一名爱岗敬业的教师要充分考虑学生的理解性,教师要准备好教案,这是教师的任务之一。教案可以让学生更好地进入课堂环境中来,让教师能够快速的解决各种教学问题。关于好的教案要怎么样去写呢?下面是小编为大家整理的“20xx高考物理大一轮复习:第9章-磁场(10份打包有课件)”,相信能对大家有所帮助。
第1节磁场的描述、磁场对电流的作用
一、磁场、磁感应强度
1.磁场
(1)基本性质:磁场对处于其中的磁体、电流和运动电荷有磁力的作用.
(2)方向:小磁针的N极所受磁场力的方向.
2.磁感应强度
(1)物理意义:描述磁场强弱和方向.
(2)定义式:B=FIL(通电导线垂直于磁场).
(3)方向:小磁针静止时N极的指向.
(4)单位:特斯拉,符号T.
二、磁感线及几种常见的磁场分布
1.磁感线
在磁场中画出一些曲线,使曲线上每一点的切线方向都跟这点的磁感应强度的方向一致.
2.几种常见的磁场
(1)条形磁铁和蹄形磁铁的磁场(如图所示)
(2)几种电流周围的磁场分布
直线电流的磁场通电螺线管的磁场环形电流的磁场
特点无磁极、非匀强且距导线越远处磁场越弱与条形磁铁的磁场相似,管内为匀强磁场且磁场最强,管外为非匀强磁场环形电流的两侧是N极和S极且离圆环中心越远,磁场越弱
安培定则
立体图
横截面图
纵截面图
(3)磁感线的特点
①磁感线上某点的切线方向就是该点的磁场方向.
②磁感线的疏密程度表示磁场强弱.
③磁感线是闭合曲线,没有起点和终点.在磁体外部,从N极指向S极,在磁体内部,从S极指向N极.
④磁感线是假想的曲线,不相交、不中断、不相切.
三、安培力的大小和方向
1.大小
(1)F=BILsinθ(其中θ为B与I之间的夹角)
(2)磁场和电流垂直时F=BIL.
(3)磁场和电流平行时F=0.
2.方向
(1)用左手定则判定:伸开左手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内;让磁感线从掌心进入,并使四指指向电流的方向,这时拇指所指的方向就是通电导线在磁场中所受安培力的方向.
(2)安培力的方向特点:F⊥B,F⊥I,即F垂直于B和I决定的平面.(注意:B和I可以有任意夹角)
[自我诊断]
1.判断正误
(1)小磁针N极受磁场力的方向就是该处磁感应强度的方向.(√)
(2)磁场中的一小段通电导体在该处受力为零,此处B一定为零.(×)
(3)由定义式B=FIL可知,电流强度I越大,导线L越长,某点的磁感应强度就越小.(×)
(4)磁感线是真实存在的.(×)
(5)通电线圈可等效成条形磁铁,它周围的磁感线起始于线圈一端,终止于线圈的另一端.(×)
(6)安培力的方向既跟磁感应强度方向垂直,又跟电流方向垂直.(√)
2.(多选)指南针是我国古代四大发明之一.关于指南针,下列说法正确的是()
A.指南针可以仅具有一个磁极
B.指南针能够指向南北,说明地球具有磁场
C.指南针的指向会受到附近铁块的干扰
D.在指南针正上方附近沿指针方向放置一直导线,导线通电时指南针不偏转
解析:选BC.指南针有N、S两个磁极,受到地磁场的作用静止时S极指向南方,A错误,B正确.指南针有磁性,可以与铁块相互吸引,C正确.由奥斯特实验可知,小磁针在通电导线放置位置合适的情况下,会发生偏转,D错误.
3.磁场中某区域的磁感线如图所示,则()
A.a、b两处的磁感应强度的大小不等,Ba>Bb
B.a、b两处的磁感应强度的大小不等,Ba<Bb
C.同一通电导线放在a处受力一定比放在b处受力大
D.同一通电导线放在a处受力一定比放在b处受力小
解析:选B.在磁场中,磁感线的疏密表示磁场的强弱,故Ba<Bb,A错误,B正确.同一通电导线如果都垂直放入磁场中,则在a处受力一定比b处受力小,但如果导线与磁场平行放置,受力均为0,故C、D均错误.
4.关于通电直导线在匀强磁场中所受的安培力,下列说法正确的是()
A.安培力的方向可以不垂直于直导线
B.安培力的方向总是垂直于磁场的方向
C.安培力的大小与通电直导线和磁场方向的夹角无关
D.将直导线从中点折成直角,安培力的大小一定变为原来的一半
解析:选B.根据左手定则,安培力垂直于电流和磁感应强度所组成的平面,A错误,B正确.由安培力公式F=BILsinθ(θ为B与I的夹角)可知,C错误.若在垂直于磁感应强度的平面内将直导线折成直角,其有效长度变为原来的22,安培力大小也变为原来的22,D错误.
考点一磁场的理解及安培定则
1.磁感应强度的三点理解
(1)磁感应强度由磁场本身决定,因此不能根据定义式B=FIL认为B与F成正比,与IL成反比.
(2)测量磁感应强度时小段通电导线必须垂直磁场放入,如果平行磁场放入,则所受安培力为零,但不能说该点的磁感应强度为零.
(3)磁感应强度是矢量,其方向为放入其中的小磁针N极的受力方向,也是小磁针静止时N极的指向.
2.安培定则的应用
在运用安培定则判定直线电流和环形电流的磁场时应分清“因”和“果”.
原因(电流方向)结果(磁场绕向)
直线电流的磁场大拇指四指
环形电流的磁场四指大拇指
3.磁场的叠加
磁感应强度是矢量,计算时与力的计算方法相同,利用平行四边形定则或正交分解法进行合成与分解.
◆特别提醒:两个电流附近的磁场的磁感应强度是由两个电流分别独立存在时产生的磁场在该处的磁感应强度叠加而成的.
1.指南针是我国古代四大发明之一.当指南针上方有一条水平放置的通电导线时,其N极指向变为如图实线小磁针所示.则对该导线电流的以下判断正确的是()
A.可能东西放置,通有由东向西的电流
B.可能东西放置,通有由西向东的电流
C.可能南北放置,通有由北向南的电流
D.可能南北放置,通有由南向北的电流
解析:选C.若导线东西放置,通有由东向西的电流,根据安培定则可知,小磁针所在处合磁场方向将在南北方向上,其不会出现题图所示情况,故选项A错误.若导线东西放置,通有由西向东的电流,根据安培定则可知,小磁针N极不偏转,故选项B错误.若导线南北放置,通有由北向南的电流时,根据安培定则可知,小磁针N极将顺时针偏转,可转向图中实线所示位置,故选项C正确.若导线南北放置,通有由南向北的电流,根据安培定则可知,小磁针N极将逆时针偏转,指向西北方,故选项D错误.
2.(20xx河北廊坊模拟)(多选)无限长通电直导线在周围某一点产生的磁场的磁感应强度B的大小与电流大小成正比,与导线到这一点的距离成反比,即B=kIr(式中k为常数).如图所示,两根相距L的无限长直导线分别通有电流I和3I.在两根导线的连线上有a、b两点,a点为两根直导线连线的中点,b点距电流为I的导线的距离为L.下列说法正确的是()
A.a点和b点的磁感应强度方向相同
B.a点和b点的磁感应强度方向相反
C.a点和b点的磁感应强度大小比为8∶1
D.a点和b点的磁感应强度大小比为16∶1
解析:选AD.根据右手螺旋定则,导线周围的磁场的磁感线,是围绕导线形成的同心圆,两导线在a处的磁感应强度方向都向下,则合磁感应强度方向向下;根据B=kIr,电流为3I导线在b处的磁感应强度方向向下,而电流为I导线在b处的磁感应强度方向向上,因电流为3I导线在b处产生的磁场较大,则合磁感应强度方向向下,因此a点和b点的磁感应强度方向相同,故A正确,B错误.
两导线在a处的磁感应强度大小B1=3kIL2+kIL2=k8IL;两导线在b处的磁感应强度大小B2=3kI2L-kIL=kI2L,则a点和b点的磁感应强度大小之比为16∶1,故C错误,D正确.
3.(20xx江西南昌调研)如图所示,M、N和P是以MN为直径的半圆弧上的三点,O为半圆弧的圆心,∠MOP=60°,在M、N处各有一条长直导线垂直穿过纸面,导线中通有大小相等的恒定电流,方向如图所示,这时O点的磁感应强度大小为B1.若将M处长直导线移至P处,则O点的磁感应强度大小为B2,那么B2与B1之比为()
A.3∶1B.3∶2
C.1∶1D.1∶2
解析:选B.如图所示,当通有电流的长直导线在M、N两处时,根据安培定则,可知:二者在圆心O处产生的磁感应强度都为B1/2;当将M处长直导线移到P处时,两直导线在圆心O处产生的磁感应强度也为B1/2,做平行四边形,由图中的几何关系,可得B2B1=B22B12=cos30°=32,故选项B正确.
4.(20xx湖北三市六校联考)如图甲所示,无限长导线均通以恒定电流I.直线部分和坐标轴接近重合,弯曲部分是以坐标原点O为圆心的相同半径的一段圆弧,已知直线部分在原点O处不形成磁场,则图乙中O处磁感应强度和图甲中O处磁感应强度相同的是()
解析:选A.由题意可知,图甲中O处磁感应强度的大小是其中一段在O点产生的磁感应强度大小的2倍,方向垂直纸面向里;图A中,根据安培定则可知,左上段与右下段的通电导线产生的磁场叠加为零,则剩余的两段通电导线产生的磁感应强度大小是其中一段在O点的磁感应强度的2倍,且方向垂直纸面向里,故A正确;同理,图B中,四段通电导线在O点产生的磁感应强度是其中一段在O点产生的磁感应强度的4倍,方向垂直纸面向里,故B错误;图C中,右上段与左下段产生磁场叠加为零,则剩余两段产生磁感应强度大小是其中一段在O点产生磁感应强度的2倍,方向垂直纸面向外,故C错误;图D中,四段在O点产生的磁感应强度是其中一段在O点产生磁感应强度的2倍,方向垂直纸面向外,故D错误.
磁感应强度叠加三步骤
空间中的磁场通常会是多个磁场的叠加,磁感应强度是矢量,可以通过平行四边形定则进行计算或判断.其步骤如下:
(1)确定场源,如通电导线.
(2)定位空间中需求解磁场的点,利用安培定则判定各个场源在这一点上产生的磁场的大小和方向.如图中M、N在c点产生的磁场.
(3)应用平行四边形定则进行合成,如图中的合磁场B.
考点二安培力作用下的平衡与加速问题
1.分析导体在磁场中平衡和加速问题的思路
(1)确定要研究的导体.
(2)按照已知力→重力→安培力→弹力→摩擦力的顺序,对导体受力分析.
(3)分析导体的运动情况.
(4)根据平衡条件或牛顿第二定律列式求解.
2.受力分析的注意事项
(1)安培力的方向特点:F⊥B,F⊥I,即F垂直于B和I决定的平面.
(2)安培力的大小:应用公式F=BILsinθ计算弯曲导线在匀强磁场中所受安培力的大小时,有效长度L等于曲线两端点的直线长度.
(3)视图转换:对于安培力作用下的力学问题,导体棒的受力往往分布在三维空间的不同方向上,这时应利用俯视图、剖面图或侧视图等,变立体图为二维平面图.
考向1:安培力作用下静态平衡问题
通电导体在磁场中受安培力和其它力作用而处于静止状态,可根据磁场方向、电流方向结合左手定则判断安培力方向.
[典例1](20xx广东广州三模)(多选)如图所示,质量为m、长度为L的直导线用两绝缘细线悬挂于O、O′,并处于匀强磁场中,当导线中通以沿x正方向的电流I,且导线保持静止时悬线与竖直方向夹角为θ.磁感应强度方向和大小可能为()
A.z正向,mgILtanθ
B.y正向,mgIL
C.z负向,mgILtanθ
D.沿悬线向上,mgILsinθ
解析本题要注意在受力分析时把立体图变成侧视平面图,然后通过平衡状态的受力分析来确定B的方向和大小.若B沿z正向,则从O向O′看,导线受到的安培力F=ILB,方向水平向左,如图甲所示,导线无法平衡,A错误.
若B沿y正向,导线受到的安培力竖直向上,如图乙所示.当FT=0,且满足ILB=mg,即B=mgIL时,导线可以平衡,B正确.
若B沿z负向,导线受到的安培力水平向右,如图丙所示.若满足FTsinθ=ILB,FTcosθ=mg,即B=mgtanθIL,导线可以平衡,C正确.若B沿悬线向上,导线受到的安培力左斜下方向,如图丁所示,导线无法平衡,D错误.
答案BC
考向2:安培力作用下动态平衡问题
此类题目是平衡问题,只是由于磁场大小或方向、电流大小或方向的变化造成安培力变化,与力学中某个力的变化类似的情景.
[典例2](20xx陕西西安模拟)如图所示,长为L的通电直导体棒放在光滑水平绝缘轨道上,劲度系数为k的水平轻弹簧一端固定,另一端拴在棒的中点,且与棒垂直,整个装置处于方向竖直向上、磁感应强度为B的匀强磁场中,弹簧伸长x时,棒处于静止状态.则()
A.导体棒中的电流方向从b流向a
B.导体棒中的电流大小为kxBL
C.若只将磁场方向缓慢顺时针转过一小角度,x变大
D.若只将磁场方向缓慢逆时针转过一小角度,x变大
解析由受力平衡可知安培力方向水平向右,由左手定则可知,导体棒中的电流方向从a流向b,故A错误;由于弹簧伸长为x,根据胡克定律有kx=BIL,可得I=kxBL,故B正确;若只将磁场方向缓慢顺时针或逆时针转过一小角度,则安培力在水平方向上的分力减小,根据力的平衡可得,弹簧弹力变小,导致x变小,故C、D错误.
答案B
考向3:安培力作用下加速问题
此类题目是导体棒在安培力和其它力作用下合力不再为零,而使导体棒产生加速度,根据受力特点结合牛顿第二定律解题是常用方法.
[典例3]如图所示,PQ和MN为水平平行放置的金属导轨,相距1m,导体棒ab跨放在导轨上,棒的质量为m=0.2kg,棒的中点用细绳经滑轮与物体相连,物体的质量M=0.3kg,棒与导轨的动摩擦因数为μ=0.5,匀强磁场的磁感应强度B=2T,方向竖直向下,为了使物体以加速度a=3m/s2加速上升,应在棒中通入多大的电流?方向如何?(g=10m/s2)
解析导体棒所受的最大静摩擦力大小为
fm=0.5mg=1N
M的重力为G=Mg=3N
要使物体加速上升,则安培力方向必须水平向左,则根据左手定则判断得知棒中电流的方向为由a到b.
根据受力分析,由牛顿第二定律有
F安-G-fm=(m+M)a
F安=BIL
联立得I=2.75A
答案2.75A方向由a→b
安培力作用下导体的分析技巧
(1)安培力作用下导体的平衡问题与力学中的平衡问题分析方法相同,只不过多了安培力,解题的关键是画出受力分析示意图.
(2)安培力作用下导体的加速问题与动力学问题分析方法相同,关键是做好受力分析,然后根据牛顿第二定律求出加速度.
考点三磁场中导体运动方向的判断
1.判定通电导体运动或运动趋势的思路
研究对象:通电导线或导体――→明确导体所在位置的磁场分布情况――→利用左手定则
导体的受力情况――→确定导体的运动方向或运动趋势的方向
2.几种判定方法
电流元法分割为电流元――→左手定则安培力方向―→整段导体所受合力方向―→运动方向
特殊位置法在特殊位置―→安培力方向―→运动方向
等效法环形电流??小磁针
条形磁铁??通电螺线管??多个环形电流
结论法同向电流互相吸引,异向电流互相排斥;两不平行的直线电流相互作用时,有转到平行且电流方向相同的趋势
转换研究对象法定性分析磁体在电流磁场作用下如何运动或运动趋势的问题,可先分析电流在磁体磁场中所受的安培力,然后由牛顿第三定律,确定磁体所受电流磁场的作用力,从而确定磁体所受合力及运动方向
1.一个可以自由运动的线圈L1和一个固定的线圈L2互相绝缘垂直放置,且两个线圈的圆心重合,如图所示.当两线圈中通以图示方向的电流时,从左向右看,线圈L1将()
A.不动
B.顺时针转动
C.逆时针转动
D.在纸面内平动
解析:选B.方法一(电流元法)把线圈L1沿水平转动轴分成上下两部分,每一部分又可以看成无数段直线电流元,电流元处在L2产生的磁场中,根据安培定则可知各电流元所在处的磁场方向向上,由左手定则可得,上半部分电流元所受安培力均指向纸外,下半部分电流元所受安培力均指向纸内,因此从左向右看线圈L1将顺时针转动.
方法二(等效法)把线圈L1等效为小磁针,该小磁针刚好处于环形电流I2的中心,小磁针的N极应指向该点环形电流I2的磁场方向,由安培定则知I2产生的磁场方向在其中心处竖直向上,而L1等效成小磁针后,转动前,N极指向纸内,因此小磁针的N极应由指向纸内转为向上,所以从左向右看,线圈L1将顺时针转动.
方法三(结论法)环形电流I1、I2之间不平行,则必有相对转动,直到两环形电流同向平行为止.据此可得,从左向右看,线圈L1将顺时针转动.
2.如图所示,蹄形磁铁用柔软的细绳悬吊在天花板上,在磁铁两极的正下方固定着一根水平直导线,当直导线中通以向右的电流时()
A.磁铁的N极向纸外、S极向纸内转动,绳子对磁铁的拉力减小
B.磁铁的S极向纸外、N极向纸内转动,绳子对磁铁的拉力减小
C.磁铁的N极向纸外、S极向纸内转动,绳子对磁铁的拉力增大
D.磁铁的S极向纸外、N极向纸内转动,绳子对磁铁的拉力增大
解析:选C.假设磁铁不动,导线运动,根据安培定则可知,通电导线左边的磁场斜向下,而右边的磁场斜向上,那么在导线两侧取两小段,根据左手定则可知,左边一小段所受安培力的方向垂直纸面向里,右侧一小段所受安培力的方向垂直纸面向外,从上往下看,导线顺时针转动.如今导线不动,磁铁运动,根据相对运动,则知磁铁逆时针转动(从上向下看),即N极向纸外转动,S极向纸内转动.当转动90°时,导线所受的安培力方向竖直向上,根据牛顿第三定律可得磁铁受到导线向下的作用力,故绳子对磁铁的拉力增大,C正确.
判断磁场中导体运动趋势的两点注意
(1)应用左手定则判定安培力方向时,磁感线穿入手心,大拇指一定要与磁感线方向垂直,四指与电流方向一致但不一定与磁感线方向垂直,这是因为:F一定与B垂直,I不一定与B垂直.
(2)导体与导体之间、磁体与磁体之间、磁体与导体之间的作用力和其他作用力一样具有相互性,满足牛顿第三定律.
课时规范训练
[基础巩固题组]
1.中国宋代科学家沈括在《梦溪笔谈》中最早记载了地磁偏角:“以磁石磨针锋,则能指南,然常微偏东,不全南也.”进一步研究表明,地球周围地磁场的磁感线分布示意如图.结合上述材料,下列说法不正确的是()
A.地理南、北极与地磁场的南、北极不重合
B.地球内部也存在磁场,地磁南极在地理北极附近
C.地球表面任意位置的地磁场方向都与地面平行
D.地磁场对射向地球赤道的带电宇宙射线粒子有力的作用
解析:选C.由题意可知,地理南、北极与地磁场的南、北极不重合,存在磁偏角,A正确.磁感线是闭合的,再由图可推知地球内部存在磁场,地磁南极在地理北极附近,故B正确.只有赤道上方附近的磁感线与地面平行,故C错误.射向地球赤道的带电宇宙射线粒子的运动方向与地磁场方向不平行,故地磁场对其有力的作用,这是磁场的基本性质,故D正确.
2.三根平行的长直导体棒分别过正三角形ABC的三个顶点,并与该三角形所在平面垂直,各导体棒中均通有大小相等的电流,方向如图所示.则三角形的中心O处的合磁场方向为()
A.平行于AB,由A指向B
B.平行于BC,由B指向C
C.平行于CA,由C指向A
D.由O指向C
解析:选A.如图所示,由右手螺旋定则可知,导体A中电流在O点产生的磁场的磁感应强度方向平行BC,同理,可知导线B、C中电流在O点产生的磁场的磁感应强度的方向分别平行于AC、AB,又由于三根导线中电流大小相等,到O点的距离相等,则它们在O点处产生的磁场的磁感应强度大小相等,再由平行四边形定则,可得O处的合磁场方向为平行于AB,由A指向B,故选项A正确.
3.如图所示,AC是一个用长为L的导线弯成的、以O为圆心的四分之一圆弧,将其放置在与平面AOC垂直的磁感应强度为B的匀强磁场中.当在该导线中通以由C到A,大小为I的恒定电流时,该导线受到的安培力的大小和方向是()
A.BIL,平行于OC向左
B.22BILπ,垂直于AC的连线指向左下方
C.22BILπ,平行于OC向右
D.22BIL,垂直于AC的连线指向左下方
解析:选B.直导线折成半径为R的14圆弧形状,在磁场中的有效长度为2R,又因为L=14×2πR,则安培力F=BI2R=22BILπ.安培力的方向与有效长度的直线AC垂直,根据左手定则可知,安培力的方向垂直于AC的连线指向左下方,B正确.
4.如图所示,用粗细均匀的电阻丝折成平面梯形框架abcd.其中ab、cd边与ad边夹角均为60°,ab=bc=cd=L,长度为L的电阻丝电阻为R0,框架与一电动势为E、内阻r=R0的电源相连接,垂直于框架平面有磁感应强度为B的匀强磁场,则梯形框架abcd受到的安培力的大小为()
A.0B.5BEL11R0
C.10BEL11R0D.BELR0
解析:选C.并联部分的总电阻为R并=3R02R03R0+2R0=65R0,电路中的总电流I=ER并+r,所以线框受到的合外力F=BI2L=10BEL11R0,C正确.
5.如图所示,接通开关S的瞬间,用丝线悬挂于一点、可自由转动的通电直导线AB将()
A.A端向上,B端向下,悬线张力不变
B.A端向下,B端向上,悬线张力不变
C.A端向纸外,B端向纸内,悬线张力变小
D.A端向纸内,B端向纸外,悬线张力变大
解析:选D.当开关S接通时,由安培定则知导线附近磁感线分布如图,由左手定则判断出通电直导线此时左部受力指向纸内,右部受力指向纸外,导线将转动,转到与磁感线接近垂直时,导线转动的同时,相当于具有向里的电流,则导线受安培力将竖直向下,可知悬线张力变大,故选项D正确.
