88教案网

圆锥的侧面积和全面积

教案课件是老师上课做的提前准备,大家开始动笔写自己的教案课件了。只有制定教案课件工作计划,接下来的工作才会更顺利!适合教案课件的范文有多少呢?以下是小编收集整理的“圆锥的侧面积和全面积”,供大家借鉴和使用,希望大家分享!

24.4.2圆锥的侧面积和全面积

班级:____________姓名:____________

一、导学目标

1.了解圆锥的基本概念,理解圆锥各要素与其侧面展开图之间的对应关系;

2.经历探索圆锥侧面积计算公式的过程,会计算圆锥的侧面积和全面积。

二、学习重难点

1.理解圆锥各要素与其侧面展开图之间的对应关系;

2.会计算圆锥的侧面积。

三、导学方法:探究、引例、当堂训练.

四、导学过程

创设情境、导入新课

蒙古包可以近似的看作由有圆锥和圆柱组成,如果想用毛毡搭建1个底面半径为5,高为3.5,外围高1.5的蒙古包,至少需要多少平方米的毛毡?jAb88.com

(1)蒙古包由哪几部分组成?

(2)蒙古包的全面积等于什么?

(3)怎样计算圆柱的侧面积?

(4)在计算“蒙古包的全面积”时,遇到的新问题是什么?

课堂导学、探知固能

1、自主学习、合作探究

在现实生活中你见过哪些锥形物体?你想了解圆锥更多的知识吗?请同学们通过自学课本第112页-113页,并利用手中的圆锥模型来了解圆锥的基本知识吧!

试一试,完成下面的填空(将你对问题的理解记录下来,在小组内与同学交流,展示你的认识和收获)。

(1)如图1,圆锥是由一个底面和一个侧面围成的,其底面是一个。我们把连接圆锥和底面的线段叫做圆锥的母线,图中的就是圆锥的母线。圆锥的母线有条,它们都。连接圆锥顶点与底面的线段叫圆锥的高,如图中的就是圆锥的高。

(2)如图2,沿圆锥的一条母线将它剪开并展平,可以看到,圆锥的侧面展开图是一个,这个扇形的半径是圆锥的,扇形的弧长是圆锥底面圆的。若设圆锥底面圆的半径是,圆锥母线长是,则扇形的半径是,扇形的弧长是,所以扇形的面积==,即圆锥的侧面积=,圆锥的全面积=。

小结:

扇形弧长=圆锥的侧面积S侧=

扇形面积S==

2、典例导航、积悟提能

例1、若圆锥的底面直径为6cm,母线长为5cm,则它的侧面积为cm.(结果保留π)

例2、已知圆锥的底面积为4πcm2,母线长为3cm,求它的侧面展开图的圆心角.

例3、一个圆锥的高为㎝,侧面展开图是半圆,求:(1)圆锥母线与底面半径的比;(2)锥角的大小;(3)圆锥的全面积.

现在,你能用所学的公式和方法求出蒙古包需要多少平方米的毛毡吗?

五、课堂小结

1、圆锥的侧面展开图是什么图形?圆锥各要素与其侧面展开图之间的对应关系有哪些?

2、如何计算圆锥的侧面积?如何计算圆锥的全面积?

六、当堂训练

1、P114练习1

2、P114练习2

3、底面圆半径为6cm,高为8cm的圆锥侧面积是()

A、B、C、D、

4、一个扇形,半径为30cm,圆心角为120°,用它做成一个圆锥的侧面,那么这个圆锥的底面半径为.

5、将一个半径为8cm,面积为32πcm2的扇形铁皮围成一个圆锥形容器(不计接缝),那么这个圆锥形容器的高为()

A.4B.4C.4D.2

七、作业设计

基础题:P1141(3)、8、9

思考题:

1、P1144

2、一个圆锥的轴截面是等边三角形,它的高是2cm.

(1)求圆锥的侧面积和全面积;

(2)画出圆锥的侧面展开图.

3、如图,有一直径为4的圆形铁皮,要从中剪出一个最大圆心角为60°的扇形ABC.那么剪下的扇形ABC(阴影部分)的面积为;用此剪下的扇形铁皮围成一个圆锥,该圆锥的底面圆的半径r=.

