,b分别称为二次项系数、一次项系数.
【注意】二次项系数a是不等于0的实数(a=0时,方程化为bx+c=0,不再是二次方程了);b,c可为任意实数.
例把方程5x(x+3)=3(x-1)+8化成一般形式.并写出它的二次项系数、一次项系数及常数项.
课堂练习P271、2题
归纳总结
1.方程分为两大类:
判别整式方程与分式方程的关键是看分母中是否含有未知数;判别一元一次方程,一元二次方程的关键是看方程化为一般形式后,未知数的最高次数是一次还是二次.
2.一元二次方程的定义:一个整式方程,经化简形成只含有一个未知数且未知数的最高次数是2,则这样的整式方程称一元二次方程.
其一般形式是ax2+bx+c=0(a≠0),其中b,c均可为任意实数,而a不能等于零.
布置作业:习题22.11、2题.
达标测试
1.在下列方程中,一元二次方程的个数是()
①3x2+7=0,②ax2+bx+c=0,③(x+2)(x-3)=x2-1,④x2-+4=0,
⑤x2-(+1)x+=0,⑥3x2-+6=0
A.1个B.2个C.3个D.4个
2.关于x的一元二次方程3x2=5x-2的二次项系数,一次项和常数项,下列说法完全正确的是()
A.3,-5,-2B.3,-5x,2
C.3,5x,-2D.3,-5,2
3.方程(m+2)+3mx+1=0是关于x的一元二次方程,则()
A.m=±2B.m=2C.m=-2D.m≠±2
4.若方程kx2+x=3x2+1是一元二次方程,则k的取值范围是
5.方程4x2=3x-+1的二次项是,一次项是,常数项是
课后反思:
22.2解一元二次方程
第一课时
直接开平方法
教学目的
1.使学生掌握用直接开平方法解一元二次方程.
2.引导学生通过特殊情况下的解方程,小结、归纳出解一元二次方程ax2+c=0(a>0,c<0)的方法.
教学重点、难点
重点:准确地求出方程的根.
难点:正确地表示方程的两个根.
教学过程
复习过程
回忆数的开方一章中的知识,请学生回答下列问题,并说明解决问题的依据.
求下列各式中的x:
1.x2=225;2.x2-169=0;3.36x2=49;4.4x2-25=0.
一元二次方程的解也叫做一元二次方程的根.
解题的依据是:一个正数有两个平方根,这两个平方根互为相反数.
即一般地,如果一个数的平方等于a(a≥0),那么这样的数有两个,它们是互为相反数.
引入新课
我们已经学过了一些方程知识,那么上述方程属于什么方程呢?
新课
例1解方程x2-4=0.
解:先移项,得x2=4.
即x1=2,x2=-2.
这种解一元二次方程的方法叫做直接开平方法.
例2解方程(x+3)2=2.
练习:P281、2
归纳总结
1.本节主要学习了简单的一元二次方程的解法——直接开平方法.
2.直接法适用于ax2+c=0(a>0,c<0)型的一元二次方程.
布置作业:习题22.14、6题
达标测试
1.方程x2-0.36=0的解是
A.0.6B.-0.6C.±6D.±0.6
2.解方程:4x2+8=0的解为
A.x1=2x2=-2B.
C.x1=4x2=-4D.此方程无实根
3.方程(x+1)2-2=0的根是
A.B.
C.D.
4.对于方程(ax+b)2=c下列叙述正确的是
A.不论c为何值,方程均有实数根B.方程的根是
C.当c≥0时,方程可化为:
D.当c=0时,
5.解下列方程:
①.5x2-40=0②.(x+1)2-9=0
③.(2x+4)2-16=0④.9(x-3)2-49=0
课后反思
九年级数学上册2.1一元二次方程(湘教版)
第2章一元二次方程
2.1一元二次方程
1.会根据具体问题列出一元二次方程,体会方程的模型思想.
2.能理解一元二次方程的概念;会把一个一元二次方程化为一般形式;会判断一元二次方程的二次项系数、一次项系数和常数项.
阅读教材P26~27,完成下列问题:
(一)知识探究
如果一个方程通过整理可以使右边为________,而左边是只含有________个未知数的________次多项式,那么这样的方程叫作一元二次方程,它的一般形式是____________,其中________,________,________分别叫作二次项系数、一次项系数、常数项.
二次项系数、一次项系数、常数项都要包含它前面的符号.二次项系数a≠0是一个重要条件,不能漏掉.
(二)自学反馈
1.下列方程中,是一元二次方程的是()
A.x-y2=1B.x2-1=0
C.1x2-1=0D.x22-x-13=0
2.将方程(2x+1)x=(3x-2)x+2化简整理写成一般形式后,其中a、b、c分别是____________.
活动1小组讨论
例1判断下列方程是否为一元二次方程:
(1)1-x2=0;(2)2(x2-1)=3y;(3)2x2-3x-1=0;
(4)1x2-2x=0;(5)(x+3)2=(x-3)2;(6)9x2=5-4x.
解:(1)是;(2)不是;(3)是;(4)不是;(5)不是;(6)是.
(1)一元二次方程为整式方程;(2)类似(5)这样的方程要化简后才能判断.
例2将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.
解:方程(8-2x)(5-2x)=18化成一元二次方程的一般形式是2x2-13x+11=0,其中的二次项系数、一次项系数及常数项分别是2,-13,11.
将一元二次方程化成一般形式时,通常要将首项化负为正,化分为整.
活动2跟踪训练
1.下列方程哪些是一元二次方程?