6.电磁炮是一种理想的兵器,它的主要原理如图所示,利用这种装置可以把质量为m=2.0g的弹体(包括金属杆EF的质量)加速到6km/s.若这种装置的轨道宽d=2m、长L=100m、电流I=10A、轨道摩擦不计且金属杆EF与轨道始终垂直并接触良好,则下列有关轨道间所加匀强磁场的磁感应强度和磁场力的最大功率结果正确的是()
A.B=18T,Pm=1.08×108W
B.B=0.6T,Pm=7.2×104W
C.B=0.6T,Pm=3.6×106W
D.B=18T,Pm=2.16×106W
解析:选D.通电金属杆在磁场中受安培力的作用而对弹体加速,由功能关系得BIdL=12mv2m,代入数值解得B=18T;当速度最大时磁场力的功率也最大,即Pm=BIdvm,代入数值得Pm=2.16×106W,故选项D正确.
[综合应用题组]
7.质量为m、长为L的直导体棒放置于四分之一光滑圆弧轨道上,整个装置处于竖直向上磁感应强度为B的匀强磁场中,直导体棒中通有恒定电流,平衡时导体棒与圆弧圆心的连线与竖直方向成60°角,其截面图如图所示.则下列关于导体棒中电流的分析正确的是()
A.导体棒中电流垂直纸面向外,大小为I=3mgBL
B.导体棒中电流垂直纸面向外,大小为I=3mg3BL
C.导体棒中电流垂直纸面向里,大小为I=3mgBL
D.导体棒中电流垂直纸面向里,大小为I=3mg3BL
解析:选C.根据左手定则可知,不管电流方向向里还是向外,安培力的方向只能沿水平方向,再结合导体棒的平衡条件可知,安培力只能水平向右,据此可判断出,导体棒中的电流垂直纸面向里,对导体棒受力分析如图所示,并根据平衡条件可知,F=mgtan60°,又安培力为F=BIL,联立可解得I=3mgBL,故选项C正确.
8.如图所示,两平行光滑金属导轨固定在绝缘斜面上,导轨间距为L,劲度系数为k的轻质弹簧上端固定,下端与水平直导体棒ab相连,弹簧与导轨平面平行并与ab垂直,直导体棒垂直跨接在两导轨上,空间存在垂直导轨平面斜向上的匀强磁场.闭合开关K后导体棒中的电流为I,导体棒平衡时,弹簧伸长量为x1;调转图中电源极性,使导体棒中电流反向,导体棒中电流仍为I,导体棒平衡时弹簧伸长量为x2.忽略回路中电流产生的磁场,则匀强磁场的磁感应强度B的大小为()
A.kIL(x1+x2)B.kIL(x2-x1)
C.k2IL(x2+x1)D.k2IL(x2-x1)
解析:选D.由平衡条件可得mgsinα=kx1+BIL;调转图中电源极性使导体棒中电流反向,由平衡条件可得mgsinα+BIL=kx2,联立解得B=k2IL(x2-x1).选项D正确.
9.(多选)如右图所示,在倾角为α的光滑斜面上,垂直斜面放置一根长为L、质量为m的直导体棒,当通以图示方向电流I时,欲使导体棒静止在斜面上,可加一平行于纸面的匀强磁场,当外加匀强磁场的磁感应强度B的方向由垂直斜面向上沿逆时针方向转至水平向左的过程中,下列说法中正确的是()
A.此过程中磁感应强度B逐渐增大
B.此过程中磁感应强度B先减小后增大
C.此过程中磁感应强度B的最小值为mgsinαIL
D.此过程中磁感应强度B的最大值为mgtanαIL
解析:选AC.导体棒受重力、支持力、安培力作用而处于平衡状态,当外加匀强磁场的磁感应强度B的方向由垂直斜面向上沿逆时针方向转至水平向左的过程中,安培力由沿斜面向上转至竖直向上,导体棒受力的动态变化如图所示,则由图知安培力逐渐增大,即此过程中磁感应强度B逐渐增大,A对、B错;刚开始安培力F最小,有sinα=Fmg,所以此过程中磁感应强度B的最小值为mgsinαIL,C对;最后安培力最大,有F=mg,即此过程中磁感应强度B的最大值为mgIL,D错.
10.如图所示,一长为10cm的金属棒ab用两个完全相同的弹簧水平地悬挂在匀强磁场中;磁场的磁感应强度大小为0.1T,方向垂直于纸面向里;弹簧上端固定,下端与金属棒绝缘,金属棒通过开关与一电动势为12V的电池相连,电路总电阻为2Ω.已知开关断开时两弹簧的伸长量均为0.5cm;闭合开关,系统重新平衡后,两弹簧的伸长量与开关断开时相比均改变了0.3cm.重力加速度的大小取10m/s2.判断开关闭合后金属棒所受安培力的方向,并求出金属棒的质量.
解析:金属棒通电后,闭合回路电流I=ER=122A=6A
导体棒受到的安培力大小为F=BIL=0.06N.
开关闭合后,电流方向为从b到a,由左手定则可判断知金属棒受到的安培力方向竖直向下
由平衡条件知:开关闭合前:
2kx=mg
开关闭合后:2k(x+Δx)=mg+F
代入数值解得m=0.01kg.
答案:方向竖直向下0.01kg
11.某同学用图中所给器材进行与安培力有关的实验.两根金属导轨ab和a1b1固定在同一水平面内且相互平行,足够大的电磁铁(未画出)的N极位于两导轨的正上方,S极位于两导轨的正下方,一金属棒置于导轨上且与两导轨垂直.
(1)在图中画出连线,完成实验电路.要求滑动变阻器以限流方式接入电路,且在开关闭合后,金属棒沿箭头所示的方向移动.
(2)为使金属棒在离开导轨时具有更大的速度,有人提出以下建议:
A.适当增加两导轨间的距离
B.换一根更长的金属棒
C.适当增大金属棒中的电流
其中正确的是________(填入正确选项前的标号).
解析:(1)由于磁场方向竖直向下,要使金属棒的运动如图所示,则金属棒中电流由里向外,滑动变阻器用限流接法,实物图连接如图所示.
(2)为使金属棒离开时速度较大,由动能定理知BILx=12mv2,v=2BILxm,适当增大两导轨间的距离,可以增大v,适当增大金属棒的电流可以增大v,换一根更长的金属棒,增大了质量,v变小,因此A、C正确.
答案:(1)图见解析(2)AC
12.载流长直导线周围磁场的磁感应强度大小为B=kI/r,式中常量k0,I为电流强度,r为距导线的距离.在水平长直导线MN正下方,矩形线圈abcd通以逆时针方向的恒定电流,被两根等长的轻质绝缘细线静止地悬挂,如图所示.开始时MN内不通电流,此时两细线内的张力均为T0.当MN通以强度为I1的电流时,两细线内的张力均减小为T1;当MN内的电流强度变为I2时,两细线的张力均大于T0.
(1)分别指出强度为I1、I2的电流的方向;
(2)求MN分别通以强度为I1和I2电流时,线框受到的安培力F1与F2大小之比;
(3)当MN内的电流强度为I3时两细线恰好断裂,在此瞬间线圈的加速度大小为a,求I3.
解析:(1)由题意知,当MN通以电流I1时,线圈受到的安培力向上,根据左手定则、安培定则可以判断I1的方向向左,当MN通以电流I2时,线圈受到的安培力应向下,同理,可以判断I2的方向向右.
(2)当MN中的电流为I时,线圈受到的安培力大小为
F=kIiL1r1-1r2
式中r1、r2分别为ab、cd与MN的间距,i为线圈中的电流,L为ab、cd的长度.
所以F1F2=I1I2
(3)设MN中电流为I3时,线圈所受安培力为F3,由题设条件有2T0=mg,2T1+F1=mg,F3+mg=ma,I1I3=F1F3,由以上各式得I3=T0a-gT0-T1gI1
答案:(1)I1方向向左,I2方向向右(2)F1F2=I1I2
(3)T0a-gT0-T1gI1
第2节磁场对运动电荷的作用
一、洛伦兹力
1.定义:运动电荷在磁场中所受的力.
2.大小
(1)v∥B时,F=0.
(2)v⊥B时,F=qvB.
(3)v与B夹角为θ时,F=qvBsin_θ.
3.方向
(1)判定方法:应用左手定则,注意四指应指向正电荷运动方向或负电荷运动的反方向.
(2)方向特点:F⊥B,F⊥v.即F垂直于B、v决定的平面.(注意B和v可以有任意夹角).
由于F始终垂直于v的方向,故洛伦兹力永不做功.
二、带电粒子在磁场中的运动
1.若v∥B,带电粒子以入射速度v做匀速直线运动.
2.若v⊥B,带电粒子在垂直于磁感线的平面内,以入射速度v做匀速圆周运动.
3.基本公式
(1)向心力公式:qvB=mv2r.
(2)轨道半径公式:r=mvBq.
(3)周期公式:T=2πrv=2πmqB.
f=1T=Bq2πm.
ω=2πT=2πf=Bqm.
三、洛伦兹力的应用实例
1.回旋加速器
(1)构造:如图所示,D1、D2是半圆形金属盒,D形盒的缝隙处接交流电源.D形盒处于匀强磁场中.
(2)原理:交变电流的周期和粒子
做圆周运动的周期相等,粒子在圆周运动的过程中一次一次地经过D形盒缝隙,两盒间的电势差一次一次地反向,粒子就会被一次一次地加速.由qvB=mv2R,得Ekm=q2B2R22m,可见粒子获得的最大动能由磁感应强度B和D形盒半径R决定,与加速电压无关.
2.质谱仪
(1)构造:如图所示,由粒子源、加速电场、偏转磁场和照相底片等组成.
(2)原理:粒子由静止在加速电场中被加速,根据动能定理qU=12mv2可知进入磁场的速度v=2qUm.粒子在磁场中受洛伦兹力偏转,做匀速圆周运动,根据牛顿第二定律,qvB=mv2r.由以上几式可得出需要研究的物理量如粒子轨道半径、粒子质量、比荷等.
[自我诊断]
1.判断正误
(1)洛伦兹力和安培力的方向都与磁场方向垂直.(√)
(2)粒子在只受到洛伦兹力作用时运动的动能不变.(√)
(3)运动电荷进入磁场后(无其他力作用)可能做匀速直线运动.(√)
(4)洛伦兹力可以做正功、做负功或不做功.(×)
(5)带电粒子在匀强磁场中做匀速圆周运动的周期与速度的大小无关.(√)
(6)带电粒子在匀强磁场中做匀速圆周运动的半径与粒子的比荷成正比.(×)
(7)经回旋加速器加速的带电粒子的最大初动能由D形盒的最大半径决定,与加速电压无关.(√)
(8)质谱仪只能区分电荷量不同的粒子.(×)
2.如图所示,电子枪射出的电子束进入示波管,在示波管正下方有竖直放置的通电环形导线,则示波管中的电子束将()
A.向上偏转
B.向下偏转
C.向纸外偏转
D.向纸里偏转
解析:选A.由安培定则知,环形导线在示波管处产生的磁场方向垂直于纸面向外,由左手定则可判断,电子受到的洛伦兹力方向向上,A正确.
3.如图,MN为铝质薄平板,铝板上方和下方分别有垂直于图平面的匀强磁场(未画出).一带电粒子从紧贴铝板上表面的P点垂直于铝板向上射出,从Q点穿越铝板后到达PQ的中点O.已知粒子穿越铝板时,其动能损失一半,速度方向和电荷量不变.不计重力.铝板上方和下方的磁感应强度大小之比为()
A.2B.2
C.1D.22
解析:选D.根据洛伦兹力提供向心力得qvB=mv2R,粒子的动能Ek=12mv2,由此得磁感应强度B1=2mEkqR,结合题意知动能和半径都减小为原来的一半,则磁感应强度B2=2m12Ekq12R,故B1B2=22,故D正确.
4.(多选)图为某磁谱仪部分构件的示意图.图中,永磁铁提供匀强磁场,硅微条径迹探测器可以探测粒子在其中运动的轨迹.宇宙射线中有大量的电子、正电子和质子.当这些粒子从上部垂直进入磁场时,下列说法正确的是()
A.电子与正电子的偏转方向一定不同
B.电子与正电子在磁场中运动轨迹的半径一定相同
C.仅依据粒子运动轨迹无法判断该粒子是质子还是正电子
D.粒子的动能越大,它在磁场中运动轨迹的半径越小
解析:选AC.电子、正电子和质子垂直进入磁场时,所受的重力均可忽略,受到的洛伦兹力方向与其电性有关,由左手定则可知A正确;由轨迹半径R=mvqB知,若电子与正电子进入磁场时的速度不同,则其运动的轨迹半径也不相同,故B错误;由R=mvqB=2mEkqB知D错误;因为质子和正电子的速度未知,半径关系不确定,故依据粒子运动轨迹无法判断该粒子是质子还是正电子,C正确.
考点一对洛伦兹力的理解
1.洛伦兹力的特点
(1)洛伦兹力的方向总是垂直于运动电荷速度方向和磁场方向确定的平面.
(2)当电荷运动方向发生变化时,洛伦兹力的方向也随之变化.
(3)洛伦兹力一定不做功.
2.洛伦兹力与安培力的联系及区别
(1)安培力是洛伦兹力的宏观表现,二者是相同性质的力,都是磁场力.
(2)安培力可以做功,而洛伦兹力对运动电荷不做功.
3.洛伦兹力与电场力的比较
1.下列关于洛伦兹力的说法中,正确的是()
A.只要速度大小相同,所受洛伦兹力就相同
B.如果把+q改为-q,且速度反向,大小不变,则洛伦兹力的大小、方向均不变
C.洛伦兹力方向一定与电荷速度方向垂直,磁场方向一定与电荷运动方向垂直
D.粒子在只受到洛伦兹力作用下运动的动能、速度均不变
解析:选B.因为洛伦兹力的大小不但与粒子速度大小有关,而且与粒子速度的方向有关,如当粒子速度与磁场垂直时F=qvB,当粒子速度与磁场平行时F=0.又由于洛伦兹力的方向永远与粒子的速度方向垂直,因而速度方向不同时,洛伦兹力的方向也不同,所以A选项错.因为+q改为-q且速度反向,由左手定则可知洛伦兹力方向不变,再由F=qvB知大小也不变,所以B选项正确.因为电荷进入磁场时的速度方向可以与磁场方向成任意夹角,所以C选项错.因为洛伦兹力总与速度方向垂直,因此,洛伦兹力不做功,粒子动能不变,但洛伦兹力可改变粒子的运动方向,使粒子速度的方向不断改变,所以D选项错.
2.(多选)如图所示,两根长直导线竖直插入光滑绝缘水平桌面上的M、N两小孔中,O为M、N连线的中点,连线上a、b两点关于O点对称.导线均通有大小相等、方向向上的电流.已知长直导线周围产生的磁场的磁感应强度B=kIr,式中k是常数,I是导线中的电流,r为对应点到导线的距离.一带正电的小球以初速度v0从a点出发沿MN连线运动到b点.关于上述过程,下列说法正确的是()
A.小球先做加速运动后做减速运动
B.小球一直做匀速直线运动
C.小球对桌面的压力先减小后增大
D.小球对桌面的压力一直在增大
解析:选BD.由右手螺旋定则可知,M处的通电导线在MO区域产生的磁场垂直于MO向里,离导线越远磁场越弱,所以磁场由M到O逐渐减弱;N处的通电导线在ON区域产生的磁场垂直于ON向外,由O到N逐渐增强,带正电的小球由a点沿连线MN运动到b点,受到的洛伦兹力F=Bqv为变力,则从M到O洛伦兹力的方向向上,随磁场的减弱而减小,从O到N洛伦兹力的方向向下,随磁场的增强而增大,所以对桌面的压力一直在增大,D正确,C错误;由于桌面光滑,洛伦兹力始终沿竖直方向,所以小球在水平方向上不受力,做匀速直线运动,B正确、A错误.
3.(20xx河南开封四校二联)如图所示,某空间存在正交的匀强磁场和匀强电场,电场方向水平向右,磁场方向垂直纸面向里,一带电微粒由a点进入电磁场并刚好能沿ab直线向上运动.下列说法中正确的是()
A.微粒一定带负电
B.微粒的动能一定减小
C.微粒的电势能一定增加
D.微粒的机械能不变
解析:选A.对该微粒进行受力分析得:它受到竖直向下的重力、水平方向的电场力和垂直速度方向的洛伦兹力,其中重力和电场力是恒力,由于粒子沿直线运动,则可以判断出其受到的洛伦兹力也是恒定的,即该粒子是做匀速直线运动,动能不变,所以B项错误;如果该微粒带正电,则受到向右的电场力和向左下方的洛伦兹力,所以微粒受到的力不会平衡,故该微粒一定带负电,A项正确;该微粒带负电,向左上方运动,所以电场力做正功,电势能一定是减小的,C项错误;因为重力势能增加,动能不变,所以该微粒的机械能增加,D项错误.
理解洛伦兹力的四点注意
(1)正确分析带电粒子所在区域的合磁场方向.
(2)判断洛伦兹力方向时,特别区分电荷的正、负,并充分利用F⊥B、F⊥v的特点.
(3)计算洛伦兹力大小时,公式F=qvB中,v是电荷与磁场的相对速度.
(4)洛伦兹力对运动电荷(或带电体)不做功、不改变速度的大小,但它可改变运动电荷(或带电体)速度的方向,影响带电体所受其他力的大小,影响带电体的运动时间等.
考点二带电粒子在匀强磁场中的运动
1.带电粒子在匀强磁场中运动圆心、半径及时间的确定方法.
(1)圆心的确定
①已知入射点、出射点、入射方向和出射方向时,可通过入射点和出射点分别作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图甲所示,P为入射点,M为出射点).
②已知入射方向、入射点和出射点的位置时,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨迹的圆心(如图乙所示,P为入射点,M为出射点).
(2)半径的确定
可利用物理学公式或几何知识(勾股定理、三角函数等)求出半径大小.
(3)运动时间的确定
粒子在磁场中运动一周的时间为T,当粒子运动的圆弧所对应的圆心角为θ时,其运动时间表示为:t=θ2πT(或t=θRv).
2.重要推论
(1)当速度v一定时,弧长(或弦长)越长,圆心角越大,则带电粒子在有界磁场中运动的时间越长.
(2)当速率v变化时,圆心角大的运动时间长.
考向1:圆形磁场区域
(1)圆形边界中,若带电粒子沿径向射入必沿径向射出,如图所示,轨迹圆与区域圆形成相交圆,巧用几何关系解决.
(2)带电粒子在圆形磁场中不沿径向,轨迹圆与区域圆相交,抓住两圆心,巧用对称性解决.
[典例1](20xx湖南师大附中月考)(多选)如图所示,以O为圆心、MN为直径的圆的左半部分内有垂直纸面向里的匀强磁场,三个不计重力、质量相同、带电荷量相同的带正电粒子a、b和c以相同的速率分别沿aO、bO和cO方向垂直于磁场射入磁场区域,已知bO垂直MN,aO、cO与bO的夹角都为30°,a、b、c三个粒子从射入磁场到射出磁场所用时间分别为ta、tb、tc,则下列给出的时间关系可能正确的是()
A.ta<tb<tcB.ta>tb>tc
C.ta=tb<tcD.ta=tb=tc
解析粒子带正电,偏转方向如图所示,粒子在磁场中的运动周期相同,在磁场中运动的时间t=θ2πT,故粒子在磁场中运动对应的圆心角越大,运动时间越长.设粒子的运动半径为r,圆形区域半径为R,当粒子a恰好从M点射出磁场时,r=13R,当粒子b恰好从M点射出磁场时,r=R,如图甲所示,ta<tb=tc.当rR时,粒子a对应的圆心角最小,c对应的圆心角最大,tctbta;当r≤13R,轨迹如图乙所示,ta=tb=tc.同理,13Rr≤R时,tatb=tc.A、D正确.
答案AD
[典例2](20xx高考全国甲卷)一圆筒处于磁感应强度大小为B的匀强磁场中,磁场方向与筒的轴平行,筒的横截面如图所示.图中直径MN的两端分别开有小孔,筒绕其中心轴以角速度ω顺时针转动.在该截面内,一带电粒子从小孔M射入筒内,射入时的运动方向与MN成30°角.当筒转过90°时,该粒子恰好从小孔N飞出圆筒.不计重力.若粒子在筒内未与筒壁发生碰撞,则带电粒子的比荷为()
A.ω3BB.ω2B
C.ωBD.2ωB
解析如图所示,粒子在磁场中做匀速圆周运动,圆弧所对应的圆心角由几何知识知为30°,则π2ω=2πmqB30°360°,即qm=ω3B,选项A正确.
答案A
考向2:直线边界(进、出磁场具有对称性,如图所示)
[典例3](多选)如图,两个初速度大小相同的同种离子a和b,从O点沿垂直磁场方向进入匀强磁场,最后打到屏P上,不计重力,下列说法正确的有()
A.a、b均带正电
B.a在磁场中飞行的时间比b的短
C.a在磁场中飞行的路程比b的短
D.a在P上的落点与O点的距离比b的近
解析a、b粒子做圆周运动的半径都为R=mvqB,画出轨迹如图所示,圆O1、O2分别为b、a的轨迹,a在磁场中转过的圆心角大,由t=θ2πT=θmqB和轨迹图可知A、D选项正确.
答案AD
考向3:平行边界(存在临界条件,如图所示)
[典例4](20xx湖南长沙模拟)如图所示,一个理想边界为PQ、MN的匀强磁场区域,磁场宽度为d,方向垂直纸面向里.一电子从O点沿纸面垂直PQ以速度v0进入磁场.若电子在磁场中运动的轨道半径为2d.O′在MN上,且OO′与MN垂直.下列判断正确的是()
A.电子将向右偏转
B.电子打在MN上的点与O′点的距离为d
C.电子打在MN上的点与O′点的距离为3d
D.电子在磁场中运动的时间为πd3v0
解析电子带负电,进入磁场后,根据左手定则判断可知,所受的洛伦兹力方向向左,电子将向左偏转,如图所示,A错误;设电子打在MN上的点与O′点的距离为x,则由几何知识得:x=r-r2-d2=2d-2d2-d2=(2-3)d,故B、C错误;设轨迹对应的圆心角为θ,由几何知识得:sinθ=d2d=0.5,得θ=π6,则电子在磁场中运动的时间为t=θrv0=πd3v0,故D正确.
答案D
带电粒子在磁场中做匀速圆周运动的分析方法
考点三回旋加速器和质谱仪
1.质谱仪的主要特征
将质量数不等,电荷数相等的带电粒子经同一电场加速后进入偏转磁场.各粒子由于轨道半径不同而分离,其轨道半径r=mvqB=2mEkqB=2mqUqB=1B2mUq.在上式中,B、U、q对同一元素均为常量,故r∝m,根据不同的半径,就可计算出粒子的质量或比荷.
2.回旋加速器的主要特征
(1)带电粒子在两D形盒中回旋周期等于两盒狭缝之间高频电场的变化周期,与带电粒子的速度无关.
(2)将带电粒子在两盒狭缝之间的运动首尾连起来是一个初速度为零的匀加速直线运动.