4、如图,圆锥的底面半径为5,母线长为20,一只蜘蛛从底面圆周上一点A出发沿圆锥的侧面爬行一周后回到点A的最短路程是()

5、如图,在图1所示的正方形铁皮上剪下一个圆形和扇形,使之恰好围成图2所示的一个圆锥模型.设圆的半径为r,扇形的半径为R,则圆的半径与扇形的半径之间的关系为()

八、课后反思

3题4题5题

八、课后反思

精选阅读

圆锥的侧面积


教案课件是老师上课中很重要的一个课件,大家静下心来写教案课件了。只有规划好了教案课件新的工作计划,这样我们接下来的工作才会更加好!你们会写教案课件的范文吗?急您所急,小编为朋友们了收集和编辑了“圆锥的侧面积”,相信能对大家有所帮助。

3.8圆锥的侧面积
本节课的内容是圆锥的侧面积,首先让学生通过观察圆锥,认识到它的表面是由一个曲面和一个圆面围成的,然后再思考,圆锥的曲面展开图在平面上是什么样的图形,最后经过学生自己动手实践得出结论:圆锥的侧面展开图是一个扇形,把圆锥的母线、底面半径和展开图中的半径之间的关系找出来,根据上节课的扇形面积公式就可求出圆锥的侧面积,进一步运用公式进行有关计算.
让学生先观察圆锥,再想象圆锥的侧面展开图,最后经过自己动手实践得出结论这一系列活动,可以培养学生的空间想象能力、动手操作能力、归纳总结能力,使他们的手、脑、口并用,帮助他们有意识地积累活动经验,使他们获得成功的体验.
对于学生的观察、操作、推理、归纳等活动,教师要进行鼓励性的评价,使他们能提高学习数学的信心和决心.
教学目标
(一)教学知识点
1.经历探索圆锥侧面积计算公式的过程.
2.了解圆锥的侧面积计算公式,并会应用公式解决问题.
(二)能力训练要求
1.经历探索圆锥侧面积计算公式的过程,发展学生的实践探索能力.
2.了解圆锥的侧面积计算公式后,能用公式进行计算,训练学生的数学应用能力.
(三)情感与价值观要求
1.让学生先观察实物,再想象结果,最后经过实践得出结论,通过这一系列活动,培养学生的观察、想象、实践能力,同时训练他们的语言表达能力,使他们获得学习数学的经验,感受成功的体验.
2.通过运用公式解决实际问题,让学生懂得数学与人类生活的密切联系,激发他们学习数学的兴趣,克服困难的决心,更好地服务于实际.
教学重点
1.经历探索圆锥侧面积计算公式的过程.
2.了解圆锥的侧面积计算公式,并会应用公式解决问题.
教学难点
经历探索圆锥侧面积计算公式.
教学方法
观察——想象——实践——总结法
教具准备
一个圆锥模型(纸做)
投影片两张
第一张:(记作§3.8A)
第二张:(记作§3.8B)
教学过程
Ⅰ.创设问题情境,引入新课
[师]大家见过圆锥吗?你能举出实例吗?
[生]见过,如漏斗、蒙古包.
[师]你们知道圆锥的表面是由哪些面构成的吗?请大家互相交流.
[生]圆锥的表面是由一个圆面和一个曲面围成的.
[师]圆锥的曲面展开图是什么形状呢?应怎样计算它的面积呢?本节课我们将解决这些问题.
Ⅱ.新课讲解
一、探索圆锥的侧面展开图的形状
[师](向学生展示圆锥模型)请大家先观察模型,再展开想象,讨论圆锥的侧面展开图是什么形状.
[生]圆锥的侧面展开图是扇形.
[师]能说说理由吗?
[生甲]因为数学知识是一环扣一环的,后面的知识是在前面知识的基础上学习的.上节课的内容是弧长及扇形面积,本节课的内容是圆锥的侧面积,而弧长不是面积,所以我猜想圆锥的侧面展开图应该是扇形.
[师]这位同学用的虽然是猜想,但也是有一定的道理的,并不是凭空瞎想,还有其他理由吗?[
[生乙]我是自己实践得出结论的,我拿一个扇形的纸片卷起来,就得到了一个圆锥模型.
[师]很好,究竟大家的猜想是否正确呢?下面我就给大家做个演示(把圆锥沿一母线剪开),请大家观察侧面展开图是什么形状的?
[生]是扇形.
[师]大家的猜想非常正确,既然已经知道侧面展开图是扇形,那么根据上节课的扇形面积公式就能计算出圆锥的侧面积,由于我们不能把所有圆锥都剖开,在展开图中的扇形的半径和圆心角与不展开图形中的哪些因素有关呢?这将是我们进一步研究的对象.
二、探索圆锥的侧面积公式
[师]圆锥的侧面展开图是
一个扇形,如图,设圆锥的母
线(generatingline)长为l,