(1)7x2-6x=0;(2)2x2-5xy+6y=0;
(3)2x2-13x-1=0;(4)x2+2x-3=1+x2.
2.将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.
(1)5x2-1=4x;(2)4x2=81;
(3)4x(x+2)=25;(4)(3x-2)(x+1)=8x-3.
3.已知方程(a-4)x2-(2a-1)x-a-1=0.
(1)a取何值时,方程为一元二次方程?
(2)a取何值时,方程为一元一次方程?
4.根据下列问题,列出关于x的方程:
(1)4个完全相同的正方形的面积之和是25,求正方形的边长x;
(2)一个长方形的长比宽多2,面积是100,求长方形的长x;
(3)把长为1的木条分成两段,使较短一段的长与全长的积,等于较长一段的长的平方,求较短一段的长x.
活动3课堂小结
学生试述:今天学到了什么?
【预习导学】
知识探究
0一二ax2+bx+c=0(a,b,c是已知数,a≠0)abc
自学反馈
1.D2.3-2,-3,2
【合作探究】
活动2跟踪训练
1.(1)是一元二次方程.2.(1)5x2-4x-1=0,二次项系数、一次项系数及常数项分别是5,-4,-1.(2)4x2-81=0,二次项系数、一次项系数及常数项分别是4,0,-81.(3)4x2+8x-25=0,二次项系数、一次项系数及常数项分别是4,8,-25.(4)3x2-7x+1=0,二次项系数、一次项系数及常数项分别是3,-7,1.3.(1)a≠4.(2)a=4.4.(1)4x2=25.(2)x(x-2)=100.(3)x=(1-x)2.一元二次方程学案
第二十一章一元二次方程
21.1一元二次方程
出示目标
1.了解一元二次方程的概念.应用一元二次方程概念解决一些简单题目.
2.一元二次方程的一般形式ax2+bx+c=0(a≠0)及其派生的有关概念.
预习导学
自学指导阅读教材第1至4页,并完成预习内容.
问题1如图,有一块长方形铁皮,长100cm,宽50cm,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积为3600cm2,那么铁皮各角应切去多大的正方形?
分析:设切去的正方形的边长为xcm,则盒底的长为100-2x,宽为50-2x.得方程(100-2x)(50-2x)=3600,
整理得4x2-300x+1400=0.化简,得x2-75x+350=0.①
问题2要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?
分析:全部比赛的场数为28.
设应邀请x个队参赛,每个队要与其他(x-1)个队各赛1场,所以全部比赛共_____场.列方程_____=28.化简整理得x2-x-56=0.②
知识探究
(1)方程①②中未知数的个数各是多少?1个
(2)它们最高次数分别是几次?2次
方程①②的共同特点是:这些方程的两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是二次的整式方程.
自学反馈
1.一元二次方程的概念.
2.一元二次方程的一般形式:ax2+bx+c=0(a≠0)
一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.
二次项系数、一次项系数、常数项都要包含它前面的符号.二次项系数a≠0是一个重要条件,不能漏掉.
合作探究
活动1小组讨论
例1将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.
解:2x2-13x+11=0;2,-13,11.
将一元二次方程化成一般形式时,通常要将首项化负为正,化分为整.
例2判断下列方程是否为一元二次方程:
(1)1-x2=0;(2)2(x2-1)=3y;(3)2x2-3x-1=0;
(4)=0;(5)(x+3)2=(x-3)2;(6)9x2=5-4x.
解:(1)是;(2)不是;(3)是;(4)不是;(5)不是;(6)是.
(1)一元二次方程为整式方程;(2)类似(5)这样的方程要化简后才能判断.
例3下面哪些数是方程x2-x-6=0的根?-2,3.
-4,-3,-2,-1,0,1,2,3,4.
直接将x值代入方程,检验方程两边是否相等.
活动2跟踪训练
1.下列各未知数的值是方程3x2+x-2=0的解的是(B)
A.x=1B.x=-1C.x=2D.x=-2
2.已知方程3x2-9x+m=0的一个根是1,则m的值是6.
3.将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.
(1)5x2-1=4x;(2)4x2=81;
(3)4x(x+2)=25;(4)(3x-2)(x+1)=8x-3.
解:(1)5x2-4x-1=0;5,-4,-1;
(2)4x2-81=0;4,0,-81;
(3)4x2+8x-25=0;4,8,-25;
(4)3x2-7x+1=0;3,-7,1.
4.根据下列问题,列出关于x的方程,并将其化成一元二次方程的一般形式:
(1)4个完全相同的正方形的面积之和是25,求正方形的边长x;
(2)一个长方形的长比宽多2,面积是100,求长方形的长x;
(3)把长为1的木条分成两段,使较短一段的长与全长的积,等于较长一段的长的平方,求较短一段的长x.
解:(1)4x2=25;4x2-25=0;(2)x(x-2)=100;x2-2x-100=0;
(3)x=(1-x)2;x2-3x+1=0.
5.求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.
证明:∵二次项系数a=m2-8m+17=m2-8m+16+1=(m-4)2+10.∴二次项系数恒不等于零.∴不论m取何值,该方程都是一元二次方程.
第5题可用配方法说明二次项系数不为零.
活动3课堂小结
1.一元二次方程的概念以及怎样利用概念判断一元二次方程.
2.一元二次方程的一般形式ax2+bx+c=0(a≠0)特别强调a≠0.
3.使一元二次方程成立的未知数的值,叫做一元二次方程的解,也叫做一元二次方程的根.
当堂训练
教学至此,敬请使用学案当堂训练部分.
文章来源:http://m.jab88.com/j/76473.html
更多