教案课件是老师上课中很重要的一个课件,大家静下心来写教案课件了。只有规划好了教案课件新的工作计划,这样我们接下来的工作才会更加好!你们会写教案课件的范文吗?急您所急,小编为朋友们了收集和编辑了“圆锥的侧面积”,相信能对大家有所帮助。
3.8圆锥的侧面积一般给学生们上课之前,老师就早早地准备好了教案课件,大家静下心来写教案课件了。必须要写好了教案课件计划,未来的工作就会做得更好!你们会写一段优秀的教案课件吗?考虑到您的需要,小编特地编辑了“弧长、扇形的面积和圆锥侧面积中考复习”,相信能对大家有所帮助。
章节第八章课题
课型复习课教法讲练结合
教学目标(知识、能力、教育)1.熟练地运用圆周长、弧长公式、圆的扇形弓形面积公式进行有关计算;
2明确图形构成,灵活运用、转化思想,提高解决综合图形面积的计算能力;
教学重点熟练地运用圆周长、弧长公式、圆的扇形弓形面积公式进行有关计算
教学难点明确图形构成,灵活运用、转化思想,提高解决综合图形面积的计算能力;
教学媒体学案
教学过程
一:【课前预习】
(一):【知识梳理】
1.弧长公式:(n为圆心角的度数上为圆半径)
2.扇形的面积公式S=(n为圆心角的度数,R为圆的半径).
3.圆锥的侧面积S=πRl,(l为母线长,r为底面圆的半径),圆锥的侧面积与底面积之和称为圆锥的全面积.
(二):【课前练习】
1.在半径为3的⊙O中,弦AB=3,则AB的长为
2.扇形的周长为16,圆心角为’,则扇形的面积为()
A.16B.32C.64D.16π
3.如图是小芳学习时使用的圆锥形台灯灯罩的示意图,
则围成这个灯罩的铁皮的面积为________cm2(不考
虑接缝等因素,计算结果用π表示).
4.底面半径为人高为h的圆柱,两底的面积之和与它们的侧面积相等中与r的关系为__________
5.已知扇形的圆心角为120°,弧长为10π㎝,则这个扇形的半径为___cm
二:【经典考题剖析】
1.制作一个底面直径为30cm,高40cm的圆柱形无盖铁桶,所需铁皮至少为(),
A.1425πcm2B.1650πcm2C.2100πcm2D.2625πcm2
2.如图,在⊙O中,AB是直径,半径为R,求:
(1)∠AOC的度数.
(2)若D为劣弧BC上的一动点,且弦AD与半径OC交于E点.
试探求△AEC≌△DEO时,D点的位置.
3.如图,把直角三角形ABC的斜边AB放在定直线l上,按顺时针方向在l上转动两次,使它转到△A″B′C″的位置,设BC=1,AC=3,则顶点A运动到A″的位置时,点A经过的路线与直线l所围成的面积是____________(计算结果不取近似值)
4.如图1-3-29,粮仓顶部是圆锥形,这个圆锥的底面圆的周长为36m,
母线长为8m.为防雨需在粮食顶部铺上油毡,需要铺油毡的面积是_________好.
5.如图,⊙O的半径为1,圆周角∠ABC=30°,则图中阴影部分的面积是________.
三:【课后训练】
1.已知Rt△ABC的斜边AB=5,一条直角边AC=3,以直线BC为轴旋转一周得到一个圆锥,则这个圆锥的侧面积为()
A.8πB.12πC.15πD.20π
2.如图,圆锥的母线长为5cm,高线长为4cm,则圆锥的底面积是()A.3πcmZ;B.9πcmZ;C.16πcmZ;D.25πcmZ
3.如果圆锥的高为8cm,母线长为10cm,则它的侧面展开图的面积为_____
4.正方形ABCD的边长为2cm,以边AB所在直线为轴旋转一周,所得到的圆柱的侧面积为()m2
A.16πB.8πC.4πD.4
5.有一弓形钢板ACB,ACB的度数为120o,弧长为,现要用它剪出一个最大的圆形板料,则这一圆形板料的周长为
6.已知扇形的圆心角为120°,弧长为10π㎝,则这个扇形的半径为___cm
7.如图,阴影部分是某一广告标志,已知两圆弧所在圆的半径分别为
20cm,10cm、∠AOB=120㎝,求这个广告标志面的周长.