底面圆的半径为r,那么这个圆
锥的侧面展开图中扇形的半径即
为母线长l,扇形的弧长即为底
面圆的周长2πr,根据扇形面积公式
可知S=2πrl=πrl.因此圆锥的侧面积为S侧=πrl.
圆锥的侧面积与底面积之和称为圆锥的全面积(surfacearea),全面积为S全=πr2+πrl.
三、利用圆锥的侧面积公式进行计算.
投影片(§3.8A)
圣诞节将近,某家商店正在制作圣诞节的圆锥形纸帽.已知纸帽的底面周长为58cm,高为20cm,要制作20顶这样的纸帽至少要用多少平方厘米的纸?(结果精确到0.1cm2)
分析:根据题意,要求纸帽的面积,
即求圆锥的侧面积.现在已知底面圆的
周长,从中可求出底面圆的半径,从而
可求出扇形的弧长,在高h、底面圆的半
径r、母线l组成的直角三角形中,根据勾
股定理求出母线l,代入S侧=πrl中即可.
解:设纸帽的底面半径为rcm,母线长为lcm,则r=,
l=≈22.03cm,
S圆锥侧=πrl≈×58×22.03=638.87cm2.
638.87×20=12777.4cm2.
所以,至少需要12777.4cm2的纸.
投影片(§3.8B)
如图,已知Rt△ABC
的斜边AB=13cm,一条
直角边AC=5cm,以直线
AB为轴旋转一周得一个几
何体.求这个几何体的表
面积.
分析:首先应了解这个几何体
的形状是上下两个圆锥,共用一个底面,表面积即为两个圆锥的侧面积之和.根据S侧=πR2或S侧=πrl可知,用第二个公式比较好求,但是得求出底面圆的半径,因为AB垂直于底面圆,在Rt△ABC中,由OC、AB=BC、AC可求出r,问题就解决了.
解:在Rt△ABC中,AB=13cm,AC=5cm,
∴BC=12cm.
∵OCAB=BCAC,
∴r=OC=.
∴S表=πr(BC+AC)=π××(12+5)
=πcm2.
Ⅲ.课堂练习
随堂练习
Ⅳ.课时小结
本节课学习了如下内容:
探索圆锥的侧面展开图的形状,以及面积公式,并能用公式进行计算.
Ⅴ.课后作业
习题3.11
Ⅵ.活动与探究
探索圆柱的侧面展开图
在生活中,我们常常遇到圆柱形的物体,如油桶、铅笔、圆形柱子等,在小学我们已知圆柱是由两个圆的底面和一个侧面围成的,底面是两个等圆,侧面是一个曲面,两个底面之间的距离是圆柱的高.
圆柱也可以看作是由一个矩形旋转得到的,旋转轴叫做圆柱的轴,圆柱侧面上平行于轴的线段都叫做圆柱的母线.容易看出,圆柱的轴通过上、下底面的圆心,圆柱的母线长都相等,并等于圆柱的高,圆柱的两个底面是平行的.
如图,把圆柱的侧
面沿它的一条母线剪开,
展在一个平面上,侧面
的展开图是矩形,这个
矩形的一边长等于圆柱
的高,即圆柱的母线长,
另一边长是底面圆的周长,
所以圆柱的侧面积等于底
面圆的周长乘以圆柱的高.
[例1]如图(1),把一个圆柱形木块沿它的轴剖开,得矩形ABCD.已知AD=18cm,AB=30cm,求这个圆柱形木块的表面积(精确到1cm2).
解:如图(2),AD是圆柱底面的直径,AB是圆柱的母线,设圆柱的表面积为S,则S=2S圆+S侧.
∴S=2π()2+2π××30=162π+540π≈2204cm2.
所以这个圆柱形木块的表面积约为2204cm2
板书设计
3.8圆锥的侧面积
一、1.探索圆锥的侧面展开图的形状,
2.探索圆锥的侧面积公式;
3.利用圆锥的侧面积公式进行计算.
二、课堂练习
三、课时小结
四、课后作业
备课资料
参考练习
1.圆锥母线长5cm,底面半径为3cm,那么它的侧面展形图的圆心角是…()
A.180°B.200°C.225°D.216°
2.若一个圆锥的母线长是它底面圆半径的3倍,则它的侧面展开图的圆心角是()
A.180°B.90°
C.120°D.135°
3.在半径为50cm的图形铁片上剪去一块扇形铁皮,用剩余部分制做成一个底面直径为80cm,母线长为50cm的圆锥形烟囱帽,则剪去的扇形的圆心角的度数为()
A.288°B.144°C.72°D.36°
4.用一个半径长为6cm的半圆围成一个圆锥的侧面,则此圆锥的底面半径为()
A.2cmB.3cmC.4cmD.6cm
答案:1.D2.C3.C4.B