(3)带电粒子每加速一次,回旋半径就增大一次,所以各半径之比为1∶2∶3∶…
(4)粒子的最后速度v=BqRm,可见带电粒子加速后的能量取决于D形盒的最大半径和磁场的强弱.
1.(20xx河南省实验中学月考)(多选)如图所示是医用回旋加速器的示意图,其核心部分是两个D形金属盒,两金属盒置于匀强磁场中,并分别与高频电源相连.现分别加速氘核(21H)和氦核(42He).下列说法中正确的是()
A.氘核(21H)的最大速度较大
B.它们在D形盒内运动的周期相等
C.氦核(42He)的最大动能较大
D.仅增大高频电源的频率可增大粒子的最大动能
解析:选BC.粒子在回旋加速器中能达到的最大速度,取决于在最外圈做圆周运动的速度.根据qvB=mv2R,得v=qBRm,两粒子的比荷qm相等,所以最大速度相等,A错误.带电粒子在磁场中运动的周期T=2πmqB,两粒子的比荷qm相等,所以周期相等,B正确.最大动能Ek=12mv2=q2B2R22m,两粒子的比荷qm相等,但质量不等,所以氦核最大动能大,C正确.回旋加速器加速粒子时,粒子在磁场中运动的周期与交流电的周期相同,否则无法加速,D错误.
2.(20xx高考全国乙卷)现代质谱仪可用来分析比质子重很多倍的离子,其示意图如图所示,其中加速电压恒定.质子在入口处从静止开始被加速电场加速,经匀强磁场偏转后从出口离开磁场.若某种一价正离子在入口处从静止开始被同一加速电场加速,为使它经匀强磁场偏转后仍从同一出口离开磁场,需将磁感应强度增加到原来的12倍.此离子和质子的质量比约为()
A.11B.12
C.121D.144
解析:选D.带电粒子在加速电场中运动时,有qU=12mv2,在磁场中偏转时,其半径r=mvqB,由以上两式整理得:r=1B2mUq.由于质子与一价正离子的电荷量相同,B1∶B2=1∶12,当半径相等时,解得:m2m1=144,选项D正确.
3.(多选)如图所示为一种获得高能粒子的装置,环形区域内存在垂直于纸面、磁感应强度大小可调的匀强磁场(环形区域的宽度非常小).质量为m、电荷量为q的带正电粒子可在环中做半径为R的圆周运动.A、B为两块中心开有小孔的距离很近的平行极板,原来电势均为零,每当带电粒子经过A板刚进入AB之间时,A板电势升高到+U,B板电势仍保持为零,粒子在两板间的电场中得到加速.每当粒子离开B板时,A板电势又降为零.粒子在电场中一次次加速使得动能不断增大,而在环形区域内,通过调节磁感应强度大小可使绕行半径R不变.已知极板间距远小于R,则下列说法正确的是()
A.环形区域内匀强磁场的磁场方向垂直于纸面向里
B.粒子从A板小孔处由静止开始在电场力作用下加速,绕行N圈后回到A板时获得的总动能为NqU
C.粒子在绕行的整个过程中,A板电势变化周期不变
D.粒子绕行第N圈时,环形区域内匀强磁场的磁感应强度为1R2NmUq
解析:选BD.由题意知粒子在轨道内做顺时针圆周运动,根据左手定则可判断匀强磁场的磁场方向垂直于纸面向外,所以A错误;由于粒子在做圆周运动的过程中洛伦兹力不做功,在AB板间电场力做功W=qU,所以粒子绕行N圈后回到A板时获得的总动能为NqU,故B正确;由于粒子的轨道半径R不变,而粒子做圆周运动第N圈的速度为vN,根据NqU=12mv2N,可得粒子圆周运动的速度增大,根据R=mvBq,T=2πmBq=2πRv,所以周期减小,故A板电势变化周期变小,故C错误;粒子绕行第N圈时,NqU=12mv2N,所以vN=2NqUm,又R=mvNBq,联立得B=1R2NmUq,所以D正确.
课时规范训练
[基础巩固题组]
1.(多选)如图所示,一只阴极射线管,左侧不断有电子射出,若在管的正下方放一通电直导线AB时,发现射线的径迹向下偏,则()
A.导线中的电流从A流向B
B.导线中的电流从B流向A
C.若要使电子束的径迹向上偏,可以通过改变AB中的电流方向来实现
D.电子束的径迹与AB中的电流方向无关
解析:选BC.由于AB中通有电流,在阴极射线管中产生磁场,电子受到洛伦兹力的作用而发生偏转,由左手定则可知,阴极射线管中的磁场方向垂直纸面向里,所以根据安培定则,AB中的电流从B流向A.当AB中的电流方向变为从A流向B时,则AB上方的磁场方向变为垂直纸面向外,电子所受的洛伦兹力变为向上,电子束的径迹变为向上偏转.选项B、C正确.
2.两相邻匀强磁场区域的磁感应强度大小不同、方向平行.一速度方向与磁感应强度方向垂直的带电粒子(不计重力),从较强磁场区域进入到较弱磁场区域后,粒子的()
A.轨道半径减小,角速度增大
B.轨道半径减小,角速度减小
C.轨道半径增大,角速度增大
D.轨道半径增大,角速度减小
解析:选D.因洛伦兹力不做功,故带电粒子从较强磁场区域进入到较弱的磁场区域后,其速度大小不变,由r=mvqB知,轨道半径增大;由角速度ω=vr知,角速度减小,选项D正确.
3.如图所示,半径为R的圆是一圆柱形匀强磁场区域的横截面(纸面),磁感应强度大小为B,方向垂直于纸面向外.一电荷量为q(q0)、质量为m的粒子沿平行于直径ab的方向射入磁场区域,射入点与ab的距离为R2,已知粒子射出磁场与射入磁场时运动方向间的夹角为60°,则粒子的速率为(不计重力)()
A.qBR2mB.qBRm
C.3qBR2mD.2qBRm
解析:选B.如图所示,粒子做圆周运动的圆心O2必在过入射点垂直于入射速度方向的直线EF上,由于粒子射入、射出磁场时运动方向间的夹角为60°,故圆弧ENM对应圆心角为60°,所以△EMO2为等边三角形.由于O1D=R2,所以∠EO1D=60°,△O1ME为等边三角形,所以可得到粒子做圆周运动的半径EO2=O1E=R,由qvB=mv2R,得v=qBRm,B正确.
第1节电磁感应现象楞次定律
一、磁通量
1.概念:磁感应强度B与面积S的乘积.
2.计算
(1)公式:Φ=BS.
(2)适用条件:①匀强磁场;②S是垂直磁场的有效面积.
(3)单位:韦伯(Wb),1Wb=1_Tm2.
3.意义:穿过某一面积的磁感线的条数.
4.标矢性:磁通量是标量,但有正、负.
二、电磁感应
1.电磁感应现象
当穿过闭合电路的磁通量发生变化时,电路中有电流产生,这种现象称为电磁感应现象.
2.产生感应电动势和感应电流的条件
(1)产生感应电动势的条件
无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,回路中就有感应电动势.产生感应电动势的那部分导体相当于电源.
(2)产生感应电流的条件
①电路闭合.②磁通量变化.
三、感应电流方向的判断
1.右手定则:伸开右手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内;让磁感线从掌心垂直进入,并使拇指指向导线运动的方向,这时四指所指的方向就是感应电流的方向.如右图所示.
2.楞次定律
内容:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化.
[自我诊断]
1.判断正误
(1)磁通量虽然是标量,但有正、负之分.(√)
(2)当导体切割磁感线运动时,导体中一定产生感应电流.(×)
(3)穿过线圈的磁通量与线圈的匝数无关.(√)
(4)电路中磁通量发生变化时,就一定会产生感应电流.(×)
(5)感应电流的磁场总是与原磁场方向相反.(×)
(6)楞次定律和右手定则都可以判断感应电流的方向,二者没什么区别.(×)
(7)回路不闭合时,穿过回路的磁通量发生变化也会产生“阻碍”作用.(×)
2.如图所示,匀强磁场中有一个矩形闭合导线框.在下列四种情况下,线框中会产生感应电流的是()
A.如图甲所示,保持线框平面始终与磁感线平行,线框在磁场中左右运动
B.如图乙所示,保持线框平面始终与磁感线平行,线框在磁场中上下运动
C.如图丙所示,线框绕位于线框平面内且与磁感线垂直的轴线AB转动
D.如图丁所示,线框绕位于线框平面内且与磁感线平行的轴线CD转动
解析:选C.保持线框平面始终与磁感线平行,线框在磁场中左右运动,磁通量一直为零,故磁通量不变,无感应电流,选项A错误;保持线框平面始终与磁感线平行,线框在磁场中上下运动,磁通量一直为零,故磁通量不变,无感应电流,选项B错误;线框绕位于线框平面内且与磁感线垂直的轴线AB转动,磁通量周期性地改变,故一定有感应电流,故选项C正确;线框绕位于线框平面内且与磁感线平行的轴线CD转动,磁通量一直为零,故磁通量不变,无感应电流,选项D错误.
3.如图,在一水平、固定的闭合导体圆环上方,有一条形磁铁(N极朝上,S极朝下)由静止开始下落,磁铁从圆环中穿过且不与圆环接触,关于圆环中感应电流的方向(从上向下看),下列说法正确的是()
A.总是顺时针
B.总是逆时针
C.先顺时针后逆时针
D.先逆时针后顺时针
解析:选C.磁铁从圆环中穿过且不与圆环接触,则导体环中,先是向上的磁通量增加,磁铁过中间以后,向上的磁通量减少,根据楞次定律,产生的感应电流方向先顺时针后逆时针,选项C正确.
4.如图所示,AOC是光滑的金属导轨,电阻不计,AO沿竖直方向,OC沿水平方向;PQ是金属直杆,电阻为R,几乎竖直斜靠在导轨AO上,由静止开始在重力作用下运动,运动过程中P、Q端始终在金属导轨AOC上;空间存在着垂直纸面向外的匀强磁场,则在PQ杆从开始滑动到P端滑到OC的过程中,PQ中感应电流的方向()
A.始终是由P→Q
B.始终是由Q→P
C.先是由P→Q,后是由Q→P
D.先是由Q→P,后是由P→Q
解析:选C.在PQ杆滑动的过程中,△POQ的面积先增大后减小,穿过△POQ的磁通量先增加后减少,根据楞次定律可知,感应电流的方向先是由P→Q,后是由Q→P,C正确.
考点一电磁感应现象的判断
1.穿过闭合电路的磁通量发生变化的四种情况
(1)磁感应强度B不变,线圈面积S发生变化.
(2)线圈面积S不变,磁感应强度B发生变化.
(3)线圈面积S变化,磁感应强度B也变化,它们的乘积BS发生变化.
(4)线圈面积S不变,磁感应强度B也不变,但二者之间夹角发生变化.
2.判断电磁感应现象能否发生的一般流程:
1.如图所示,一个U形金属导轨水平放置,其上放有一个金属导体棒ab,有一个磁感应强度为B的匀强磁场斜向上穿过轨道平面,且与竖直方向的夹角为θ.在下列各过程中,一定能在轨道回路里产生感应电流的是()
A.ab向右运动,同时使θ减小
B.使磁感应强度B减小,θ角同时也减小
C.ab向左运动,同时增大磁感应强度B
D.ab向右运动,同时增大磁感应强度B和θ角(0°θ90°)
解析:选A.本题中引起磁通量变化都有两个方面,面积的变化和夹角改变,向右运动的同时θ减小都会使磁通量变大,所以A项正确.
2.现将电池组、滑动变阻器、带铁芯的线圈A、线圈B、电流计及开关按如图所示连接.下列说法中正确的是()
A.开关闭合后,线圈A插入或拔出都会引起电流计指针偏转
B.线圈A插入线圈B中后,开关闭合和断开的瞬间电流计指针均不会偏转
C.开关闭合后,滑动变阻器的滑片P匀速滑动,会使电流计指针静止在中央零刻度
D.开关闭合后,只有滑动变阻器的滑片P加速滑动,电流计指针才能偏转
解析:选A.只要闭合回路磁通量发生变化就会产生感应电流,故A正确,B错误;开关闭合后,只要滑片P滑动就会产生感应电流,故C、D错误.
3.(多选)1824年,法国科学家阿拉果完成了著名的“圆盘实验”.实验中将一铜圆盘水平放置,在其中心正上方用柔软细线悬挂一枚可以自由旋转的磁针,如图所示.实验中发现,当圆盘在磁针的磁场中绕过圆盘中心的竖直轴旋转时,磁针也随着一起转动起来,但略有滞后.下列说法正确的是()
A.圆盘上产生了感应电动势
B.圆盘内的涡电流产生的磁场导致磁针转动
C.在圆盘转动的过程中,磁针的磁场穿过整个圆盘的磁通量发生了变化
D.圆盘中的自由电子随圆盘一起运动形成电流,此电流产生的磁场导致磁针转动
解析:选AB.A.当圆盘转动时,圆盘的半径切割磁针产生的磁场的磁感线,产生感应电动势,选项A正确;
B.如图所示,铜圆盘上存在许多小的闭合回路,当圆盘转动时,穿过小的闭合回路的磁通量发生变化,回路中产生感应电流,根据楞次定律,感应电流阻碍其相对运动,但抗拒不了相对运动,故磁针会随圆盘一起转动,但略有滞后,选项B正确;
C.在圆盘转动过程中,磁针的磁场穿过整个圆盘的磁通量始终为零,选项C错误;
D.圆盘中的自由电子随圆盘一起运动形成的电流的磁场方向沿圆盘轴线方向,会使磁针沿轴线方向偏转,选项D错误.
确定磁通量变化的两种方法
(1)通过对穿过回路磁感线条数的分析和计算,可以确定磁通量是否变化.
(2)依据公式Φ=BSsinθ(θ是B与S的夹角)确定磁通量与哪些因素有关.
考点二楞次定律的理解及应用
1.判断感应电流方向的两种方法
方法一用楞次定律判断
方法二用右手定则判断
该方法适用于切割磁感线产生的感应电流.判断时注意掌心、拇指、四指的方向:
(1)掌心——磁感线垂直穿入;
(2)拇指——指向导体运动的方向;
(3)四指——指向感应电流的方向.
2.楞次定律推论的应用
楞次定律中“阻碍”的含义可以推广为:感应电流的效果总是阻碍引起感应电流的原因,列表说明如下:
内容例证
阻碍原磁通量变化——“增反减同”
阻碍相对运动——“来拒去留”
使回路面积有扩大或缩小的趋势——“增缩减扩”
B减小,线圈扩张
阻碍原电流的变化——“增反减同”
考向1:应用楞次定律判感应电流方向
[典例1]如图所示,在磁感应强度大小为B、方向竖直向上的匀强磁场中,有一质量为m、阻值为R的闭合矩形金属线框abcd用绝缘轻质细杆悬挂在O点,并可绕O点摆动.金属线框从右侧某一位置静止开始释放,在摆动到左侧最高点的过程中,细杆和金属线框平面始终处于同一平面,且垂直纸面.则线框中感应电流的方向是()
A.a→b→c→d→a
B.d→c→b→a→d
C.先是d→c→b→a→d,后是a→b→c→d→a
D.先是a→b→c→d→a,后是d→c→b→a→d
解析由楞次定律可知,在线框从右侧摆动到O点正下方的过程中,向上的磁通量在减小,故感应电流的方向沿d→c→b→a→d;同理,线框从O点正下方向左侧摆动的过程中,电流方向沿d→c→b→a→d,B正确.
答案B
考向2:右手定则判感应电流的方向
[典例2]如图所示,MN、GH为光滑的水平平行金属导轨,ab、cd为跨在导轨上的两根金属杆,垂直纸面向外的匀强磁场垂直穿过MN、GH所在的平面,则()
A.若固定ab,使cd向右滑动,则abdc回路有电流,电流方向为a→b→d→c→a
B.若ab、cd以相同的速度一起向右滑动,则abdc回路有电流,电流方向为a→c→d→b→a
C.若ab向左、cd向右同时运动,则abdc回路中的电流为零
D.若ab、cd都向右运动,且两杆速度vcd>vab,则abdc回路有电流,电流方向为a→c→d→b→a
解析由右手定则可判断出A项做法使回路产生顺时针方向的电流,故A项错.若ab、cd同向运动且速度大小相同,ab、cd所围面积不变,磁通量不变,故不产生感应电流,故B项错.若ab向左,cd向右,则abdc回路中有顺时针方向的电流,故C项错.若ab、cd都向右运动,且两杆速度vcd>vab,则ab、cd所围面积发生变化,磁通量也发生变化,由楞次定律可判断出,abdc回路中产生顺时针方向的电流,故D项正确.
答案D
考向3:“阻碍法”的应用
[典例3](20xx东北三省五校联考)如图,圆环形导体线圈a平放在水平桌面上,在a的正上方固定一竖直螺线管b,二者轴线重合,螺线管与电源和滑动变阻器连接成如图所示的电路.若将滑动变阻器的滑片P向下滑动,下列表述正确的是()
A.线圈a中将产生俯视顺时针方向的感应电流
B.穿过线圈a的磁通量减少
C.线圈a有扩张的趋势
D.线圈a对水平桌面的压力FN将增大
解析当滑片P向下移动时滑动变阻器连入电路的电阻减小,由闭合电路欧姆定律可知通过b的电流增大,从而判断出穿过线圈a的磁通量增加,方向向下,选项B错误;根据楞次定律即可判断出线圈a中感应电流方向俯视应为逆时针,选项A错误;再根据楞次定律“阻碍”含义的推广,线圈a应有收缩或远离b的趋势来阻碍磁通量的增加,所以C错误,D正确.
答案D
感应电流方向判断的两点注意
(1)楞次定律可应用于磁通量变化引起感应电流的各种情况(包括一部分导体切割磁感线运动的情况).
(2)右手定则只适用于一段导体在磁场中做切割磁感线运动的情景,是楞次定律的一种特殊情况.
考点三“三定则、一定律”的理解及应用
1.“三个定则、一个定律”的应用对比:
名称基本现象因果关系应用的定则或定律
电流的磁效应运动电荷、电流产生磁场因电生磁安培定则
洛伦兹力、安培力磁场对运动电荷、电流有作用力因电受力左手定则
电磁感应部分导体做切割磁感线运动因动生电右手定则
闭合回路磁通量变化因磁生电楞次定律
2.三个定则、一个定律”的相互联系:
(1)应用楞次定律时,一般要用到安培定则.
(2)研究感应电流受到的安培力,一般先用右手定则确定电流方向,再用左手定则确定安培力的方向,有时也可以直接应用楞次定律的推论确定.
1.(多选)如图所示,在匀强磁场中放有平行金属导轨,它与大线圈M相连接,要使小导线圈N获得顺时针方向的感应电流,则放在金属导轨上的金属棒ab的运动情况是(两线圈共面放置)()
A.向右匀速运动B.向左加速运动
C.向右减速运动D.向右加速运动
解析:选BC.欲使N产生顺时针方向的感应电流,感应电流的磁场方向垂直纸面向里,由楞次定律可知有两种情况:一是M中有沿顺时针方向逐渐减小的电流,使其在N中的磁场方向向里,且磁通量在减小;二是M中有逆时针方向逐渐增大的电流,使其在N中的磁场方向向外,且磁通量在增大.因此对前者应使ab向右减速运动;对于后者,则应使ab向左加速运动.
2.(多选)如图所示,水平放置的两条光滑轨道上有可自由移动的金属棒PQ、MN,MN的左边有一如图所示的闭合电路,当PQ在一外力的作用下运动时,MN向右运动,则PQ所做的运动可能是()
A.向右加速运动
B.向左加速运动
C.向右减速运动
D.向左减速运动
解析:选BC.MN向右运动,说明MN受到向右的安培力,因为ab在MN处的磁场垂直纸面向里――→左手定则MN中的感应电流由M→N――→安培定则L1中感应电流的磁场方向向上――→楞次定律L2中磁场方向向上减弱L2中磁场方向向下增强.若L2中磁场方向向上减弱――→安培定则PQ中电流为Q→P且减小――→右手定则向右减速运动;若L2中磁场方向向下增强――→安培定则PQ中电流为P→Q且增大――→右手定则向左加速运动.
3.(多选)如图所示,两个线圈套在同一个铁芯上,线圈的绕向在图中已经标出.左线圈连着平行导轨M和N,导轨电阻不计,在导轨垂直方向上放着金属棒ab,金属棒处在垂直于纸面向外的匀强磁场中.下列说法中正确的是()
A.当金属棒ab向右匀速运动时,a点电势高于b点,c点电势高于d点
B.当金属棒ab向右匀速运动时,b点电势高于a点,c点与d点等电势
C.当金属棒ab向右加速运动时,b点电势高于a点,c点电势高于d点
D.当金属棒ab向右加速运动时,b点电势高于a点,d点电势高于c点
解析:选BD.当金属棒向右匀速运动而切割磁感线时,金属棒产生恒定感应电动势,由右手定则判断电流方向由a→b.根据电流从电源(ab相当于电源)正极流出沿外电路回到电源负极的特点,可以判断b点电势高于a点.又左线圈中的感应电动势恒定,则感应电流也恒定,所以穿过右线圈的磁通量保持不变,不产生感应电流,A错误,B正确.当ab向右做加速运动时,由右手定则可推断φbφa,电流沿逆时针方向.
又由E=BLv可知ab导体两端的E不断增大,那么左边电路中的感应电流也不断增大,由安培定则可判断它在铁芯中的磁感线方向是沿逆时针方向的,并且场强不断增强,所以右边电路的线圈中的向上的磁通量不断增加.由楞次定律可判断右边电路的感应电流方向应沿逆时针,而在右线圈组成的电路中,感应电动势仅产生在绕在铁芯上的那部分线圈上.把这个线圈看作电源,由于电流是从c沿内电路(即右线圈)流向d,所以d点电势高于c点,C错误,D正确.
左、右手定则区分技巧
(1)抓住“因果关系”:“因动而电”——用右手;“因电而动”——用左手.
(2)形象记忆:把两个定则简单地总结为“通电受力用左手,运动生电用右手”.“力”的最后一笔“丿”方向向左,用左手;“电”的最后一笔“乚”方向向右,用右手.
课时规范训练
[基础巩固题组]
1.在法拉第时代,下列验证“由磁产生电”设想的实验中,能观察到感应电流的是()
A.将绕在磁铁上的线圈与电流表组成一闭合回路,然后观察电流表的变化
B.在一通电线圈旁放置一连有电流表的闭合线圈,然后观察电流表的变化
C.将一房间内的线圈两端与相邻房间的电流表连接,往线圈中插入条形磁铁后,再到相邻房间去观察电流表的变化
D.绕在同一铁环上的两个线圈,分别接电源和电流表,在给线圈通电或断电的瞬间,观察电流表的变化
解析:选D.产生感应电流的条件为:闭合回路内磁通量发生变化.A项中,线圈绕在磁铁上,磁通量未变,不会产生感应电流,A错误.同理B错误.C项中,往线圈中插入条形磁铁的瞬间,线圈中磁通量发生变化,此时线圈中将产生感应电流,但插入后磁通量不再变化,无感应电流,故到相邻房间观察时无示数,C错误.D项中,在线圈通电或断电的瞬间,磁通量发生变化,产生感应电流,D正确.