8.把一个用来盛爆米花的圆锥形纸杯沿母线剪开,可得一个半径为
24cm、圆心角为1180的扇形,求该纸杯的底面半径和高度(结果精确到0.1cm)
9.一个三角尺的两直角边分别为15cm和20cm,以它的斜边为旋转轴旋转这个三角尺便形成如图所示的旋转题体,求这个旋转体的全面积(取3.14)
10.如图,⊙A,⊙B,⊙C两两不相交,且它们的半径都是0.5cm,图中的三个扇形(即三个阴影部分)的面积之和是多少?
四:【课后小结】
布置作业地纲
教后记
九年级下册《圆锥的侧面积》学案
【教学目标】1、知道圆锥的母线高的概念及圆锥的侧面积计算公式;
2、会计算圆锥的侧面积;
3、经历探索圆锥侧面积计算公式的过程,发展学生的实践探索能力.
【教学重点】1、圆锥侧面积计算公式的推导过程;
2、应用公式解决问题.
【教学难点】经历探索圆锥侧面积计算公式.
【教学过程】:
一、情景创设
1、圆心角为60°的扇形的半径为10cm,求这个扇形的面积和周长.
2、扇形的圆心角为60°,它所对的弧长为2πcm,求这个扇形的半径.
3、我们已经知道圆锥的侧面展开图是一个扇形,那么怎样求圆锥的侧面展开图
的面积呢?
【设计意图】:以原有知识为基础,复习巩固旧知,引入本课内容.
二、探究学习:
1、多媒体演示:连接圆锥的顶点S和底面圆上任意一
点的线段SA、SA1……叫做圆锥的母线;
连接顶点S与底面圆的圆心O的线段叫做圆锥的高.
O
圆锥的底面半径、高线、母线长三者之间的关系:R2=r2+h2
2、探索圆锥中的各元素与它的侧面展开图——扇形的各元素之间的关系:
(1)学生动手观察圆锥侧面展开图
(2)归纳圆锥的侧面展开得到的扇形,设圆锥的底面半径为r,这个扇形的半径等于什么?扇形弧长等于什么?
3、探究圆锥侧面积和全面积计算公式.
【设计意图】:从实物出发,直观认识圆锥各相关概念.
4、基础练习
(1)已知圆锥的母线长为5cm,底面半径为3.6cm,则圆锥的侧面积为,全面积为.
(2)已知圆锥的母线长为10cm,高为6cm,则底面半径为,侧面积为,全面积为.
【设计意图】:通过以上练习使学生熟悉圆锥中各数量之间的运算关系,从而熟练掌握公式的应用.
5、典型例题
例1:制作如图所示的圆锥形铁皮烟囱帽,其尺寸要求为:底面直径80cm,母线长50cm,
(1)求烟囱帽铁皮的面积.(精确到1cm2)
(2)利用以上条件,你还能求出哪些量?
(3)变式训练:用面积为1000cm2的扇形铁皮围成一个母线长为50cm的圆锥形铁皮烟囱帽,求底面半径.
【设计意图】:通过以上例题及问题使学生进一步熟悉公式的应用以及实际问题中的近似值的取法.
A
例2、如图,一个直角三角形两直角边分别为4cm和3cm,以它的一直角边为轴旋转一周得到一个几何体,求这个几何体的表面积.
B
C
【设计意图】:通过以上例题让学生体会“面动成体”的原理,并体会数学
中的分类思想.
延伸与拓展:已知,在RtΔABC中,∠C=90゜,AB=13cm,BC=5cm
求以AB为轴旋转一周所得到的几何体的全面积.
三、归纳总结
1、圆锥的侧面积公式与全面积公式;
2、圆锥中的各元素与它的侧面展开图——扇形的各元素之间的关系.
四、作业
文章来源:http://m.jab88.com/j/75576.html
更多