弧长、扇形的面积和圆锥侧面积中考复习


一般给学生们上课之前,老师就早早地准备好了教案课件,大家静下心来写教案课件了。必须要写好了教案课件计划,未来的工作就会做得更好!你们会写一段优秀的教案课件吗?考虑到您的需要,小编特地编辑了“弧长、扇形的面积和圆锥侧面积中考复习”,相信能对大家有所帮助。

章节第八章课题
课型复习课教法讲练结合
教学目标(知识、能力、教育)1.熟练地运用圆周长、弧长公式、圆的扇形弓形面积公式进行有关计算;
2明确图形构成,灵活运用、转化思想,提高解决综合图形面积的计算能力;
教学重点熟练地运用圆周长、弧长公式、圆的扇形弓形面积公式进行有关计算
教学难点明确图形构成,灵活运用、转化思想,提高解决综合图形面积的计算能力;
教学媒体学案
教学过程
一:【课前预习】
(一):【知识梳理】
1.弧长公式:(n为圆心角的度数上为圆半径)
2.扇形的面积公式S=(n为圆心角的度数,R为圆的半径).
3.圆锥的侧面积S=πRl,(l为母线长,r为底面圆的半径),圆锥的侧面积与底面积之和称为圆锥的全面积.
(二):【课前练习】
1.在半径为3的⊙O中,弦AB=3,则AB的长为
2.扇形的周长为16,圆心角为’,则扇形的面积为()
A.16B.32C.64D.16π
3.如图是小芳学习时使用的圆锥形台灯灯罩的示意图,
则围成这个灯罩的铁皮的面积为________cm2(不考
虑接缝等因素,计算结果用π表示).
4.底面半径为人高为h的圆柱,两底的面积之和与它们的侧面积相等中与r的关系为__________
5.已知扇形的圆心角为120°,弧长为10π㎝,则这个扇形的半径为___cm
二:【经典考题剖析】
1.制作一个底面直径为30cm,高40cm的圆柱形无盖铁桶,所需铁皮至少为(),
A.1425πcm2B.1650πcm2C.2100πcm2D.2625πcm2
2.如图,在⊙O中,AB是直径,半径为R,求:
(1)∠AOC的度数.
(2)若D为劣弧BC上的一动点,且弦AD与半径OC交于E点.
试探求△AEC≌△DEO时,D点的位置.

3.如图,把直角三角形ABC的斜边AB放在定直线l上,按顺时针方向在l上转动两次,使它转到△A″B′C″的位置,设BC=1,AC=3,则顶点A运动到A″的位置时,点A经过的路线与直线l所围成的面积是____________(计算结果不取近似值)
4.如图1-3-29,粮仓顶部是圆锥形,这个圆锥的底面圆的周长为36m,
母线长为8m.为防雨需在粮食顶部铺上油毡,需要铺油毡的面积是_________好.
5.如图,⊙O的半径为1,圆周角∠ABC=30°,则图中阴影部分的面积是________.
三:【课后训练】
1.已知Rt△ABC的斜边AB=5,一条直角边AC=3,以直线BC为轴旋转一周得到一个圆锥,则这个圆锥的侧面积为()
A.8πB.12πC.15πD.20π
2.如图,圆锥的母线长为5cm,高线长为4cm,则圆锥的底面积是()A.3πcmZ;B.9πcmZ;C.16πcmZ;D.25πcmZ
3.如果圆锥的高为8cm,母线长为10cm,则它的侧面展开图的面积为_____
4.正方形ABCD的边长为2cm,以边AB所在直线为轴旋转一周,所得到的圆柱的侧面积为()m2
A.16πB.8πC.4πD.4
5.有一弓形钢板ACB,ACB的度数为120o,弧长为,现要用它剪出一个最大的圆形板料,则这一圆形板料的周长为

6.已知扇形的圆心角为120°,弧长为10π㎝,则这个扇形的半径为___cm

7.如图,阴影部分是某一广告标志,已知两圆弧所在圆的半径分别为
20cm,10cm、∠AOB=120㎝,求这个广告标志面的周长.