2.如图所示,一个金属圆环水平放置在竖直向上的匀强磁场中,若要使圆环中产生图中箭头方向的瞬时感应电流,下列方法可行的是()
A.使匀强磁场均匀增大
B.使圆环绕水平轴ab如图转动30°
C.使圆环绕水平轴cd如图转动30°
D.保持圆环水平并使其绕过圆心的竖直轴转动
解析:选A.根据右手定则,圆环中感应电流产生的磁场竖直向下与原磁场方向相反,根据楞次定律,说明圆环磁通量在增大.磁场增强则磁通量增大,A正确.使圆环绕水平轴ab或cd转动30°,圆环在垂直磁场方向上的投影面积减小,磁通量减小,只会产生与图示方向相反的感应电流,B、C错误.保持圆环水平并使其绕过圆心的竖直轴转动,圆环仍与磁场垂直,磁通量不变,不会产生感应电流,D错误.
3.如图甲所示,在同一平面内有两个相互绝缘的金属圆环A、B,圆环A平分圆环B为面积相等的两部分,当圆环A中的电流如图乙所示变化时,甲图中A环所示的电流方向为正,下列说法正确的是()
A.B中始终没有感应电流
B.B中有顺时针方向的感应电流
C.B中有逆时针方向的感应电流
D.B中先有顺时针方向的感应电流,后有逆时针方向的感应电流
解析:选B.由于圆环A中的电流发生了变化,故圆环B中一定有感应电流产生,由楞次定律判定B中有顺时针方向的感应电流,故选项B正确.
4.(多选)如图,两同心圆环A、B置于同一水平面上,其中B为均匀带负电绝缘环,A为导体环.当B绕轴心顺时针转动且转速增大时,下列说法正确的是()
A.A中产生逆时针的感应电流
B.A中产生顺时针的感应电流
C.A具有收缩的趋势
D.A具有扩展的趋势
解析:选BD.由图可知,B为均匀带负电绝缘环,B中电流为逆时针方向,由右手螺旋定则可知,电流的磁场垂直纸面向外且逐渐增大;由楞次定律可知,磁场增大时,感应电流的磁场与原磁场的方向相反,所以感应电流的磁场的方向垂直纸面向里,A中感应电流的方向为顺时针方向,故A错误,B正确;B环外的磁场的方向与B环内的磁场的方向相反,当B环内的磁场增强时,A环具有面积扩展的趋势,故C错误,D正确.
5.(多选)航母上飞机弹射起飞是利用电磁驱动来实现的.电磁驱动原理如图所示,当固定线圈上突然通过直流电流时,线圈端点的金属环被弹射出去.现在固定线圈左侧同一位置,先后放有分别用横截面积相等的铜和铝导线制成形状、大小相同的两个闭合环,且电阻率ρ铜ρ铝.闭合开关S的瞬间()
A.从左侧看环中感应电流沿顺时针方向
B.铜环受到的安培力大于铝环受到的安培力
C.若将环放置在线圈右方,环将向左运动
D.电池正负极调换后,金属环不能向左弹射
解析:选AB.线圈中电流为右侧流入,磁场方向为向左,在闭合开关的过程中,磁场变强,则由楞次定律可知,环中感应电流由左侧看为顺时针,A正确.由于铜环的电阻较小,故铜环中感应电流较大,故铜环受到的安培力要大于铝环的,B正确.若将环放在线圈右方,根据“来拒去留”可得,环将向右运动,C错误.电池正负极调换后,金属环受力仍向左,故仍将向左弹出,D错误.
6.多年来物理学家一直设想用实验证实自然界中存在“磁单极子”.磁单极子是指只有S极或只有N极的磁性物质,其磁感线分布类似于点电荷的电场线分布.如图所示的实验就是用于检测磁单极子的实验之一,abcd为用超导材料围成的闭合回路.设想有一个N极磁单极子沿abcd轴线从左向右穿过超导回路,那么在回路中可能发生的现象是()
A.回路中无感应电流
B.回路中形成持续的abcda流向的感应电流
C.回路中形成持续的adcba流向的感应电流
D.回路中形成先abcda流向后adcba流向的感应电流
解析:选C.N极磁单极子的磁感线分布类似于正点电荷的电场线分布,由楞次定律知,回路中形成方向沿adcba流向的感应电流,由于回路为超导材料做成的,电阻为零,故感应电流不会消失,C项正确.
[综合应用题组]
7.(多选)如图所示,一接有电压表的矩形闭合线圈ABCD向右匀速穿过匀强磁场的过程中,下列说法正确的是()
A.线圈中有感应电动势,有感应电流
B.线圈中有感应电动势,无感应电流
C.AB边两端有电压,且电压表有示数
D.AB边两端有电压,但电压表无示数
解析:选BD.由于通过回路的磁通量不变,故回路中无感应电流产生,A项错;由欧姆定律知电压表示数U=IRV=0,C项错;由于AB棒切割磁感线AB两端有电压,B、D项正确.
8.如图所示,在载流直导线近旁固定有两平行光滑导轨A、B,导轨与直导线平行且在同一水平面内,在导轨上有两条可自由滑动的导体棒ab和cd,当载流直导线中的电流逐渐增强时,导体棒ab和cd的运动情况是()
A.一起向左运动
B.一起向右运动
C.ab和cd相向运动,相互靠近
D.ab和cd相背运动,相互远离
解析:选C.电流增强时,电流在abdc回路中产生的垂直纸面向里的磁场增强,回路中磁通量增大,根据楞次定律可知回路要减小面积以阻碍磁通量的增加,因此,两导体棒要相向运动,相互靠近.选项C正确.
9.如图所示,在水平地面下有一条沿东西方向铺设的水平直导线,导线中通有自东向西稳定、强度较大的直流电流.现用一闭合的检测线圈(线圈中串有灵敏电流计,图中未画出)检测此通电直导线的位置,若不考虑地磁场的影响,在检测线圈位于水平面内,从距直导线很远处由北向南沿水平地面通过导线的上方并移至距直导线很远处的过程中,俯视检测线圈,其中感应电流的方向是()
A.先顺时针后逆时针
B.先逆时针后顺时针
C.先顺时针后逆时针,然后再顺时针
D.先逆时针后顺时针,然后再逆时针
解析:选D.如图为地下通电直导线产生的磁场的正视图,当线圈在通电直导线正上方的左侧时由楞次定律知,线圈中感应电流方向为逆时针,同理在右侧也为逆时针,当线圈一部分在左侧一部分在右侧时为顺时针,故D正确.
10.(多选)如图,一均匀金属圆盘绕通过其圆心且与盘面垂直的轴逆时针匀速转动.现施加一垂直穿过圆盘的有界匀强磁场,圆盘开始减速.在圆盘减速过程中,以下说法正确的是()
A.处于磁场中的圆盘部分,靠近圆心处电势高
B.所加磁场越强越易使圆盘停止转动
C.若所加磁场反向,圆盘将加速转动
D.若所加磁场穿过整个圆盘,圆盘将匀速转动
解析:选ABD.设想把金属圆盘切割成无数根导体棒,导体棒切割磁感线产生感应电动势、感应电流,根据右手定则可知,靠近圆心处的电势高,选项A正确;根据E=BLv可知,所加磁场B越强,感应电动势E越大,感应电流越大,因F=BIL,所以安培力也越大,安培力对圆盘的转动阻碍作用越强,选项B正确;若所加磁场反向,根据楞次定律可知安培力阻碍圆盘的转动,故圆盘仍将减速运动,选项C错误;若所加磁场穿过整个圆盘,圆盘的半径切割磁感线,产生感应电动势,但圆盘内没有涡流,故没有安培力,不消耗机械能,所以圆盘匀速转动,选项D正确.
11.(多选)如图所示,铁芯上有两个线圈A和B.线圈A跟电源相连,LED(发光二极管,具有单向导电性)M和N并联后接在线圈B两端.图中所有元件均正常,则()
A.S闭合瞬间,A中有感应电动势
B.S断开瞬间,A中有感应电动势
C.S闭合瞬间,M亮一下,N不亮
D.S断开瞬间,M和N二者均不亮
解析:选ABC.闭合开关的瞬间,穿过线圈A的磁通量增加,线圈A中将产生自感电动势,故A正确.开关断开的瞬间,穿过线圈A的磁通量减小,线圈A中将产生自感电动势,故B正确.闭合开关的瞬间,穿过线圈A的磁通量增加,根据安培定则可知,A中产生的磁场的方向向上,穿过B的磁通量向上增大时,根据楞次定律可知,B中感应电流的磁场的方向向下,根据安培定则可知B中感应电流的方向向下,所以线圈下端的电势高,电流能通过二极管M,不能通过二极管N,故C正确.结合C的分析可知,S断开瞬间,穿过线圈B的磁通量减小,产生感应电流的方向与C中感应电流的方向相反,所以感应电流能通过二极管N,不能通过二极管M,故D错误.
12.经过不懈的努力,法拉第终于在1831年8月29日发现了“磁生电”的现象,他把两个线圈绕在同一个软铁环上(如图所示),一个线圈A连接电池与开关,另一线圈B闭合并在其中一段直导线附近平行放置小磁针.法拉第可观察到的现象有()
A.当合上开关,A线圈接通电流瞬间,小磁针偏转一下,随即复原
B.只要A线圈中有电流,小磁针就会发生偏转
C.A线圈接通后其电流越大,小磁针偏转角度也越大
D.当开关打开,A线圈电流中断瞬间,小磁针会出现与A线圈接通电流瞬间完全相同的偏转
解析:选A.当合上开关,A线圈接通电流瞬间,穿过A的磁通量发生变化,使得穿过B的磁通量也变化,所以在B中产生感生电流,电流稳定后穿过A、B的磁通量不再变化,所以B中不再有感应电流,即小磁针偏转一下,随即复原,选项A正确;A线圈中有电流,但是如果电流大小不变,则在B中不会产生感应电流,即小磁针就不会发生偏转,选项B错误;B线圈中的感应电流大小与A中电流的变化率有关,与A中电流大小无关,故C错误;当开关打开,A线圈电流中断瞬间,由于穿过B的磁通量减小,则在B中产生的电流方向与A线圈接通电流瞬间产生的电流方向相反,所以小磁针会出现与A线圈接通电流瞬间完全相反的偏转,选项D错误.
13.(多选)某同学将一条形磁铁放在水平转盘上,如图甲所示,磁铁可随转盘转动,另将一磁感应强度传感器固定在转盘旁边.当转盘(及磁铁)转动时,引起磁感应强度测量值周期性地变化,该变化的周期与转盘转动周期一致.经过操作,该同学在计算机上得到了如图乙所示的图象.该同学猜测磁感应强度传感器内有一线圈,当测得磁感应强度最大时就是穿过线圈的磁通量最大时.按照这种猜测()
A.在t=0.1s时刻,线圈内产生的感应电流的方向发生了变化
B.在t=0.15s时刻,线圈内产生的感应电流的方向发生了变化
C.在t=0.1s时刻,线圈内产生的感应电流的大小达到了最大值
D.在t=0.15s时刻,线圈内产生的感应电流的大小达到了最大值
解析:选AC.题图乙中斜率既能反映线圈内产生的感应电流的方向变化,又能反映感应电流的大小变化.t=0.1s时刻,图线斜率最大,意味着磁通量的变化率最大,感应电动势最大,线圈内产生的感应电流的大小达到了最大值,t=0.1s时刻前后的图线斜率一正一负,说明产生的感应电流的方向发生了变化,所以A、C正确;同理可知t=0.15s时刻,图线斜率不是最大值,且该时刻前后图线斜率全为负值,说明线圈内产生的感应电流的方向没有变化,而且大小并未达到最大值,选项B、D错误.
14.磁感应强度为B的匀强磁场仅存在于边长为2l的正方形范围内,有一个电阻为R、边长为l的正方形导线框abcd,沿垂直于磁感线方向,以速度v匀速通过磁场,如图所示,从ab进入磁场时开始计时,到线框离开磁场为止.
(1)画出穿过线框的磁通量随时间变化的图象;
(2)判断线框中有无感应电流.若有,说明感应电流的方向.
解析:(1)当ab边进入磁场时,穿过线框的磁通量均匀增加,在t1=lv时线框全部进入磁场,磁通量Φ=Bl2不变化;当在t2=2lv时,ab边离开磁场,穿过线框的磁通量均匀减少到零,所以该过程的Φ-t图象如图所示.
(2)ab边进入磁场时有感应电流,根据右手定则可判知感应电流方向为逆时针;ab边离开磁场时有感应电流,根据右手定则可判知感应电流方向为顺时针;中间过程t1~t2磁通量不变化,没有感应电流.
答案:见解析
第2节法拉第电磁感应定律自感和涡流
一、法拉第电磁感应定律
1.法拉第电磁感应定律
(1)内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.
(2)公式:E=nΔΦΔt,n为线圈匝数.
2.导体切割磁感线的情形
(1)若B、l、v相互垂直,则E=Blv.
(2)E=Blvsinθ,θ为运动方向与磁感线方向的夹角.
(3)导体棒在磁场中转动:导体棒以端点为轴,在匀强磁场中垂直于磁感线方向匀速转动产生感应电动势E=Blv-=12Bl2ω平均速度取中点位置线速度12lω.
二、自感和涡流
1.自感现象:当导体中电流发生变化时,导体本身就产生感应电动势,这个电动势总是阻碍导体中原来电流的变化,这种由于导体本身电流发生变化而产生的电磁感应现象叫自感现象.
2.自感电动势:在自感现象中产生的感应电动势E=LΔIΔt,其中L叫自感系数,它与线圈的大小、形状、圈数以及是否有铁芯有关,自感系数的单位是亨利(H),1mH=10-3H,1μH=10-6H.
3.涡流
当线圈中的电流发生变化时,在它附近的任何导体中都会产生像水的漩涡状的感应电流.
(1)电磁阻尼:当导体在磁场中运动时,感应电流会使导体受到安培力,安培力的方向总是阻碍导体的运动.
(2)电磁驱动:如果磁场相对于导体转动,在导体中会产生感应电流,使导体受到安培力的作用,安培力使导体运动起来.交流感应电动机就是利用电磁驱动的原理工作的.
[自我诊断]
1.判断正误
(1)线圈中磁通量越大,产生的感应电动势越大.(×)
(2)线圈中磁通量变化越大,产生的感应电动势越大.(×)
(3)线圈中磁通量变化越快,产生的感应电动势越大.(√)
(4)线圈中的电流越大,自感系数也越大.(×)
(5)磁场相对导体棒运动时,导体棒中也能产生感应电动势.(√)
(6)对于同一线圈,电流变化越快,线圈中的自感电动势越大.(√)
2.如图所示,匀强磁场中有两个导体圆环a、b,磁场方向与圆环所在平面垂直.磁感应强度B随时间均匀增大.两圆环半径之比为2∶1,圆环中产生的感应电动势分别为Ea和Eb.不考虑两圆环间的相互影响.下列说法正确的是()
A.Ea∶Eb=4∶1,感应电流均沿逆时针方向
B.Ea∶Eb=4∶1,感应电流均沿顺时针方向
C.Ea∶Eb=2∶1,感应电流均沿逆时针方向
D.Ea∶Eb=2∶1,感应电流均沿顺时针方向
解析:选B.由题意可知ΔBΔt=k,导体圆环中产生的感应电动势E=ΔΦΔt=ΔBΔtS=ΔBΔtπr2,因ra∶rb=2∶1,故Ea∶Eb=4∶1;由楞次定律知感应电流的方向均沿顺时针方向,选项B正确.
3.如图所示,空间有一匀强磁场,一直金属棒与磁感应强度方向垂直,当它以速度v沿与棒和磁感应强度都垂直的方向运动时,棒两端的感应电动势大小为E;将此棒弯成两段长度相等且相互垂直的折线,置于与磁感应强度相垂直的平面内,当它沿两段折线夹角平分线的方向以速度v运动时,棒两端的感应电动势大小为E′,则E′E等于()
A.12B.22
C.1D.2
解析:选B.设金属棒长度为l,匀强磁场的磁感应强度为B,根据电磁感应定律得E=Blv.金属棒弯折后,切割磁感线运动的有效长度变为22l,故E′=22Blv.因此E′E=22,B正确.
4.(20xx江苏盐城中学学情检测)(多选)如图所示,L是自感系数很大的线圈,但其自身的电阻几乎为零.A和B是两个完全相同的灯泡,则下列说法中正确的有()
A.当开关S闭合瞬间,A、B两灯同时亮,最后B灯熄灭
B.当开关S断开瞬间,A、B两灯同时熄灭
C.当开关S断开瞬间,a点电势比b点电势低
D.当开关S断开瞬间,流经灯泡B的电流是由a到b
解析:选AD.开关S闭合瞬间,线圈L对电流有阻碍作用,则相当于灯泡A与B串联,因此同时亮,且亮度相同,稳定后B被短路熄灭,选项A正确;稳定后当开关S断开后,A马上熄灭,由于自感,线圈中的电流只能慢慢减小,其相当于电源,左端电势高,与灯泡B构成闭合回路放电,流经灯泡B的电流是由a到b,B闪一下再熄灭,选项D正确,B、C错误.
考点一法拉第电磁感应定律的理解及应用
1.感应电动势大小的决定因素
(1)感应电动势的大小由穿过闭合电路的磁通量的变化率ΔΦΔt和线圈的匝数共同决定,而与磁通量Φ、磁通量的变化量ΔΦ的大小没有必然联系.
(2)当ΔΦ仅由B引起时,则E=nSΔBΔt;当ΔΦ仅由S引起时,则E=nBΔSΔt;当ΔΦ由B、S的变化同时引起,则E=nB2S2-B1S1Δt≠nΔBΔSΔt.
2.磁通量的变化率ΔΦΔt是Φ-t图象上某点切线的斜率.
3.应用E=nΔΦΔt时应注意的几个问题
(1)由于磁通量有正负之分,计算磁通量的变化时一定要规定磁通量的正方向.正向的磁通量增加与反向的磁通量减少产生的感应电流的方向相同.
(2)公式E=nΔΦΔt是求解回路某段时间内平均电动势的最佳选择.若ΔΦΔt为恒量,则平均电动势等于瞬时电动势.
(3)用公式E=nSΔBΔt求感应电动势时,S为线圈在磁场范围内垂直磁场方向的有效面积.
1.图为无线充电技术中使用的受电线圈示意图,线圈匝数为n,面积为S.若在t1到t2时间内,匀强磁场平行于线圈轴线向右穿过线圈,其磁感应强度大小由B1均匀增加到B2,则该段时间线圈两端a和b之间的电势差φa-φb()
A.恒为nSB2-B1t2-t1
B.从0均匀变化到nSB2-B1t2-t1
C.恒为-nSB2-B1t2-t1
D.从0均匀变化到-nSB2-B1t2-t1
解析:选C.根据法拉第电磁感应定律得,感应电动势E=nΔΦΔt=nB2-B1St2-t1,由楞次定律和右手螺旋定则可判断b点电势高于a点电势,因磁场均匀变化,所以感应电动势恒定,因此a、b两点电势差恒为φa-φb=-nB2-B1St2-t1,选项C正确.
2.(20xx湖南衡阳联考)用均匀导线做成的正方形线圈边长为l,如图所示,正方形的一半放在垂直于纸面向里的匀强磁场中,当磁场以ΔBΔt的变化率增强时,不考虑磁场的变化对虚线右侧的影响,则()
A.线圈中感应电流方向为adbca
B.线圈中产生的电动势E=ΔBΔtl2
C.线圈中a点电势高于b点电势
D.线圈中b、a两点间的电势差为l2ΔB4Δt
解析:选D.处于磁场中的线圈面积不变,ΔBΔt增大时,通过线圈的磁通量增大,由楞次定律可知,感应电流的方向为acbda方向,A项错;产生感应电动势的acb部分等效为电源,b端为等效电源的正极,电势高于a端,C项错;由法拉第电磁感应定律E=ΔΦΔt=ΔBΔtl22,知B项错;adb部分等效为外电路,b、a两点间电势差为等效电路的路端电压,U=E2RR=E2=l2ΔB4Δt,D项正确.
3.A、B两闭合圆形导线环用相同规格的导线制成,它们的半径之比rA∶rB=2∶1,在两导线环包围的空间内存在一正方形边界的匀强磁场区域,磁场方向垂直于两导线环所在的平面,如图所示.在磁场的磁感应强度随时间均匀增大的过程中,下列说法正确的是()
A.两导线环内所产生的感应电动势相等
B.A环内所产生的感应电动势大于B环内所产生的感应电动势
C.流过A、B两导线环的感应电流的大小之比为1∶4
D.流过A、B两导线环的感应电流的大小之比为1∶1
解析:选A.某一时刻穿过A、B两导线环的磁通量均为穿过磁场所在区域面积上的磁通量,设磁场区域的面积为S,则Φ=BS,由E=ΔΦΔt=ΔBΔtS(S为磁场区域面积),对A、B两导线环,有EAEB=1,所以A正确,B错误;I=ER,R=ρlS1(S1为导线的横截面积),l=2πr,所以IAIB=EArBEBrA=12,C、D错误.
4.(20xx连云港质检)如图所示,匀强磁场中有一矩形闭合线圈abcd,线圈平面与磁场垂直.已知线圈的匝数N=100,边长ab=1.0m、bc=0.5m,电阻r=2Ω.磁感应强度B在0~1s内从零均匀变化到0.2T.在1s~5s内从0.2T均匀变化到-0.2T,取垂直纸面向里为磁场的正方向.求:
(1)0.5s时线圈内感应电动势的大小E和感应电流的方向;
(2)在1s~5s内通过线圈的电荷量q;
解析:(1)感应电动势E1=NΔΦ1Δt1
磁通量的变化量ΔΦ1=ΔB1S
解得E1=NΔB1SΔt1
代入数据得E1=10V
由楞次定律得,感应电流的方向为a→d→c→b→a.
(2)同理可得在1s~5s内产生的感应电动势
E2=NΔB2SΔt2
感应电流I2=E2r
电荷量q=I2Δt2
解得q=NΔB2Sr
代入数据得q=10C
答案:(1)10Va→d→c→b→a(2)10C
应用法拉第电磁感应定律的两点注意
(1)一般步骤:
①分析穿过闭合电路的磁场方向及磁通量的变化情况;
②利用楞次定律确定感应电流的方向;
③灵活选择法拉第电磁感应定律的不同表达形式列方程求解.
(2)一个结论:通过回路截面的电荷量q仅与n、ΔΦ和回路总电阻R总有关,与时间长短无关.推导如下:q=IΔt=nΔΦΔtR总Δt=nΔΦR总.
考点二导体棒切割类电动势的计算
1.导体平动切割磁感线
(1)一般情况:运动速度v和磁感线方向夹角为θ,则E=Blvsinθ.
(2)常用情况:运动速度v和磁感线方向垂直,则E=Blv.
(3)若导体棒不是直的,则E=Blv中的l为切割磁感线的导体棒的有效长度.下图中,棒的有效长度均为ab间的距离.
2.导体转动切割磁感线
导体棒以端点为轴,在垂直于磁感线的平面内以角速度ω匀速转动产生的感应电动势E=12Bωl2(导体棒的长度为l).
1.如图,直角三角形金属框abc放置在匀强磁场中,磁感应强度大小为B,方向平行于ab边向上,当金属框绕ab边以角速度ω逆时针转动时,a、b、c三点的电势分别为Ua、Ub、Uc.已知bc边的长度为l.下列判断正确的是()
A.UaUc,金属框中无电流
B.UbUc,金属框中的电流方向沿abca
C.Ubc=-12Bl2ω,金属框中无电流
D.Uac=12Bl2ω,金属框中电流方向沿acba
解析:选C.金属框abc平面与磁场平行,转动过程中磁通量始终为零,所以无感应电流产生,选项B、D错误.转动过程中bc边和ac边均切割磁感线,产生感应电动势,由右手定则判断UaUc,UbUc,选项A错误.由转动切割产生感应电动势的公式得Ubc=-12Bl2ω,选项C正确.
2.如图所示,abcd为水平放置的平行“匚”形光滑金属导轨,间距为l,导轨间有垂直于导轨平面的匀强磁场,磁感应强度大小为B,导轨电阻不计,已知金属杆MN倾斜放置,与导轨成θ角,单位长度的电阻为r,保持金属杆以速度v沿平行于cd的方向滑动(金属杆滑动过程中与导轨接触良好).则()
A.电路中感应电动势的大小为Blvsinθ
B.电路中感应电流的大小为Bvsinθr
C.金属杆所受安培力的大小为B2lvsinθr
D.金属杆的热功率为B2lv2rsinθ
解析:选B.金属杆的运动方向与金属杆不垂直,电路中感应电动势的大小为E=Blv(l为切割磁感线的有效长度),选项A错误;电路中感应电流的大小为I=ER=Blvlrsinθ=Bvsinθr,选项B正确;金属杆所受安培力的大小为F=BIl′=BBvsinθrlsinθ=B2lvr,选项C错误;金属杆的热功率为P=I2R=B2v2sin2θr2lrsinθ=B2lv2sinθr,选项D错误.
3.(20xx山东济南模拟)在范围足够大,方向竖直向下的匀强磁场中,磁感应强度B=0.2T,有一水平放置的光滑框架,宽度L=0.4m,如图所示,框架上放置一质量m=0.05kg、电阻R=1Ω的金属杆cd,框架电阻不计.若杆cd在水平外力F的作用下以恒定加速度a=2m/s2,由静止开始向右做匀变速运动,求:
(1)在5s内平均感应电动势E是多少?
(2)第5s末回路中的电流I多大?
(3)第5s末作用在杆cd上的水平外力F多大?
解析:(1)t=5s内金属杆的位移
x=12at2=25m
5s内的平均速度
v=xt=5m/s也可用v=0+v52求解
故平均感应电动势E=BLv=0.4V
(2)第5s末杆的速度v=at=10m/s
此时感应电动势E=BLv
则回路中的电流为I=ER=BLvR=0.8A
(3)杆cd匀加速运动,由左手定则判得所受安培力方向向左,由牛顿第二定律得F-F安=ma
杆cd所受安培力F安=BIL,
即F=BIL+ma=0.164N
答案:(1)0.4V(2)0.8A(3)0.164N
求解感应电动势常见情况与方法
情景图
研究对象回路(不一定闭合)一段直导线(或等效成直导线)绕一端转动的一段导体棒绕与B垂直且在导线框平面内的轴转动的导线框
表达式E=nΔΦΔt
E=BLvsinθE=12BL2ω
E=NBSωsin(ωt+φ0)
考点三自感现象的理解及应用
1.自感现象的四大特点
(1)自感电动势总是阻碍导体中原电流的变化.
(2)通过线圈中的电流不能发生突变,只能缓慢变化.
(3)电流稳定时,自感线圈就相当于普通导体.
(4)线圈的自感系数越大,自感现象越明显,自感电动势只是延缓了过程的进行,但它不能使过程停止,更不能使过程反向.
2.自感中“闪亮”与“不闪亮”问题
与线圈串联的灯泡与线圈并联的灯泡
电路图
通电时电流逐渐增大,灯泡逐渐变亮电流突然增大,然后逐渐减小达到稳定
断电时电流逐渐减小,灯泡逐渐变暗,电流方向不变电路中稳态电流为I1、I2:①若I2≤I1,灯泡逐渐变暗;②若I2>I1,灯泡闪亮后逐渐变暗.两种情况灯泡中电流方向均改变.
1.(多选)如图甲、乙所示,电路中的电阻R和自感线圈L的电阻值都很小,且小于灯泡A的电阻,接通S,使电路达到稳定,灯泡A发光,则()
A.在电路甲中,断开S后,A将逐渐变暗
B.在电路甲中,断开S后,A将先变得更亮,然后才逐渐变暗
C.在电路乙中,断开S后,A将逐渐变暗
D.在电路乙中,断开S后,A将先变得更亮,然后才逐渐变暗
解析:选AD.题图甲所示电路中,灯A和线圈L串联,电流相同,断开S时,线圈上产生自感电动势,阻碍原电流的减小,通过R、A形成回路,灯A逐渐变暗.题图乙所示电路中,电阻R和灯A串联,灯A和电阻R的总电阻大于线圈L的电阻,电流则小于线圈L中的电流,断开S时,电源不给灯供电,而线圈L产生自感电动势阻碍电流的减小,通过R、A形成回路,灯A中电流比原来大,变得更亮,然后逐渐变暗.
2.(多选)如图所示,电路中A和B是两个完全相同的小灯泡,L是一个自感系数很大、直流电阻为零的电感线圈,C是电容很大的电容器.当S闭合与断开时,对A、B的发光情况判断正确的是()
A.S闭合时,A立即亮,然后逐渐熄灭
B.S闭合时,B立即亮,然后逐渐熄灭
C.S闭合足够长时间后,B发光而A不发光
D.S闭合足够长时间后再断开,B立即熄灭而A逐渐熄灭
答案:AC.
3.(多选)如图所示的电路中,L为一个自感系数很大、直流电阻不计的线圈,D1、D2是两个完全相同的电灯,E是内阻不计的电源.t=0时刻,闭合开关S.经过一段时间后,电路达到稳定,t1时刻断开开关S.I1、I2分别表示通过电灯D1和D2中的电流,规定图中箭头所示方向为电流正方向,以下各图中能定性描述电流I随时间t变化关系的是()
解析:选AC.当S闭合时,L的自感作用会阻碍其中的电流变大,电流从D1流过;当L的阻碍作用变小时,L中的电流变大,D1中的电流变小至零;D2中的电流为电路总电流,电流流过D1时,电路总电阻较大,电流较小,当D1中电流为零时,电流流过L与D2,总电阻变小,电流变大至稳定;当S再断开时,D2马上熄灭,D1与L组成回路,由于L的自感作用,D1慢慢熄灭,电流反向且减小;综上所述知选项A、C正确.
(1)对自感现象“阻碍”作用的理解
①流过线圈的电流增加时,线圈中产生的自感电动势阻碍电流的增加,使其缓慢地增加;
②流过线圈的电流减小时,线圈中产生的自感电动势阻碍原电流的减小,使其缓慢地减小.
(2)分析自感现象应注意
①通过自感线圈中的电流不能发生突变,即通电过程中,电流逐渐变大,断电过程中,电流逐渐变小,此时线圈可等效为“电源”,该“电源”与其他电路元件形成回路;
②断电自感现象中灯泡是否“闪亮”的判断:若断电后通过灯泡的电流比原来强,则灯泡先闪亮,再慢慢熄灭.
课时规范训练
[基础巩固题组]
1.(多选)粗细均匀的导线绕成匝数为n、半径为r的圆形闭合线圈.线圈放在磁场中,磁场的磁感应强度随时间均匀增大,线圈中产生的电流为I,下列说法正确的是()
A.电流I与匝数n成正比
B.电流I与线圈半径r成正比
C.电流I与线圈面积S成正比
D.电流I与导线横截面积S0成正比
解析:选BD.由题给条件可知感应电动势为E=nπr2ΔBΔt,电阻为R=ρn2πrS0,电流I=ER,联立以上各式得I=S0r2ρΔBΔt,则可知B、D项正确,A、C项错误.
2.(多选)法拉第圆盘发电机的示意图如图所示.铜圆盘安装在竖直的铜轴上,两铜片P、Q分别与圆盘的边缘和铜轴接触.圆盘处于方向竖直向上的匀强磁场B中.圆盘旋转时,关于流过电阻R的电流,下列说法正确的是()
A.若圆盘转动的角速度恒定,则电流大小恒定
B.若从上向下看,圆盘顺时针转动,则电流沿a到b的方向流动
C.若圆盘转动方向不变,角速度大小发生变化,则电流方向可能发生变化
D.若圆盘转动的角速度变为原来的2倍,则电流在R上的热功率也变为原来的2倍
解析:选AB.由右手定则知,圆盘按如题图所示的方向转动时,感应电流沿a到b的方向流动,选项B正确;由感应电动势E=12Bl2ω知,角速度恒定,则感应电动势恒定,电流大小恒定,选项A正确;角速度大小变化,感应电动势大小变化,但感应电流方向不变,选项C错误;若ω变为原来的2倍,则感应电动势变为原来的2倍,电流变为原来的2倍,由P=I2R知,电流在R上的热功率变为原来的4倍,选项D错误.
3.(多选)一导线弯成如图所示的闭合线圈,以速度v向左匀速进入磁感应强度为B的匀强磁场,磁场方向垂直纸面向外.线圈总电阻为R,从线圈进入磁场开始到完全进入磁场为止,下列结论正确的是()
A.感应电流一直沿顺时针方向
B.线圈受到的安培力先增大,后减小
C.感应电动势的最大值E=Brv
D.穿过线圈某个横截面的电荷量为Br2+πr2R
解析:选AB.在闭合线圈进入磁场的过程中,通过闭合线圈的磁通量逐渐增大,根据楞次定律可知感应电流的方向一直沿顺时针方向,A正确;线圈切割磁感线的有效长度先变长后变短,感应电流先变大后变小,安培力也先变大后变小,B正确;线圈切割磁感线的有效长度最大值为2r,感应电动势最大值E=2Brv,C错误;穿过线圈某个横截面的电荷量为Q=ΔΦR=Br2+π2r2R,D错误.
4.如图所示,正方形线框的左半侧处在磁感应强度为B的匀强磁场中,磁场方向与线框平面垂直,线框的对称轴MN恰与磁场边缘平齐.若第1次将线框从磁场中以恒定速度v1向右匀速拉出,第2次以线速度v2让线框绕轴MN匀速转过90°,为使两次操作过程中,线框产生的平均感应电动势相等,则()
A.v1∶v2=2∶πB.v1∶v2=π∶2
C.v1∶v2=1∶2D.v1∶v2=2∶1
解析:选A.第1次将线框从磁场中以恒定速度v1向右匀速拉出,线框中的感应电动势恒定,有E1=E1=BLv1.第2次以线速度v2让线框绕轴MN匀速转过90°,所需时间t=πr2v2=πL4v2,线框中的磁通量变化量ΔΦ=BLL2=12BL2,产生的平均电动势E2=ΔΦt=2BLv2π.由题意知E1=E2,可得v1∶v2=2∶π,A正确.
5.如图所示的电路,电源电动势为E,线圈L的电阻不计,以下判断正确的是()
A.闭合S,稳定后,电容器两端电压为E
B.闭合S,稳定后,电容器的a极板带正电
C.断开S的瞬间,电容器的a极板将带正电
D.断开S的瞬间,电容器的a极板将带负电
解析:选C.由题意及自感现象规律可知,当开关S闭合且电路稳定后,电容器与线圈L并联,由于线圈的直流电阻不计,所以电容器两端电压为零,故A、B项错误;断开S的瞬间,由自感规律可知,线圈中要产生感应电动势,感应电动势引起的感应电流的方向与原电流的方向一致,因而电容器的a极板将带正电,故C项正确.
[综合应用题组]
6.光滑曲面与竖直平面的交线是抛物线,如右图所示,抛物线的方程是y=x2,下半部处在一个水平方向的匀强磁场中,磁场的上边界是y=a的直线(图中的虚线所示),一个小金属块从抛物线上y=b(b>a)处以速度v沿抛物线下滑,假设抛物线足够长,金属块沿抛物线下滑后产生的焦耳热总量是()
A.mgbB.12mv2
C.mg(b-a)D.mg(b-a)+12mv2
解析:选D.金属块在进出磁场过程中要产生感应电流,机械能要减少,上升的最大高度不断降低,最后刚好飞不出磁场,就往复运动永不停止,由能量守恒可得Q=ΔE=12mv2+mg(b-a).
7.如图所示,边长为2L的正方形虚线框内有垂直于纸面向里的匀强磁场,磁感应强度大小为B.一个边长为L、粗细均匀的正方形导线框abcd,其所在平面与磁场方向垂直,导线框的对角线与虚线框的对角线在一条直线上,导线框各边的电阻大小均为R.在导线框从图示位置开始以恒定速度沿对角线方向进入磁场,到整个导线框离开磁场区域的过程中,下列说法正确的是()
A.导线框进入磁场区域时产生顺时针方向的感应电流
B.导线框中有感应电流的时间为2Lv
C.导线框的bd对角线有一半进入磁场时,整个导线框所受安培力大小为B2L2v4R
D.导线框的bd对角线有一半进入磁场时,导线框a、c两点间的电压为2BLv4
解析:选D.根据楞次定律知,感应电流的效果总是阻碍磁通量的变化,故由楞次定律判断出,导线框进入磁场区域时产生的感应电流的方向为逆时针方向,故选项A错误;导线框完全进入磁场后感应电流消失,导线框从开始进入磁场到完全进入经历的时间为2Lv,穿出的时间也为2Lv,导线框中有感应电流的时间为t=2Lv×2,故选项B错误;导线框的bd对角线有一半进入磁场时,导体的有效切割长度为2L2,感应电动势为2BLv2,由安培力公式可算出安培力为B2L2v8R,故选项C错误;导线框的bd对角线有一半进入磁场时,导线框a、c两点间的电压为电动势的一半,即2BLv4,故选项D正确.
8.如图所示的电路中,A、B、C是三个完全相同的灯泡,L是一个自感系数较大的线圈,其直流电阻与灯泡电阻相同.下列说法正确的是()
A.闭合开关S,A灯逐渐变亮
B.电路接通稳定后,流过B灯的电流是流过C灯电流的32
C.电路接通稳定后,断开开关S,C灯立即熄灭
D.电路接通稳定后,断开开关S,A、B、C灯过一会儿才熄灭,且A灯亮度比B、C灯亮度高
解析:选D.画出等效电路如图所示,闭合开关S,所有的灯都立即变亮,A错误;电路稳定后,线圈和灯泡A的并联电阻为R2,与B灯的串联电阻为3R2,C灯的电阻为R,根据并联电路分流与电阻成反比,故流过B灯的电流是流过C灯电流的23,B错误;断开开关S,线圈产生的感应电动势对三个灯泡供电,因此三个灯泡都过一会才熄灭,供电电路是B、C灯串联与A灯并联,因此A灯的亮度比B、C灯的亮度高,C错误,D正确.
9.如图所示,PQQ2P2是由两个正方形导线方格PQQ1P1、P1Q1Q2P2构成的网络电路.方格每边长度l=10cm.在x0的半空间分布有随时间t均匀增加的匀强磁场,磁场方向垂直于xOy平面并指向纸内.今令网络电路PQQ2P2以恒定的速度v=5cm/s沿x轴正方向运动并进入磁场区域,在运动过程中方格的边PQ始终与y轴平行.若取PQ与y轴重合的时刻为t=0,在以后任一时刻t磁场的磁感应强度为B=B0+bt,式中t的单位为s,B0、b为已知恒量.当t=2.5s时刻,方格PQQ1P1中的感应电动势是E1,方格P1Q1Q2P2中的感应电动势是E2.E1、E2的表达式正确的是()
A.E1=B0lvB.E1=bl2
C.E2=bl24D.E2=(B0+bt)lv
解析:选B.经过2.5s,线框向右运动了12.5cm,此时右边的线框只有感生电动势,根据法拉第电磁感应定律得E1=bl2,B正确,A错误;此时左边的线框只有右边在磁场中,离磁场边界0.25l,线框中既有动生电动势又有感生电动势,故电动势的大小E2=(B0+2.5b)lv+0.25bl2,C、D错误.
10.小明同学设计了一个“电磁天平”,如图1所示,等臂天平的左臂为挂盘,右臂挂有矩形线圈,两臂平衡.线圈的水平边长L=0.1m,竖直边长H=0.3m,匝数为n1.线圈的下边处于匀强磁场内,磁感应强度B0=1.0T,方向垂直线圈平面向里.线圈中通有可在0~2.0A范围内调节的电流I.挂盘放上待测物体后,调节线圈中电流使天平平衡,测出电流即可测得物体的质量.(重力加速度取g=10m/s2)
(1)为使电磁天平的量程达到0.5kg,线圈的匝数n1至少为多少?
(2)进一步探究电磁感应现象,另选n2=100匝、形状相同的线圈,总电阻R=10Ω.不接外电流,两臂平衡.如图2所示,保持B0不变,在线圈上部另加垂直纸面向外的匀强磁场,且磁感应强度B随时间均匀变大,磁场区域宽度d=0.1m.当挂盘中放质量为0.01kg的物体时,天平平衡,求此时磁感应强度的变化率ΔBΔt.
解析:(1)线圈受到安培力F=n1B0IL
天平平衡mg=n1B0IL
代入数据得n1=25匝
(2)由电磁感应定律得E=n2ΔΦΔt
即E=n2ΔBΔtLd
由欧姆定律得I′=ER
线圈受到安培力F′=n2B0I′L
天平平衡m′g=n22B0ΔBΔtdL2R
代入数据可得ΔBΔt=0.1T/s
答案:(1)25匝(2)0.1T/s
11.(1)如图甲所示,两根足够长的平行导轨,间距L=0.3m,在导轨间有垂直纸面向里的匀强磁场,磁感应强度B1=0.5T.一根直金属杆MN以v=2m/s的速度向右匀速运动,杆MN始终与导轨垂直且接触良好.杆MN的电阻r1=1Ω,导轨的电阻可忽略.求杆MN中产生的感应电动势E1.
(2)如图乙所示,一个匝数n=100的圆形线圈,面积S1=0.4m2,电阻r2=1Ω.在线圈中存在面积S2=0.3m2垂直线圈平面(指向纸外)的匀强磁场区域,磁感应强度B2随时间t变化的关系如图丙所示.求圆形线圈中产生的感应电动势E2.
(3)有一个R=2Ω的电阻,将其两端a、b分别与图甲中的导轨和图乙中的圆形线圈相连接,b端接地.试判断以上两种情况中,哪种情况a端的电势较高?求这种情况中a端的电势φa.
解析:(1)杆MN做切割磁感线的运动,E1=B1Lv
产生的感应电动势E1=0.3V.
(2)穿过圆形线圈的磁通量发生变化,E2=nΔB2ΔtS2
产生的感应电动势E2=4.5V.
(3)当电阻R与题图甲中的导轨相连接时,a端的电势较高
通过电阻R的电流I=E1R+r1
电阻R两端的电势差φa-φb=IR
a端的电势φa=IR=0.2V.
答案:(1)0.3V(2)4.5V(3)与图甲中的导轨相连接a端电势高φa=0.2V
第3节电磁感应的综合应用
一、电磁感应中的电路问题
1.电源和电阻
2.电流方向
在外电路,电流由高电势流向低电势;在内电路,电流由低电势流向高电势.
二、电磁感应中的图象问题
图象类型①随时间t变化的图象,如B-t图象、Φ-t图象、E-t图象和I-t图象
②随位移x变化的图象,如E-x图象和I-x图象
问题类型①由给定的电磁感应过程判断或画出正确的图象
②由给定的有关图象分析电磁感应过程,求解相应的物理量(用图象)
应用知识左手定则、安培定则、右手定则、楞次定律、法拉第电磁感应定律、欧姆定律、牛顿运动定律,函数图象等知识
三、电磁感应中的动力学问题
1.安培力的大小
感应电动势:E=Blv感应电流:I=ER+r安培力公式:F=BIlF=B2l2vR+r
2.安培力的方向
(1)先用右手定则确定感应电流方向,再用左手定则确定安培力方向.
(2)根据楞次定律,安培力方向一定和导体切割磁感线运动方向相反.
四、电磁感应中的能量问题
1.能量的转化
闭合电路的部分导体做切割磁感线运动产生感应电流,感应电流在磁场中受安培力.外力克服安培力做功,将其他形式的能转化为电能,电流做功再将电能转化为其他形式的能.
2.实质
电磁感应现象的能量转化,实质是其他形式的能和电能之间的转化.
[自我诊断]
1.判断正误
(1)闭合电路的欧姆定律同样适用于电磁感应电路.(√)
(2)“相当于电源”的导体棒两端的电压一定等于电源的电动势.(×)
(3)闭合电路中电流一定从高电势流向低电势.(×)
(4)在有安培力的作用下,导体棒不能做加速运动.(×)
(5)电磁感应中求焦耳热时,均可直接用公式Q=I2Rt.(×)
(6)电路中的电能增加,外力一定克服安培力做了功.(√)
2.如图所示,两个互连的金属圆环,粗金属环的电阻是细金属环电阻的一半,磁场垂直穿过粗金属环所在的区域,当磁感应强度均匀变化时,在粗环内产生的电动势为E,则ab两点间的电势差为()
A.E2B.E3
C.2E3D.E
解析:选C.粗环相当于电源,细环相当于负载,ab间的电势差就是等效电路的路端电压.粗环电阻是细环电阻的一半,则路端电压是电动势的23,即Uab=2E3.
3.如图所示,水平光滑的平行金属导轨,左端接有电阻R,匀强磁场B竖直向下分布在导轨所在的空间内,质量一定的金属棒PQ垂直导轨放置.今使棒以一定的初速度v0向右运动,当其通过位置a、b时,速率分别为va、vb,到位置c时棒刚好静止,设导轨与棒的电阻均不计,a到b与b到c的间距相等,则金属棒在由a到b和由b到c的两个过程中()
A.回路中产生的内能相等
B.棒运动的加速度相等
C.安培力做功相等
D.通过棒横截面积的电荷量相等
解析:选D.棒由a到b再到c的过程中,速度逐渐减小,根据E=Blv,E减小,故I减小,再根据F=IlB可知安培力减小,根据F=ma可知加速度减小,选项B错误.由于a到b与b到c的间距相等,故从a到b安培力做的功大于从b到c安培力做的功,故选项A、C错误.再根据平均感应电动势E=ΔΦΔt=BΔSΔt,平均感应电流I=ER=BΔSRΔt,通过棒横截面积的电荷量为q=IΔt=BΔSR,故选项D正确.