8.把一个用来盛爆米花的圆锥形纸杯沿母线剪开,可得一个半径为
24cm、圆心角为1180的扇形,求该纸杯的底面半径和高度(结果精确到0.1cm)

9.一个三角尺的两直角边分别为15cm和20cm,以它的斜边为旋转轴旋转这个三角尺便形成如图所示的旋转题体,求这个旋转体的全面积(取3.14)

10.如图,⊙A,⊙B,⊙C两两不相交,且它们的半径都是0.5cm,图中的三个扇形(即三个阴影部分)的面积之和是多少?
四:【课后小结】

布置作业地纲
教后记

九年级下册《圆锥的侧面积》学案


九年级下册《圆锥的侧面积》学案

【教学目标】1、知道圆锥的母线高的概念及圆锥的侧面积计算公式;
2、会计算圆锥的侧面积;
3、经历探索圆锥侧面积计算公式的过程,发展学生的实践探索能力.
【教学重点】1、圆锥侧面积计算公式的推导过程;
2、应用公式解决问题.
【教学难点】经历探索圆锥侧面积计算公式.
【教学过程】:
一、情景创设
1、圆心角为60°的扇形的半径为10cm,求这个扇形的面积和周长.

2、扇形的圆心角为60°,它所对的弧长为2πcm,求这个扇形的半径.

3、我们已经知道圆锥的侧面展开图是一个扇形,那么怎样求圆锥的侧面展开图
的面积呢?
【设计意图】:以原有知识为基础,复习巩固旧知,引入本课内容.
二、探究学习:
1、多媒体演示:连接圆锥的顶点S和底面圆上任意一
点的线段SA、SA1……叫做圆锥的母线;
连接顶点S与底面圆的圆心O的线段叫做圆锥的高.
O
圆锥的底面半径、高线、母线长三者之间的关系:R2=r2+h2
2、探索圆锥中的各元素与它的侧面展开图——扇形的各元素之间的关系:
(1)学生动手观察圆锥侧面展开图
(2)归纳圆锥的侧面展开得到的扇形,设圆锥的底面半径为r,这个扇形的半径等于什么?扇形弧长等于什么?
3、探究圆锥侧面积和全面积计算公式.
【设计意图】:从实物出发,直观认识圆锥各相关概念.
4、基础练习
(1)已知圆锥的母线长为5cm,底面半径为3.6cm,则圆锥的侧面积为,全面积为.
(2)已知圆锥的母线长为10cm,高为6cm,则底面半径为,侧面积为,全面积为.
【设计意图】:通过以上练习使学生熟悉圆锥中各数量之间的运算关系,从而熟练掌握公式的应用.
5、典型例题
例1:制作如图所示的圆锥形铁皮烟囱帽,其尺寸要求为:底面直径80cm,母线长50cm,
(1)求烟囱帽铁皮的面积.(精确到1cm2)
(2)利用以上条件,你还能求出哪些量?
(3)变式训练:用面积为1000cm2的扇形铁皮围成一个母线长为50cm的圆锥形铁皮烟囱帽,求底面半径.

【设计意图】:通过以上例题及问题使学生进一步熟悉公式的应用以及实际问题中的近似值的取法.
A
例2、如图,一个直角三角形两直角边分别为4cm和3cm,以它的一直角边为轴旋转一周得到一个几何体,求这个几何体的表面积.
B
C
【设计意图】:通过以上例题让学生体会“面动成体”的原理,并体会数学
中的分类思想.
延伸与拓展:已知,在RtΔABC中,∠C=90゜,AB=13cm,BC=5cm
求以AB为轴旋转一周所得到的几何体的全面积.
三、归纳总结
1、圆锥的侧面积公式与全面积公式;
2、圆锥中的各元素与它的侧面展开图——扇形的各元素之间的关系.
四、作业

文章来源:http://m.jab88.com/j/75576.html

更多

最新更新

更多