4.如图,一载流长直导线和一矩形线框固定在同一平面内,线框在长直导线右侧,且其长边与长直导线平行.已知在t=0到t=t1的时间间隔内,长直导线中电流i发生某种变化,而线框中的感应电流总是沿顺时针方向,线框受到的安培力的合力先水平向左,后水平向右.设电流i的正方向与图中箭头所示方向相同,则i随时间t变化的图线可能是()
解析:选A.因通电导线周围的磁场离导线越近磁场越强,而线框中左右两边的电流大小相等,方向相反,所以其受到的安培力方向相反,线框的左边受到的安培力大于线框的右边受到的安培力,所以合力与线框的左边受力的方向相同.因为线框受到的安培力的合力先水平向左,后水平向右,根据左手定则,线框处的磁场方向先垂直纸面向里,后垂直纸面向外,根据右手螺旋定则,导线中的电流先为正,后为负,所以选项A正确,B、C、D错误.
考点一电磁感应中的电路问题
1.内电路和外电路
(1)切割磁感线运动的导体或磁通量发生变化的线圈都相当于电源.
(2)该部分导体的电阻或线圈的电阻相当于电源的内阻,其余部分是外电阻.
2.电源电动势和路端电压
(1)电动势:E=Blv或E=nΔΦΔt.
(2)路端电压:U=IR=E-Ir=ER+rR.
1.(20xx江西赣中南五校联考)如图所示,用相同导线制成的边长为L或2L的4个单匝闭合回路,它们以相同的速度先后垂直穿过正方形匀强磁场区域,磁场方向垂直纸面向外,区域宽度大于2L,则进入磁场过程中,电流最大的回路是()
A.甲B.乙
C.丙D.丁
解析:选C.线框进入磁场过程中,做切割磁感线运动,产生的感应电动势E=Bdv,根据电阻定律可知,线框的电阻R=ρLS,由闭合电路欧姆定律可知,回路中的感应电流I=ER,联立以上各式有I=BSvρdL,所以线框切割磁感线的边长d越长,总长度L越短,其感应电流越大,对照4种图形可知,C正确.
2.(20xx贵州七校联考)(多选)如图所示,两根足够长的光滑金属导轨水平平行放置,间距为l=1m,cd间、de间、cf间分别接阻值为R=10Ω的电阻.一阻值为R=10Ω的导体棒ab以速度v=4m/s匀速向左运动,导体棒与导轨接触良好,导轨所在平面存在磁感应强度大小为B=0.5T、方向竖直向下的匀强磁场.下列说法中正确的是()
A.导体棒ab中电流的流向为由b到a
B.cd两端的电压为1V
C.de两端的电压为1V
D.fe两端的电压为1V
解析:选BD.由右手定则可判知A错误;由法拉第电磁感应定律E=Blv=0.5×1×4V=2V,Ucd=RR+RE=1V,B正确;由于de、cf间电阻没有电流流过,故Ude=Ucf=0,所以Ufe=Ucd=1V,C错误,D正确.
3.(多选)如图所示电路中,均匀变化的匀强磁场只存在于虚线框内,三个电阻阻值之比R1∶R2∶R3=1∶2∶3,其他部分电阻不计.当S3断开,而S1、S2闭合时,回路中感应电流为I,当S1断开,而S2、S3闭合时,回路中感应电流为5I,当S2断开,而S1、S3闭合时,可判断()
A.闭合回路中感应电流为4I
B.闭合回路中感应电流为7I
C.R1、R3消耗的功率之比PR1∶PR3=3∶1
D.上下两部分磁场的面积之比S上∶S下=3∶25
解析:选BD.因R1∶R2∶R3=1∶2∶3,可以设R1=R,R2=2R,R3=3R.由题图可知,当S1、S2闭合S3断开时,电阻R1与R2组成闭合回路,设此时感应电动势是E1,由欧姆定律可得E1=3IR;当S2、S3闭合S1断开时,电阻R2与R3组成闭合回路,设感应电动势为E2,由欧姆定律可得E2=5I×5R=25IR;当S1、S3闭合S2断开时,电阻R1与R3组成闭合回路,此时感应电动势E=E1+E2=28IR,则此时的电流I′=28IR4R=7I,A错误,B正确.
根据P=I2R可知,串联电路电流相等,则各电阻的功率与电阻阻值成正比,故PR1∶PR3=1∶3,C错误.E1=3IR,E2=25IR,再根据法拉第电磁感应定律E=SΔBΔt可知,上下两部分磁场的面积之比S上∶S下=3∶25,D正确.
4.(20xx湖北咸宁联考)如图所示,水平面上有两根光滑金属导轨平行固定放置,导轨的电阻不计,间距为l=0.5m,左端通过导线与阻值R=3Ω的电阻连接,右端通过导线与阻值为RL=6Ω的小灯泡L连接,在CDFE矩形区域内有竖直向上,磁感应强度B=0.2T的匀强磁场.一根阻值r=0.5Ω、质量m=0.2kg的金属棒在恒力F=2N的作用下由静止开始从AB位置沿导轨向右运动,经过t=1s刚好进入磁场区域.求金属棒刚进入磁场时:
(1)金属棒切割磁感线产生的电动势;
(2)小灯泡两端的电压和金属棒受到的安培力.
解析:(1)0~1s棒只受拉力,由牛顿第二定律得F=ma,金属棒进入磁场前的加速度a=Fm=10m/s2.
设其刚要进入磁场时速度为v,v=at=10×1m/s=10m/s.
金属棒进入磁场时切割磁感线,感应电动势E=Blv=0.2×0.5×10V=1V.
(2)小灯泡与电阻R并联,R并=RRLR+RL=2Ω,通过金属棒的电流大小I=ER并+r=0.4A,小灯泡两端的电压U=E-Ir=1V-0.4×0.5V=0.8V.
金属棒受到的安培力大小FA=BIl=0.2×0.4×0.5N=0.04N,由右手定则和左手定则可判断安培力方向水平向左.
答案:(1)1V(2)0.8V0.04N,方向水平向左
解决电磁感应中的电路问题三部曲
考点二电磁感应中的图象问题
1.图象问题的求解类型
类型据电磁感应过程选图象据图象分析判断电磁感应过程
求解流程
2.解题关键
弄清初始条件、正负方向的对应变化范围、所研究物理量的函数表达式、进出磁场的转折点等是解决此类问题的关键.
3.解决图象问题的一般步骤
(1)明确图象的种类,即是B-t图还是Φ-t图,或者E-t图、I-t图等;
(2)分析电磁感应的具体过程;
(3)用右手定则或楞次定律确定方向的对应关系;
(4)结合法拉第电磁感应定律、欧姆定律、牛顿运动定律等知识写出函数关系式;
(5)根据函数关系式,进行数学分析,如分析斜率的变化、截距等;
(6)画图象或判断图象.
考向1:据电磁感应过程选择图象
问题类型由给定的电磁感应过程选出正确的图象
解题关键根据题意分析相关物理量的函数关系、分析物理过程中的转折点、明确“+、-”号的含义,结合数学知识做正确的判断
[典例1](20xx湖北宜昌模拟)如图所示,有一等腰直角三角形的区域,其斜边长为2L,高为L.在该区域内分布着如图所示的磁场,左侧小三角形内磁场方向垂直纸面向外,右侧小三角形内磁场方向垂直纸面向里,磁感应强度大小均为B.一边长为L、总电阻为R的正方形导线框abcd,从图示位置开始沿x轴正方向以速度v匀速穿过磁场区域.取沿a→b→c→d→a的感应电流方向为正,则图中表示线框中电流i随bc边的位置坐标x变化的图象正确的是()
解析bc边的位置坐标x在L~2L过程,线框bc边有效切割长度为l1=x-L,感应电动势为E=Bl1v=B(x-L)v,感应电流i1=ER=Bx-LvR,根据楞次定律判断出感应电流方向沿a→b→c→d→a,为正值.x在2L~3L过程,ad边和bc边都切割磁感线,产生感应电动势,根据楞次定律判断出感应电流方向沿a→d→c→b→a,为负值,有效切割长度为l2=L,感应电动势为E=Bl2v=BLv,感应电流i2=-BLvR.x在3L~4L过程,线框ad边有效切割长度为l3=L-(x-3L)=4L-x,感应电动势为E=Bl3v=B(4L-x)v,感应电流i3=B4L-xvR,根据楞次定律判断出感应电流方向沿a→b→c→d→a,为正值.根据数学知识知道D正确.
答案D
考向2:据图象分析判断电磁感应过程
问题类型由电磁感应图象得出的物理量和规律分析求解动力学、电路等问题
解题关键第一个关键是破译,即解读图象中的关键信息(尤其是过程信息),另一个关键是转换,即有效地实现物理信息和数学信息的相互转换
[典例2](20xx河南中原名校联考)如图甲,在水平桌面上固定着两根相距L=20cm、相互平行的无电阻轨道P、Q,轨道一端固定一根电阻R=0.02Ω的导体棒a,轨道上横置一根质量m=40g、电阻可忽略不计的金属棒b,两棒相距也为L=20cm,该轨道平面处在磁感应强度大小可以调节的竖直向上的匀强磁场中.开始时,磁感应强度B0=0.1T.设棒与轨道间的最大静摩擦力等于滑动摩擦力,g取10m/s2.
(1)若保持磁感应强度B0的大小不变,从t=0时刻开始,给b棒施加一个水平向右的拉力,使它由静止开始做匀加速直线运动.此拉力F的大小随时间t变化关系如图乙所示.求b棒做匀加速运动的加速度及b棒与轨道间的滑动摩擦力;
(2)若从t=0开始,磁感应强度B随时间t按图丙中图象所示的规律变化,求在金属棒b开始运动前,这个装置释放的热量.
解析(1)F安=B0IL①
E=B0Lv②
I=ER=B0LvR③
v=at④
所以F安=B20L2aRt
当b棒匀加速运动时,根据牛顿第二定律有
F-f-F安=ma⑤
联立可得F-f-B20L2aRt=ma⑥
由图象可得:当t=0时,F=0.4N,当t=1s时,
F=0.5N.
代入⑥式,可解得a=5m/s2,f=0.2N.
(2)当磁感应强度均匀增大时,闭合电路中有恒定的感应电流I,以b棒为研究对象,它受到的安培力逐渐增大,静摩擦力也随之增大,当磁感应强度增大到b所受安培力F安′与最大静摩擦力f相等时开始滑动.
感应电动势E′=ΔBΔtL2=0.02V⑦
I′=E′R=1A⑧
棒b将要运动时,有F安′=BtI′L=f⑨
所以Bt=1T,根据Bt=B0+ΔBΔtt⑩
得t=1.8s.
回路中产生的焦耳热为Q=I′2Rt=0.036J.
答案(1)5m/s20.2N(2)0.036J
考向3:图象的描绘
问题类型由题目给出的电磁感应现象画出所求物理量的图象
解题关键由题目给出的电磁感应过程结合所学物理规律求出所求物理量的函数关系式,然后在坐标系中做出相对应的图象
[典例3]如图甲所示,水平面上固定一个间距L=1m的光滑平行金属导轨,整个导轨处在竖直方向的磁感应强度B=1T的匀强磁场中,导轨一端接阻值R=9Ω的电阻.导轨上有质量m=1kg、电阻r=1Ω、长度也为1m的导体棒,在外力的作用下从t=0开始沿平行导轨方向运动,其速度随时间的变化规律是v=2t,不计导轨电阻.求:
(1)t=4s时导体棒受到的安培力的大小;
(2)请在如图乙所示的坐标系中画出电流平方与时间的关系(I2t)图象.
解析(1)4s时导体棒的速度
v=2t=4m/s
感应电动势E=BLv,感应电流I=ER+r
此时导体棒受到的安培力
F安=BIL=0.4N
(2)由(1)可得
I2=ER+r2=4BLR+r2t=0.04t
作出图象如图所示.
答案(1)0.4N(2)见解析图
(1)处理图象问题要做到“四明确、一理解”
(2)电磁感应中图象类选择题的两个常用方法
①排除法:定性地分析电磁感应过程中物理量的变化趋势(增大还是减小)、变化快慢(均匀变化还是非均匀变化),特别是分析物理量的正负,以排除错误的选项.
②函数法:根据题目所给条件定量地写出两个物理量之间的函数关系,然后由函数关系对图象进行分析和判断.
考点三电磁感应中的动力学和能量问题
1.两种状态及处理方法
状态特征处理方法
平衡态加速度为零根据平衡条件列式分析
非平衡态加速度不为零根据牛顿第二定律进行动态分析或结合功能关系进行分析
2.力学对象和电学对象的相互关系
3.能量转化过程的理解
(1)电磁感应现象中产生感应电流的过程,实质上是能量的转化过程.
(2)电磁感应过程中产生的感应电流在磁场中必定受到安培力的作用,因此,要维持感应电流的存在,必须有“外力”克服安培力做功,将其他形式的能转化为电能.“外力”克服安培力做了多少功,就有多少其他形式的能转化为电能.
(3)当感应电流通过用电器时,电能又转化为其他形式的能.安培力做功的过程,或通过电阻发热的过程,是电能转化为其他形式能的过程.安培力做了多少功,就有多少电能转化为其他形式的能.
1.(20xx安徽宿州一模)(多选)两根足够长的平行光滑导轨竖直固定放置,顶端接一电阻R,导轨所在平面与匀强磁场垂直.将一金属棒与下端固定的轻弹簧的上端拴接,金属棒和导轨接触良好,重力加速度为g,如图所示.现将金属棒从弹簧原长位置由静止释放,则()
A.金属棒在最低点的加速度小于g
B.回路中产生的总热量等于金属棒重力势能的减少量
C.当弹簧弹力等于金属棒的重力时,金属棒下落速度最大
D.金属棒在以后运动过程中的最大高度一定低于静止释放时的高度
解析:选AD.金属棒先向下做加速运动,后向下做减速运动,假设没有磁场,金属棒运动到最低点时,根据简谐运动的对称性可知,最低点的加速度等于刚释放时的加速度g,由于金属棒向下运动的过程中产生感应电流,受到安培力,而安培力是阻力,则知金属棒下降的高度小于没有磁场时的高度,故金属棒在最低点的加速度小于g.故A正确.根据能量守恒定律得知,回路中产生的总热量等于金属棒重力势能的减少量与弹簧弹性势能增加量之差,故B错误,金属棒向下运动的过程中,受到重力、弹簧的弹力和安培力三个力作用,当三力平衡时,速度最大,即当弹簧弹力、安培力之和等于金属棒的重力时,金属棒下落速度最大,故C错误.由于产生内能,且弹簧具有弹性势能,由能量守恒得知,金属棒在以后运动过程中的最大高度一定低于静止释放时的高度,故D正确.
2.(20xx河北邯郸一模)如图所示,一足够长的光滑平行金属轨道,轨道平面与水平面成θ角,上端与一电阻R相连,处于方向垂直轨道平面向上的匀强磁场中.质量为m、电阻为r的金属杆ab,从高为h处由静止释放,下滑一段时间后,金属杆开始以速度v匀速运动直到轨道的底端.金属杆始终保持与轨道垂直且接触良好,轨道的电阻及空气阻力均可忽略不计,重力加速度为g.则()
A.金属杆加速运动过程中的平均速度为v/2
B.金属杆加速运动过程中克服安培力做功的功率大于匀速运动过程中克服安培力做功的功率
C.当金属杆的速度为v/2时,它的加速度大小为gsinθ2
D.整个运动过程中电阻R产生的焦耳热为mgh-12mv2
解析:选C.对金属杆分析知,金属杆ab在运动过程中受到重力、轨道支持力和安培力作用,先做加速度减小的加速运动,后做匀速运动,因金属杆加速运动过程不是匀加速,故其平均速度不等于v2,A错误.当安培力等于重力沿斜面的分力,即mgsinθ=B2l2vR时,杆ab开始匀速运动,此时v最大,F安最大,故匀速运动时克服安培力做功的功率大,B错误;当金属杆速度为v2时,F安′=B2l2v2R=12mgsinθ,所以F合=mgsinθ-F安′=12mgsinθ=ma,得a=gsinθ2,C正确;由能量守恒可得mgh-12mv2=Qab+QR,即mgh-12mv2应等于电阻R和金属杆上产生的总焦耳热,D错误.
一名优秀的教师在教学时都会提前最好准备,作为教师就要精心准备好合适的教案。教案可以让学生更容易听懂所讲的内容,帮助教师提前熟悉所教学的内容。写好一份优质的教案要怎么做呢?下面的内容是小编为大家整理的20xx高考物理大一轮复习:第12章-近代物理初步(6份打包有课件),供您参考,希望能够帮助到大家。
第1节光电效应波粒二象性
一、光电效应及其规律
1.光电效应现象
在光的照射下,金属中的电子从表面逸出的现象,发射出来的电子叫光电子.
2.光电效应的产生条件
入射光的频率大于金属的极限频率.
3.光电效应规律
(1)每种金属都有一个极限频率,入射光的频率必须大于这个极限频率才能产生光电效应.
(2)光电子的最大初动能与入射光的强度无关,只随入射光频率的增大而增大.
(3)光电效应的发生几乎是瞬时的,一般不超过10-9s.
(4)当入射光的频率大于极限频率时,饱和光电流的强度与入射光的强度成正比.
二、爱因斯坦光电效应方程
1.光子说
在空间传播的光不是连续的,而是一份一份的,每—份叫做一个光子,光子的能量ε=hν.
2.逸出功W0:电子从金属中逸出所需做功的最小值.
3.最大初动能:发生光电效应时,金属表面上的电子吸收光子后克服原子核的引力逸出时所具有的动能的最大值.
4.光电效应方程
(1)表达式:hν=Ek+W0或Ek=hν-W0.
(2)物理意义:金属表面的电子吸收一个光子获得的能量是hν,这些能量的一部分用来克服金属的逸出功W0,剩下的表现为逸出后电子的最大初动能.
三、光的波粒二象性
1.光的干涉、衍射、偏振现象证明光具有波动性.
2.光电效应、康普顿效应说明光具有粒子性.
3.光既具有波动性,又具有粒子性,称为光的波粒二象性.
[自我诊断]
1.判断正误
(1)任何频率的光照射到金属表面都可以发生光电效应.(×)
(2)要使某金属发生光电效应,入射光子的能量必须大于金属的逸出功.(√)
(3)光电子的最大初动能与入射光子的频率成正比.(×)
(4)光的频率越高,光的粒子性越明显,但仍具有波动性.(√)
(5)德国物理学家普朗克提出了量子假说,成功地解释了光电效应规律.(×)
(6)美国物理学家康普顿发现了康普顿效应,证实了光的粒子性.(√)
(7)法国物理学家德布罗意大胆预言了实物粒子具有波动性.(√)
2.当用一束紫外线照射锌板时,产生了光电效应,这时()
A.锌板带负电B.有正离子从锌板逸出
C.有电子从锌板逸出D.锌板会吸附空气中的正离子
解析:选C.发生光电效应时,有光电子从锌板中逸出,逸出光电子后的锌板带正电,对空气中的正离子有排斥作用,C正确.
3.(多选)一单色光照到某金属表面时,有光电子从金属表面逸出,下列说法中正确的是()
A.无论增大入射光的频率还是增大入射光的强度,金属的逸出功都不变
B.只延长入射光照射时间,光电子的最大初动能将增大
C.只增大入射光的频率,光电子的最大初动能将增大
D.只增大入射光的频率,光电子逸出所经历的时间将缩短
解析:选AC.金属逸出功只与极限频率有关,A正确.根据光电效应方程Ek=hν-W0可知,光电子的最大初动能由入射光的频率和逸出功决定,只延长入射光照射时间,光电子的最大初动能将不变,B错误,C正确.发生光电效应的条件是入射光的频率大于截止频率,光电子逸出所经历的时间几乎同时,D错误.
4.关于光的本性,下列说法正确的是()
A.光既具有波动性,又具有粒子性,这是互相矛盾和对立的
B.光的波动性类似于机械波,光的粒子性类似于质点
C.大量光子才具有波动性,个别光子只具有粒子性
D.由于光既具有波动性,又具有粒子性,无法只用其中一种去说明光的—切行为,只能认为光具有波粒二象性
解析:选D.光既具有波动性,又具有粒子性,但不同于宏观的机械波和机械粒子,波动性和粒子性是光在不同的情况下的不同表现,是同一客体的两个不同的侧面、不同属性,只能认为光具有波粒二象性,A、B、C错误,D正确.
5.在某次光电效应实验中,得到的遏止电压Uc与入射光的频率ν的关系如图所示.若该直线的斜率和截距分别为k和b,电子电荷量的绝对值为e,则普朗克常量可表示为________,所用材料的逸出功可表示为________.
解析:根据光电效应方程Ekm=hν-W0及Ekm=eUc得Uc=hνe-W0e,故he=k,b=-W0e,得h=ek,W0=-eb.
答案:ek-eb
考点一光电效应的理解
1.光电效应中的几个概念比较
(1)光子与光电子
光子指光在空间传播时的每一份能量,光子不带电;光电子是金属表面受到光照射时发射出来的电子,其本质是电子.
(2)光电子的动能与光电子的最大初动能
光照射到金属表面时,电子吸收光子的全部能量,可能向各个方向运动,需克服原子核和其他原子的阻碍而损失一部分能量,剩余部分为光电子的初动能;只有金属表面的电子直接向外飞出时,只需克服原子核的引力做功的情况,才具有最大初动能.
(3)光电流和饱和光电流
金属板飞出的光电子到达阳极,回路中便产生光电流,随着所加正向电压的增大,光电流趋于一个饱和值,这个饱和值是饱和光电流,在一定的光照条件下,饱和光电流与所加电压大小无关.
(4)光的强弱与饱和光电流
频率相同的光照射金属产生光电效应,入射光越强,饱和光电流越大.
2.对光电效应规律的解释
对应规律对规律的产生的解释
光电子的最大初动能随着入射光频率的增大而增大,与入射光强度无关电子吸收光子能量后,一部分克服原子核引力做功,剩余部分转化为光电子的初动能,只有直接从金属表面飞出的光电子才具有最大初动能,对于确定的金属,逸出功W0是一定的,故光电子的最大初动能只随入射光的频率增大而增大
光电效应具有瞬时性光照射金属时,电子吸收一个光子的能量后,动能立即增大,不需要能量积累的过程
光较强时饱和电流大光较强时,包含的光子数较多,照射金属时产生的光电子较多,因而饱和电流较大
1.(20xx高考全国乙卷)(多选)现用某一光电管进行光电效应实验,当用某一频率的光入射时,有光电流产生.下列说法正确的是()
A.保持入射光的频率不变,入射光的光强变大,饱和光电流变大
B.入射光的频率变高,饱和光电流变大
C.入射光的频率变高,光电子的最大初动能变大
D.保持入射光的光强不变,不断减小入射光的频率,始终有光电流产生
解析:选AC.产生光电效应时,光的强度越大,单位时间内逸出的光电子数越多,饱和光电流越大,说法A正确.饱和光电流大小与入射光的频率无关,说法B错误.光电子的最大初动能随入射光频率的增加而增加,与入射光的强度无关,说法C正确.减小入射光的频率,如低于极限频率,则不能发生光电效应,没有光电流产生,说法D错误.
2.(20xx广东深圳模拟)(多选)在光电效应实验中,用同一种单色光,先后照射锌和银的表面,都能发生光电效应.对于这两个过程,下列物理过程中一定不同的是()
A.遏止电压B.饱和光电流
C.光电子的最大初动能D.逸出功
解析:选ACD.同一束光照射不同的金属,一定相同的是入射光的光子能量,不同金属的逸出功不同,根据光电效应方程Ekm=hν-W0知,最大初动能不同,则遏止电压不同,选项A、C、D正确;同一束光照射,单位时间内射到金属表面的光子数目相等,所以饱和光电流是相同的,选项B错误.
3.(20xx广东省湛江一中高三模拟)(多选)用如图所示的光电管研究光电效应的实验中,用某种频率的单色光a照射光电管阴极K,电流计G的指针发生偏转.而用另一频率的单色光b照射光电管阴极K时,电流计G的指针不发生偏转,那么()
A.a光的频率一定大于b光的频率
B.只增加a光的强度可使通过电流计G的电流增大
C.增加b光的强度可能使电流计G的指针发生偏转
D.用a光照射光电管阴极K时通过电流计G的电流是由d到c
解析:选AB.由于用单色光a照射光电管阴极K,电流计G的指针发生偏转,说明发生了光电效应,而用另一频率的单色光b照射光电管阴极K时,电流计G的指针不发生偏转,说明b光不能发生光电效应,即a光的频率一定大于b光的频率;增加a光的强度可使单位时间内逸出光电子的数量增加,则通过电流计G的电流增大;因为b光不能发生光电效应,所以即使增加b光的强度也不可能使电流计G的指针发生偏转;用a光照射光电管阴极K时通过电流计G的电子的方向是由d到c,所以电流方向是由c到d.选项A、B正确.
光电效应实质及发生条件
(1)光电效应的实质是金属中的电子获得能量后逸出金属表面,从而使金属带上正电.
(2)能否发生光电效应,不取决于光的强度,而是取决于光的频率.只要照射光的频率大于该金属的极限频率,无论照射光强弱,均能发生光电效应.
考点二光电效应方程及图象的理解
1.爱因斯坦光电效应方程
Ek=hν-W0
hν:光子的能量
W0:逸出功,即从金属表面直接飞出的光电子克服原子核引力所做的功.
Ek:光电子的最大初动能.
2.四类图象
图象名称图线形状由图线直接(间接)得到的物理量
最大初动能Ek与入射光频率ν的关系图线
①极限频率:图线与ν轴交点的横坐标νc
②逸出功:图线与Ek轴交点的纵坐标的值W0=|-E|=E
③普朗克常量:图线的斜率k=h
颜色相同、强度不同的光,光电流与电压的关系
①遏止电压Uc:图线与横轴的交点
②饱和光电流Im:电流的最大值
③最大初动能:Ekm=eUc
颜色不同时,光电流与电压的关系
①遏止电压Uc1、Uc2
②饱和光电流
③最大初动能Ek1=eUc1,Ek2=eUc2
=遏止电压Uc与入射光频率ν的关系图线
①截止频率νc:图线与横轴的交点
②遏止电压Uc:随入射光频率的增大而增大
③普朗克常量h:等于图线的斜率与电子电量的乘积,即h=ke.(注:此时两极之间接反向电压)
[典例](20xx重庆万州二中模拟)(多选)某金属在光的照射下产生光电效应,其遏止电压Uc与入射光频率ν的关系图象如图所示.则由图象可知()
A.该金属的逸出功等于hν0
B.若已知电子电荷量e,就可以求出普朗克常量h
C.遏止电压是确定的,与照射光的频率无关
D.入射光的频率为2ν0时,产生的光电子的最大初动能为hν0
解析当遏止电压为零时,最大初动能为零,则入射光的能量等于逸出功,所以W0=hν0,A正确;根据光电效应方程Ek=hν-W0和-eUc=0-Ek得,Uc=heν-W0e,可知当入射光的频率大于极限频率时,遏止电压与入射光的频率呈线性关系,C错误;因为Uc=heν-W0e,知图线的斜率等于he,从图象上可以得出斜率的大小,已知电子电荷量e,可以求出普朗克常量h,B正确;从图象上可知逸出功W0=hν0,根据光电效应方程Ek=h2ν0-W0=hν0,D正确.
答案ABD
应用光电效应方程时的注意事项
(1)每种金属都有一个截止频率,光频率大于这个截止频率才能发生光电效应.
(2)截止频率是发生光电效应的最小频率,对应着光的极限波长和金属的逸出功,即hν0=hcλ0=W0.
(3)应用光电效应方程Ek=hν-W0时,注意能量单位电子伏和焦耳的换算(1eV=1.6×10-19J).
第1节分子动理论内能
一、分子动理论
1.物体是由大量分子组成的
(1)分子模型:主要有两种模型,固体与液体分子通常用球体模型,气体分子通常用立方体模型.
(2)分子的大小
①分子直径:数量级是10-10m;
②分子质量:数量级是10-26kg;
③测量方法:油膜法.
(3)阿伏加德罗常数
1mol任何物质所含有的粒子数,NA=6.02×1023mol-1.
2.分子热运动
分子永不停息的无规则运动.
(1)扩散现象
相互接触的不同物质彼此进入对方的现象.温度越高,扩散越快,可在固体、液体、气体中进行.
(2)布朗运动
悬浮在液体(或气体)中的微粒的无规则运动,微粒越小,温度越高,布朗运动越显著.
3.分子力
分子间同时存在引力和斥力,且都随分子间距离的增大而减小,随分子间距离的减小而增大,但总是斥力变化得较快.
二、内能
1.分子平均动能
(1)所有分子动能的平均值.
(2)温度是分子平均动能的标志.
2.分子势能
由分子间相对位置决定的能,在宏观上分子势能与物体体积有关,在微观上与分子间的距离有关.
3.物体的内能
(1)内能:物体中所有分子的热运动动能与分子势能的总和.
(2)决定因素:温度、体积和物质的量.
三、温度
1.意义:宏观上表示物体的冷热程度(微观上标志物体中分子平均动能的大小).
2.两种温标
(1)摄氏温标t:单位℃,在1个标准大气压下,水的冰点作为0℃,沸点作为100℃,在0℃~100℃之间等分100份,每一份表示1℃.
(2)热力学温标T:单位K,把-273.15℃作为0K.
(3)就每一度表示的冷热差别来说,两种温度是相同的,即ΔT=Δt.只是零值的起点不同,所以二者关系式为T=t+273.15.
(4)绝对零度(0K),是低温极限,只能接近不能达到,所以热力学温度无负值.
[自我诊断]
1.判断正误
(1)质量相等的物体含有的分子个数不一定相等.(√)
(2)组成物体的每一个分子运动是有规律的.(×)
(3)布朗运动是液体分子的运动.(×)
(4)分子间斥力随分子间距离的减小而增大,但分子间引力却随分子间距离的减小而减小.(×)
(5)内能相同的物体,温度不一定相同.(√)
(6)分子间无空隙,分子紧密排列.(×)
2.(多选)墨滴入水,扩而散之,徐徐混匀.关于该现象的分析正确的是()
A.混合均匀主要是由于碳粒受重力作用
B.混合均匀的过程中,水分子和碳粒都做无规则运动
C.使用碳粒更小的墨汁,混合均匀的过程进行得更迅速
D.墨汁的扩散运动是由于碳粒和水分子发生化学反应引起的
解析:选BC.根据分子动理论的知识可知,最后混合均匀是扩散现象,水分子做无规则运动,碳粒做布朗运动,由于布朗运动的剧烈程度与颗粒大小和温度有关,所以使用碳粒更小的墨汁,布朗运动会更明显,则混合均匀的过程进行得更迅速,故选B、C.
3.关于物体的内能,以下说法正确的是()
A.不同物体,温度相等,内能也相等
B.所有分子的势能增大,物体内能也增大
C.温度升高,分子平均动能增大,但内能不一定增大
D.只要两物体的质量、温度、体积相等,两物体的内能一定相等
解析:选C.不同物体,温度相等,分子平均动能相等,分子动能不一定相等,不能说明内能也相等,A错误;所有分子的势能增大,不能反映分子动能如何变化,不能确定内能也增大,B错误;两物体的质量、温度、体积相等,但其物质的量不一定相等,不能得出内能相等,D错误,C正确.
考点一宏观量与微观量的计算
1.微观量:分子体积V0、分子直径d、分子质量m0.
2.宏观量:物体的体积V、摩尔体积Vm、物体的质量m、摩尔质量M、物体的密度ρ.
3.关系
(1)分子的质量:m0=MNA=ρVmNA.
(2)分子的体积:V0=VmNA=MρNA.
(3)物体所含的分子数:N=VVmNA=mρVmNA
或N=mMNA=ρVMNA.
4.分子的两种模型
(1)球体模型直径d=36V0π.(常用于固体和液体)
(2)立方体模型边长d=3V0.(常用于气体)
对于气体分子,d=3V0的值并非气体分子的大小,而是两个相邻的气体分子之间的平均距离.
1.(多选)若以μ表示水的摩尔质量,V表示在标准状态下水蒸气的摩尔体积,ρ表示在标准状态下水蒸气的密度,NA表示阿伏加德罗常数,m、v分别表示每个水分子的质量和体积,下面关系正确的是()
A.NA=ρVmB.ρ=μNAv
C.ρ<μNAvD.m=μNA
解析:选ACD.由于μ=ρV,则NA=μm=ρVm,变形得m=μNA,故A、D正确;由于分子之间有空隙,所以NAv<V,水的密度为ρ=μV<μNAv,故C正确,B错误.
2.(多选)已知铜的摩尔质量为M(kg/mol),铜的密度为ρ(kg/m3),阿伏加德罗常数为NA(mol-1).下列判断正确的是()
A.1kg铜所含的原子数为NAM
B.1m3铜所含的原子数为MNAρ
C.1个铜原子的质量为MNA(kg)
D.1个铜原子的体积为MρNA(m3)
解析:选ACD.1kg铜所含的原子数N=1MNA=NAM,A正确;同理,1m3铜所含的原子数N=ρMNA=ρNAM,B错误;1个铜原子的质量m0=MNA(kg),C正确;1个铜原子的体积V0=m0ρ=MρNA(m3),D正确.
3.(20xx陕西西安二模)目前专家们正在研究二氧化碳的深海处理技术.实验发现,在水深300m处,二氧化碳将变成凝胶状态,当水深超过2500m时,二氧化碳会浓缩成近似固体的硬胶体.设在某状态下二氧化碳气体的密度为ρ,摩尔质量为M,阿伏加德罗常数为NA,将二氧化碳分子看成直径为D的球球的体积公式V球=16πD3,则在该状态下体积为V的二氧化碳气体变成硬胶体后体积为________.
解析:二氧化碳气体变成硬胶体后,可以看成是分子一个个紧密排列在一起的,故体积为V的二氧化碳气体质量为m=ρV;所含分子数为n=mMNA=ρVMNA;变成硬胶体后体积为V′=n16πD3=πρVNAD36M.
答案:πρVNAD36M
在进行微观量与宏观量之间的换算的两点技巧
(1)正确建立分子模型:固体和液体一般建立球体模型,气体一般建立立方体模型.
(2)计算出宏观量所含物质的量,通过阿伏加德罗常数进行宏观量与微观量的转换与计算.
考点二布朗运动与分子热运动
布朗运动热运动
活动主体固体小颗粒分子
区别是固体小颗粒的运动,是比分子大得多的分子团的运动,较大的颗粒不做布朗运动,但它本身的以及周围的分子仍在做热运动是指分子的运动,分子无论大小都做热运动,热运动不能通过光学显微镜直接观察到
共同点都是永不停息的无规则运动,都随温度的升高而变得更加激烈,都是肉眼所不能看见的
联系布朗运动是由于小颗粒受到周围分子做热运动的撞击力不均衡而引起的,它是分子做无规则运动的反映
1.(多选)关于扩散现象,下列说法正确的是()
A.温度越高,扩散进行得越快
B.扩散现象是不同物质间的一种化学反应
C.扩散现象是由物质分子无规则运动产生的
D.扩散现象在气体、液体和固体中都能发生
E.液体中的扩散现象是由于液体的对流形成的
解析:选ACD.扩散现象与温度有关,温度越高,扩散进行得越快,选项A正确.扩散现象是由于分子的无规则运动引起的,不是一种化学反应,选项B错误、选项C正确、选项E错误.扩散现象在气体、液体和固体中都能发生,选项D正确.
2.关于布朗运动,下列说法正确的是()
A.布朗运动就是液体分子的无规则运动
B.布朗运动就是悬浮微粒的固体分子的无规则运动
C.气体分子的运动是布朗运动
D.液体中的悬浮微粒越大,布朗运动就越不明显
解析:选D.布朗运动是悬浮在液体中的固体颗粒的无规则运动,是液体分子无规则运动的表现,A、B错误.气体分子的运动不是布朗运动,C错误.布朗运动的剧烈程度与液体的温度以及颗粒的大小有关,液体中的悬浮微粒越大,布朗运动就越不明显,D正确.
3.(多选)下列哪些现象属于热运动()
A.把一块平滑的铅板叠放在平滑的铝板上,经相当长的一段时间再把它们分开,会看到与它们相接触的面都变得灰蒙蒙的
B.把胡椒粉末放入菜汤中,最后胡椒粉末会沉在汤碗底,但我们喝汤时尝到了胡椒的味道
C.含有泥沙的水经一定时间会变澄清
D.用砂轮打磨而使零件温度升高
解析:选ABD.热运动在微观上是指分子的运动,如扩散现象,在宏观上表现为温度的变化,如“摩擦生热”、物体的热传递等,而水变澄清的过程是泥沙在重力作用下的沉淀,不是热运动,C错误.
区别布朗运动与热运动应注意以下两点
(1)布朗运动并不是分子的热运动.
(2)布朗运动可通过显微镜观察,分子热运动不能用显微镜直接观察.
考点三分子力、分子力做功和分子势能
分子力和分子势能随分子间距变化的规律如下:
分子力F分子势能Ep
随分子间距的变化图象
随分子间距的变化情况r<r0F引和F斥都随距离的增大而减小,随距离的减小而增大,F引<F斥,F表现为斥力r增大,分子力做正功,分子势能减小;r减小,分子力做负功,分子势能增加
r>r0F引和F斥都随距离的增大而减小,随距离的减小而增大,F引>F斥,F表现为引力r增大,分子力做负功,分子势能增加;r减小,分子力做正功,分子势能减小
r=r0F引=F斥,F=0分子势能最小,但不为零
r>10r0(10-9m)F引和F斥都已十分微弱,可以认为F=0分子势能为零
[典例](20xx东北三省三市联考)(多选)分子力比重力、引力等要复杂得多,分子势能跟分子间的距离的关系也比较复杂.图示为分子势能与分子间距离的关系图象,用r0表示分子引力与分子斥力平衡时的分子间距,设r→∞时,Ep=0,则下列说法正确的是()
A.当r=r0时,分子力为零,Ep=0
B.当r=r0时,分子力为零,Ep为最小
C.当r0<r<10r0时,Ep随着r的增大而增大
D.当r0<r<10r0时,Ep随着r的增大而减小
E.当r<r0时,Ep随着r的减小而增大
解析由Ep-r图象可知,r=r0时,Ep最小,再结合F-r图象知此时分子力为0,则A项错误,B项正确;结合F-r图象可知,在r0<r<10r0内分子力表现为引力,在间距增大过程中,分子引力做负功分子势能增大,则C项正确,D项错误;结合F-r图象可知,在r<r0时分子力表现为斥力,在间距减小过程中,分子斥力做负功,分子势能增大,则E项正确.
答案BCE
判断分子势能变化的两种方法
(1)利用分子力做功判断
分子力做正功,分子势能减小;分子力做负功,分子势能增加.
(2)利用分子势能Ep与分子间距离r的关系图线判断
如图所示,仅受分子力作用,分子动能和势能之和不变,根据Ep变化可判知Ek变化.而Ep变化根据图线判断.但要注意此图线和分子力与分子间距离的关系图线形状虽然相似,但意义不同,不要混淆.
1.(20xx海口模拟)(多选)两分子间的斥力和引力的合力F与分子间距离r的关系如图中曲线所示,曲线与r轴交点的横坐标为r0.相距很远的两分子在分子力作用下,由静止开始相互接近.若两分子相距无穷远时分子势能为零,下列说法正确的是()
A.在r>r0阶段,F做正功,分子动能增加,势能减小
B.在r<r0阶段,F做负功,分子动能减小,势能也减小
C.在r=r0时,分子势能最小,动能最大
D.在r=r0时,分子势能为零
E.分子动能和势能之和在整个过程中不变
解析:选ACE.由Ep-r图可知:在r>r0阶段,当r减小时F做正功,分子势能减小,分子动能增加,故A正确;在r<r0阶段,当r减小时F做负功,分子势能增加,分子动能减小,故B错误;在r=r0时,分子势能最小,但不为零,动能最大,故C正确,D错误;在整个相互接近的过程中,分子动能和势能之和保持不变,故E正确.
2.(20xx山东烟台二模)(多选)两个相距较远的分子仅在分子力作用下由静止开始运动,直至不再靠近.在此过程中,下列说法正确的是()
A.分子力先增大,后一直减小
B.分子力先做正功,后做负功
C.分子动能先增大,后减小
D.分子势能先增大,后减小
E.分子势能和动能之和不变
解析:选BCE.两分子从较远靠近的过程分子力先表现为引力且先增大后减小,到平衡位置时,分子力为零,之后再靠近分子力表现为斥力且越来越大,A选项错误;分子力先做正功后做负功,B选项正确;分子势能先减小后增大,动能先增大后减小,C选项正确、D选项错误;只有分子力做功,分子势能和分子动能相互转化,总和不变,E选项正确.
考点四实验:用油膜法估测分子大小
1.实验原理:利用油酸酒精溶液在平静的水面上形成单分子油膜,将油酸分子看作球形,测出一定体积油酸溶液在水面上形成的油膜面积,用d=VS计算出油膜的厚度,其中V为一滴油酸酒精溶液中纯油酸的体积,S为油膜面积,这个厚度就近似等于油酸分子的直径.
2.实验器材:盛水浅盘、滴管(或注射器)、试剂瓶、坐标纸、玻璃板、痱子粉(或细石膏粉)、油酸酒精溶液、量筒、彩笔.
3.实验步骤:
(1)取1mL(1cm3)的油酸溶于酒精中,制成200mL的油酸酒精溶液.
(2)往边长为30~40cm的浅盘中倒入约2cm深的水,然后将痱子粉(或细石膏粉)均匀地撒在水面上.
(3)用滴管(或注射器)向量筒中滴入n滴配制好的油酸酒精溶液,使这些溶液的体积恰好为1mL,算出每滴油酸酒精溶液的体积V0=1nmL.
(4)用滴管(或注射器)向水面上滴入一滴配制好的油酸酒精溶液,油酸就在水面上慢慢散开,形成单分子油膜.
(5)待油酸薄膜形状稳定后,将一块较大的玻璃板盖在浅盘上,用彩笔将油酸薄膜的形状画在玻璃板上.
(6)将画有油酸薄膜轮廓的玻璃板放在坐标纸上,算出油酸薄膜的面积.
(7)据油酸酒精溶液的浓度,算出一滴溶液中纯油酸的体积V,据一滴油酸的体积V和薄膜的面积S,算出油酸薄膜的厚度d=VS,即为油酸分子的直径.比较算出的分子直径,看其数量级(单位为m)是否为10-10m,若不是10-10m需重做实验.
4.实验时应注意的事项:
(1)油酸酒精溶液的浓度应小于11000.
(2)痱子粉的用量不要太大,并从盘中央加入,使粉自动扩散至均匀.
(3)测1滴油酸酒精溶液的体积时,滴入量筒中的油酸酒精溶液的体积应为整毫升数,应多滴几毫升,数出对应的滴数,这样求平均值误差较小.
(4)浅盘里水离盘口面的距离应较小,并要水平放置,以便准确地画出薄膜的形状,画线时视线应与板面垂直.
(5)要待油膜形状稳定后,再画轮廓.
(6)利用坐标纸求油膜面积时,以边长为1cm的正方形为单位,计算轮廓内正方形的个数,不足半个的舍去.大于半个的算一个.
5.可能引起误差的几种原因:
(1)纯油酸体积的计算引起误差.
(2)油膜面积的测量引起的误差主要有两个方面:
①油膜形状的画线误差;
②数格子法本身是一种估算的方法,自然会带来误差.
1.(20xx湖北三校联考)在“油膜法估测油酸分子的大小”实验中,有下列实验步骤:
①往边长约为40cm的浅盘里倒入约2cm深的水,待水面稳定后将适量的痱子粉均匀地撒在水面上.
②用注射器将事先配好的油酸酒精溶液滴一滴在水面上,待薄膜形状稳定.
③将画有油膜形状的玻璃板平放在坐标纸上,计算出油膜的面积,根据油酸的体积和面积计算出油酸分子直径的大小.
④用注射器将事先配好的油酸酒精溶液一滴一滴地滴入量筒中,记下量筒内每增加一定体积时的滴数,由此计算出一滴油酸酒精溶液的体积.
⑤将玻璃板放在浅盘上,然后将油膜的形状用彩笔描绘在玻璃板上.
完成下列填空:
(1)上述步骤中,正确的顺序是_____.(填写步骤前面的数字)
(2)将1cm3的油酸溶于酒精,制成300cm3的油酸酒精溶液,测得1cm3的油酸酒精溶液有50滴.现取一滴该油酸酒精溶液滴在水面上,测得所形成的油膜的面积是0.13m2.由此估算出油酸分子的直径为________m.(结果保留1位有效数字)
解析:(1)依据实验顺序,首先配置混合溶液,然后在浅盘中放水和痱子粉,将一滴溶液滴入浅盘中,将玻璃板放在浅盘上获取油膜形状,最后用已知边长的坐标纸上的油膜形状来计算油膜的总面积,故正确的操作顺序为④①②⑤③;
(2)一滴油酸酒精溶液的体积为V=1cm3300×50=SD,其中S=0.13m2,故油酸分子直径
D=VS=1×10-6m3300×50×0.13m2=5×10-10m.
答案:(1)④①②⑤③(2)5×10-10
2.(1)现有按酒精与油酸的体积比为m∶n配制好的油酸酒精溶液,用滴管从量筒中取体积为V的该种溶液,让其自由滴出,全部滴完共N滴.把一滴这样的溶液滴入盛水的浅盘中,由于酒精溶于水,油酸在水面上展开,稳定后形成单分子油膜的形状如图所示,已知坐标纸上每个小方格面积为S.根据以上数据可估算出油酸分子直径为d=________;
(2)若已知油酸的密度为ρ,阿伏加德罗常数为NA,油酸的分子直径为d,则油酸的摩尔质量为________.
解析:(1)一滴油酸酒精溶液里含油酸的体积为:
V1=nVm+nN,油膜的总面积为8S;
则油膜的厚度即为油酸分子直径,即
d=V18S=nV8Sm+nN
(2)一个油酸分子的体积:V′=16πd3,则油酸的摩尔质量为M=ρNAV′=16πρNAd3.
答案:(1)nV8Sm+nN(2)πρNAd36
3.在“用油膜法估测分子的大小”的实验中,所用油酸酒精溶液的浓度为每104mL溶液中有纯油酸6mL,用注射器测得1mL上述溶液为75滴.把1滴该溶液滴入盛水的浅盘里,待水面稳定后,将玻璃板放在浅盘上,用彩笔在玻璃板上描出油膜的轮廓,再把玻璃板放在坐标纸上,其形状和尺寸如图所示,坐标中正方形方格的边长为1cm.则
(1)油酸薄膜的面积是________cm2.
(2)每滴油酸酒精溶液中含有纯油酸的体积是________mL.(取一位有效数字)
(3)按以上实验数据估测出油酸分子直径约为________m.(取一位有效数字)
解析:(1)根据数方格数的原则“多于半个的算一个,不足半个的舍去”可查出共有115个方格,
故油膜的面积:
S=115×1cm2=115cm2.
(2)一滴油酸酒精溶液的体积:
V′=175mL,
一滴油酸酒精溶液中含纯油酸的体积:
V=6104V′=8×10-6mL.
(3)油酸分子的直径:
d=VS=8×10-12115×10-4m=7×10-10m.
答案:(1)115±3(2)8×10-6(3)7×10-10
课时规范训练
[基础巩固题组]
1.(多选)以下关于分子动理论的说法中正确的是()
A.物质是由大量分子组成的
B.-2℃时水已经结为冰,部分水分子已经停止了热运动
C.随分子间距离的增大,分子势能可能先减小后增大
D.分子间的引力与斥力都随分子间距离的增大而减小
解析:选ACD.物质是由大量分子组成的,A正确;分子是永不停息地做无规则运动的,B错误;在分子间距离增大时,如果先是分子力做正功,后是分子力做负功,则分子势能是先减小后增大的,C正确;分子间的引力与斥力都随分子间距离的增大而减小,但斥力变化得快,D正确.
2.下列叙述正确的是()
A.只要知道水的摩尔质量和水分子的质量,就可以计算出阿伏加德罗常数
B.只要知道气体的摩尔体积和阿伏加德罗常数,就可以算出气体分子的体积
C.悬浮在液体中的固体颗粒越大,布朗运动就越明显
D.当分子间的距离增大时,分子间的引力变大而斥力减小
解析:选A.水的摩尔质量除以水分子的质量就等于阿伏加德罗常数,选项A正确;气体分子间的距离很大,气体的摩尔体积除以阿伏加德罗常数得到的不是气体分子的体积,选项B错误;布朗运动与固体颗粒大小有关,颗粒越大,布朗运动越不明显,选项C错误;当分子间距离增大时,分子间的引力和斥力都减小,选项D错误.
3.(多选)1g100℃的水和1g100℃的水蒸气相比较,下列说法正确的是()
A.分子的平均动能和分子的总动能都相同
B.分子的平均动能相同,分子的总动能不同
C.内能相同
D.1g100℃的水的内能小于1g100℃的水蒸气的内能
解析:选AD.温度相同则它们的分子平均动能相同;又因为1g水和1g水蒸气的分子数相同,因而它们的分子总动能相同,A正确、B错误;当100℃的水变成100℃的水蒸气时,分子间距离变大,分子力做负功、分子势能增加,该过程吸收热量,所以1g100℃的水的内能小于1g100℃的水蒸气的内能,C错误、D正确.
4.(多选)下列关于布朗运动的说法,正确的是()
A.布朗运动是液体分子的无规则运动
B.液体温度越高,悬浮粒子越小,布朗运动越剧烈
C.布朗运动是由于液体各个部分的温度不同而引起的
D.布朗运动是由液体分子从各个方向对悬浮粒子撞击作用的不平衡引起的
解析:选BD.布朗运动是悬浮颗粒的无规则运动,A错误.温度越高、颗粒越小,布朗运动越剧烈,B正确.布朗运动是由液体分子撞击的不平衡引起的,间接反映了液体分子的无规则运动,C错误、D正确.
5.(多选)下列说法正确的是()
A.显微镜下观察到墨水中的小炭粒在不停地做无规则运动,这反映了液体分子运动的无规则性
B.分子间的相互作用力随着分子间距离的增大,一定先减小后增大
C.分子势能随着分子间距离的增大,可能先减小后增大
D.在真空、高温条件下,可以利用分子扩散向半导体材料掺入其他元素
E.当温度升高时,物体内每一个分子热运动的速率一定都增大
解析:选ACD.根据布朗运动的定义,显微镜下观察到墨水中的小炭粒在不停地做无规则运动,不是分子运动,是小炭粒的无规则运动.但却反映了小炭粒周围的液体分子运动的无规则性,A正确.分子间的相互作用力随着分子间距离的增大,可能先增大后减小,也可能一直减小,B错误.由于分子间的距离不确定,故分子势能随着分子间距离的增大,可能先减小后增大,也可能一直增大,C正确.由扩散现象可知,在真空、高温条件下,可以利用分子扩散向半导体材料掺入其他元素,D正确.当温度升高时,分子的热运动加剧,但不是物体内每一个分子热运动的速率都增大,E错误.
6.如图所示是分子间作用力和分子间距离的关系图线,关于图线下面说法正确的是()
A.曲线a是分子间引力和分子间距离的关系曲线
B.曲线b是分子间作用力的合力和分子间距离的关系曲线
C.曲线c是分子间斥力和分子间距离的关系曲线
D.当分子间距离r>r0时,曲线b对应的力先减小,后增大
解析:选B.在F-r图象中,随着距离的增大,斥力比引力变化得快,所以a为斥力曲线,c为引力曲线,b为合力曲线,故A、C错误,B正确;当分子间距离r>r0时,曲线b对应的力先增大,后减小,故D错误.
7.(多选)当两分子间距为r0时,它们之间的引力和斥力大小相等.关于分子之间的相互作用,下列说法正确的是()
A.当两个分子间的距离等于r0时,分子势能最小
B.当两个分子间的距离小于r0时,分子间只存在斥力
C.在两个分子间的距离由很远逐渐减小到r=r0的过程中,分子间作用力的合力先增大后减小
D.在两个分子间的距离由很远逐渐减小到r=r0的过程中,分子间作用力的合力一直增大
E.在两个分子间的距离由r=r0逐渐减小的过程中,分子间作用力的合力一直增大
解析:选ACE.两个分子间的距离等于r0时,分子力为零,分子势能最小,选项A正确;两分子之间的距离小于r0时,它们之间既有引力又有斥力的作用,而且斥力大于引力,作用力表现为斥力,选项B错误;当分子间距离等于r0时,它们之间引力和斥力的大小相等、方向相反,合力为零,当两个分子间的距离由较远逐渐减小到r=r0的过程中,分子间作用力的合力先增大后减小,表现为引力,选项C正确,D错误;两个分子间的距离由r=r0开始减小的过程中,分子间作用力的合力一直增大,表现为斥力,选项E正确.
8.在做“用油膜法估测分子的大小”的实验中:
(1)关于油膜面积的测量方法,下列说法中正确的是()
A.油酸酒精溶液滴入水中后,要立刻用刻度尺去量油膜的面积
B.油酸酒精溶液滴入水中后,要让油膜尽可能地散开,再用刻度尺去量油膜的面积
C.油酸酒精溶液滴入水中后,要立即将油膜的轮廓画在玻璃板上,再利用坐标纸去计算油膜的面积
D.油酸酒精溶液滴入水中后,要让油膜尽可能散开,等到状态稳定后,再把油膜的轮廓画在玻璃板上,用坐标纸去计算油膜的面积
(2)实验中,将1cm3的油酸溶于酒精,制成200cm3的油酸酒精溶液,又测得1cm3的油酸酒精溶液有50滴,现将1滴溶液滴到水面上,水面上形成0.2m2的单分子薄层,由此可估算油酸分子的直径d=________m.
解析:(1)在做“用油膜法估测分子的大小”的实验中,油酸酒精溶液滴在水面上,油膜会散开,待稳定后,再在玻璃板上画下油膜的轮廓,用坐标纸计算油膜面积,故选D.
(2)一滴油酸酒精溶液里含纯油酸的体积V=1200×150cm3=10-10m3.油酸分子的直径d=VS=10-100.2m=5×10-10m.
答案:(1)D(2)5×10-10
[综合应用题组]
9.(多选)如图所示,纵坐标表示两个分子间引力、斥力的大小,横坐标表示两个分子间的距离,图中两条曲线分别表示两分子间引力、斥力的大小随分子间距离的变化关系,e为两曲线的交点,则下列说法中正确的是()
A.ab为斥力曲线,cd为引力曲线,e点横坐标的数量级为10-10m
B.ab为引力曲线,cd为斥力曲线,e点横坐标的数量级为10-10m
C.若两个分子间距离增大,则分子势能也增大
D.由分子动理论可知,温度相同的氢气和氧气,分子平均动能相同
E.质量和温度都相同的氢气和氧气(视为理想气体),氢气的内能大
解析:选BDE.分子引力和分子斥力都会随着分子间距离的增大而减小,只是斥力减小得更快,所以当分子间距离一直增大,最终分子力表现为引力,即ab为引力曲线,cd为斥力曲线,二者相等即平衡时分子距离数量级为10-10m,A错误,B正确.若两个分子间距离增大,如果分子力表现为引力,则分子力做负功,分子势能增大,若分子力表现为斥力,分子力做正功,分子势能减小,C错误.分子平均动能只与温度有关,即温度相等时,氢气和氧气分子平均动能相等,D正确,若此时质量相同,则氢气分子数较多,因此氢气内能大,E正确.
10.近期我国多个城市的PM2.5数值突破警戒线,受影响最严重的是京津冀地区,雾霾笼罩,大气污染严重.PM2.5是指空气中直径等于或小于2.5微米的悬浮颗粒物,其漂浮在空中做无规则运动,很难自然沉降到地面,吸入后对人体形成危害.矿物燃料燃烧的排放是形成PM2.5的主要原因.下列关于PM2.5的说法中正确的是()
A.PM2.5的尺寸与空气中氧分子的尺寸的数量级相当
B.PM2.5在空气中的运动属于布朗运动
C.温度越低PM2.5活动越剧烈
D.倡导低碳生活减少煤和石油等燃料的使用能有效减小PM2.5在空气中的浓度
E.PM2.5中颗粒小一些的,其颗粒的运动比其他颗粒更为剧烈
解析:选BDE.“PM2.5”是指直径小于或等于2.5微米的颗粒物,PM2.5的尺度远大于空气中氧分子的尺寸的数量级,A错误.PM2.5在空气中的运动是固体颗粒的运动,属于布朗运动,B正确.大量空气分子对PM2.5无规则碰撞,温度越高,空气分子对颗粒的撞击越剧烈,则PM2.5的运动越激烈,C错误.导致PM2.5增多的主要原因是环境污染,故应该提倡低碳生活,有效减小PM2.5在空气中的浓度,D正确.PM2.5中颗粒小一些的,空气分子对颗粒的撞击越不均衡,其颗粒的运动比其他颗粒更为剧烈,E正确.
11.如图所示,甲分子固定在坐标原点O,乙分子位于x轴上,甲分子对乙分子的作用力与两分子间距离的关系如图中曲线所示.F0为斥力,F0为引力.A、B、C、D为x轴上四个特定的位置.现把乙分子从A处由静止释放,下列A、B、C、D四个图分别表示乙分子的速度、加速度、势能、动能与两分子间距离的关系,其中大致正确的是()
解析:选B.速度方向始终不变,A项错误;加速度与力成正比,方向相同,故B项正确;分子势能不可能增大到正值,故C项错误;乙分子动能不可能为负值,故D项错误.
12.已知地球大气层的厚度h远小于地球半径R,空气平均摩尔质量为M,阿伏加德罗常数为NA,地面大气压强为p0,重力加速度大小为g.由此可估算得,地球大气层空气分子总数为________,空气分子之间的平均距离为________.
解析:地球大气层空气的质量m=Gg=4πR2p0g,总分子数N=mMNA=4πR2p0gMNA;气体总体积V=Sh=4πR2h,分子平均距离d=3V0=3VN=3Mghp0NA.
答案:4πNAp0R2MgMghNAp013
13.空调在制冷过程中,室内空气中的水蒸气接触蒸发器(铜管)液化成水,经排水管排走,空气中水分越来越少,人会感觉干燥.某空调工作一段时间后,排出液化水的体积V=1.0×103cm3.已知水的密度ρ=1.0×103kg/m3、摩尔质量M=1.8×10-2kg/mol,阿伏加德罗常数NA=6.0×1023mol-1.试求:(结果均保留一位有效数字)
(1)该液化水中含有水分子的总数N;
(2)一个水分子的直径d.
解析:(1)水的摩尔体积为
Vm=Mρ=1.8×10-21.0×103m3/mol=1.8×10-5m3/mol
水分子总数为
N=VNAVm=1.0×103×10-6×6.0×10231.8×10-5个≈3×1025个.
(2)建立水分子的球体模型,有VmNA=16πd3,可得水分子直径:d=36VmπNA=36×1.8×10-53.14×6.0×1023m=4×10-10m.
答案:(1)3×1025个(2)4×10-10m
第2节固体、液体和气体
一、固体
1.分类:固体分为晶体和非晶体两类.晶体又分为单晶体和多晶体.
2.晶体与非晶体的比较
单晶体多晶体非晶体
外形规则不规则不规则
熔点确定确定不确定
物理性质各向异性各向同性各向同性
典型物质石英、云母、食盐、硫酸铜玻璃、蜂蜡、松香
形成与转化有的物质在不同条件下能够形成不同的形态.同一物质可能以晶体和非晶体两种不同的形态出现,有些非晶体在一定条件下可以转化为晶体
二、液体
1.液体的表面张力
(1)作用:液体的表面张力使液面具有收缩的趋势.
(2)方向:表面张力跟液面相切,跟这部分液面的分界线垂直.
(3)大小:液体的温度越高,表面张力越小;液体中溶有杂质时,表面张力变小;液体的密度越大,表面张力越大.
2.液晶的物理性质
(1)具有液体的流动性
(2)具有晶体的光学各向异性
(3)在某个方向上看,其分子排列比较整齐,但从另一方向看,分子的排列是杂乱无章的
三、饱和汽湿度
1.饱和汽与未饱和汽
(1)饱和汽:与液体处于动态平衡的蒸汽.
(2)未饱和汽:没有达到饱和状态的蒸汽.
2.饱和汽压
(1)定义:饱和汽所具有的压强.
(2)特点:液体的饱和汽压与温度有关,温度越高,饱和汽压越大,且饱和汽压与饱和汽的体积无关.
3.湿度
(1)绝对湿度:空气中所含水蒸气的压强.
(2)相对湿度:空气的绝对湿度与同一温度下水的饱和汽压之比.
(3)相对湿度公式
相对湿度=水蒸气的实际压强同温度水的饱和汽压B=pps×100%.
四、气体分子运动速率的统计分布气体实验定律理想气体
1.气体分子运动的特点
(1)分子很小,间距很大,除碰撞外不受力.
(2)气体分子向各个方向运动的气体分子数目都相等.
(3)分子做无规则运动,大量分子的速率按“中间多,两头少”的规律分布.
(4)温度一定时,某种气体分子的速率分布是确定的,温度升高时,速率小的分子数减少,速率大的分子数增多,分子的平均速率增大,但不是每个分子的速率都增大.
2.气体的三个状态参量
(1)体积;(2)压强;(3)温度.
3.气体的压强
(1)产生原因:由于气体分子无规则的热运动,大量的分子频繁地碰撞器壁产生持续而稳定的压力.
(2)大小:气体的压强在数值上等于气体作用在单位面积上的压力.公式:p=FS.
(3)常用单位及换算关系:
①国际单位:帕斯卡,符号:Pa,1Pa=1N/m2.
②常用单位:标准大气压(atm);厘米汞柱(cmHg).
③换算关系:1atm=76cmHg=1.013×105Pa≈1.0×105Pa.
4.气体实验定律
(1)等温变化——玻意耳定律:
①内容:一定质量的某种气体,在温度不变的情况下,压强p与体积V成反比.
②公式:p1V1=p2V2或pV=C(常量).
(2)等容变化——查理定律:
①内容:一定质量的某种气体,在体积不变的情况下,压强p与热力学温度T成正比.
②公式:p1p2=T1T2或pT=C(常量).
③推论式:Δp=p1T1ΔT.
(3)等压变化——盖—吕萨克定律:
①内容:一定质量的某种气体,在压强不变的情况下,其体积V与热力学温度T成正比.
②公式:V1V2=T1T2或VT=C(常量).
③推论式:ΔV=V1T1ΔT.
5.理想气体状态方程
(1)理想气体:在任何温度、任何压强下都遵从气体实验定律的气体.
①理想气体是一种经科学的抽象而建立的理想化模型,实际上不存在.
②理想气体不考虑分子间相互作用的分子力,不存在分子势能,内能取决于温度,与体积无关.
③实际气体特别是那些不易液化的气体在压强不太大,温度不太低时都可看作理想气体.
(2)一定质量的理想气体状态方程:
p1V1T1=p2V2T2或pVT=C(常量).
[自我诊断]
1.判断正误
(1)晶体一定有规则的外形.(×)
(2)晶体不一定各向异性,单晶体一定各向异性.(√)
(3)液体的表面张力其实质是液体表面分子间的引力.(√)
(4)温度升高,物体内每一个分子运动的速率都增大.(×)
(5)理想气体的内能是所有气体分子的动能.(√)
(6)蒸汽处于饱和状态时没有了液体分子与蒸汽分子间的交换.(×)
(7)饱和汽压是指饱和汽的压强.(√)
2.(多选)下列说法正确的是()
A.液体表面张力的方向与液面垂直并指向液体内部
B.单晶体有固定的熔点,多晶体没有固定的熔点
C.单晶体中原子(或分子、离子)的排列具有空间周期性
D.通常金属在各个方向的物理性质都相同,所以金属是非晶体
E.液晶具有液体的流动性,同时具有晶体的各向异性特征
解析:选CE.液体的表面张力与液体表面相切,垂直于液面上的各条分界线,选项A错误;无论是单晶体还是多晶体,都有固定的熔点,选项B错误;根据固体特性的微观解释可知,选项C正确;金属是由大量细微的小晶粒杂乱无章地排列起来的,在各个方向上的物理性质都相同,但有固定的熔点,金属属于多晶体,选项D错误;液晶既具有液体的流动性,同时也具有单晶体的各向异性,选项E正确.
3.如右图所示,只有一端开口的U形玻璃管,竖直放置,用水银封住两段空气柱Ⅰ和Ⅱ,大气压为p0,水银柱高为压强单位,那么空气柱Ⅰ的压强p1为()
A.p1=p0+hB.p1=p0-h
C.p1=p0+2hD.p1=p0
解析:选D.由图可知,p1+h=p2=p0+h,故p1=p0,选项D正确.
4.如图所示,一个横截面积为S的圆筒形容器竖直放置,金属圆块A的上表面是水平的,下表面是倾斜的,下表面与水平面的夹角为θ,圆块的质量为M,不计圆块与容器内壁之间的摩擦,若大气压强为p0,则被圆块封闭在容器中的气体的压强p为________.
解析:对圆块进行受力分析:重力Mg,大气压的作用力p0S,封闭气体对它的作用力pScosθ,容器侧壁的作用力F1和F2,如图所示.由于不需要求出侧壁的作用力,所以只考虑竖直方向合力为零,就可以求被封闭的气体压强.圆块在竖直方向上受力平衡,故p0S+Mg=pScosθcosθ,即p=p0+MgS.
答案:p0+MgS
5.一定质量的理想气体被活塞封闭在竖直放置的圆柱形汽缸内.汽缸壁导热良好,活塞可沿汽缸壁无摩擦地滑动.开始时气体压强为p,活塞下表面相对于汽缸底部的高度为h,外界的温度为T0.现取质量为m的沙子缓慢地倒在活塞的上表面,沙子倒完时,活塞下降了h4.若此后外界的温度变为T,求重新达到平衡后气体的体积.已知外界大气的压强始终保持不变,重力加速度大小为g.
解析:设汽缸的横截面积为S,沙子倒在活塞上后,对气体产生的压强为Δp,由玻意耳定律得
phS=(p+Δp)h-14hS①
解得Δp=13p②
外界的温度变为T后,设活塞距底面的高度为h′.根据盖-吕萨克定律,得h-14hST0=h′ST③
解得h′=3T4T0h④
据题意可得Δp=mgS⑤
气体最后的体积为V=Sh′⑥
联立②④⑤⑥式得V=9mghT4pT0⑦
答案:9mghT4pT0
考点一固体和液体的性质
1.晶体和非晶体
(1)单晶体具有各向异性,但不是在各种物理性质上都表现出各向异性.
(2)只要是具有各向异性的物体必定是晶体,且是单晶体.
(3)只要是具有确定熔点的物体必定是晶体,反之,必是非晶体.
(4)晶体和非晶体在一定条件下可以相互转化.
2.液体表面张力
(1)形成原因:
表面层中分子间的距离比液体内部分子间的距离大,分子间的相互作用力表现为引力.
(2)表面特性:
表面层分子间的引力使液面产生了表面张力,使液体表面好像一层绷紧的弹性薄膜.
(3)表面张力的方向:
和液面相切,垂直于液面上的各条分界线.
(4)表面张力的效果:
表面张力使液体表面具有收缩趋势,使液体表面积趋于最小,而在体积相同的条件下,球形的表面积最小.
(5)表面张力的大小:
跟边界线的长度、液体的种类、温度都有关系.
1.(多选)下列说法正确的是()
A.将一块晶体敲碎后,得到的小颗粒是非晶体
B.固体可以分为晶体和非晶体两类,有些晶体在不同方向上有不同的光学性质
C.由同种元素构成的固体,可能会由于原子的排列方式不同而成为不同的晶体
D.在合适的条件下,某些晶体可以转变为非晶体,某些非晶体也可以转变为晶体
E.在熔化过程中,晶体要吸收热量,但温度保持不变,内能也保持不变
解析:选BCD.A.将一晶体敲碎后,得到的小颗粒仍是晶体,故选项A错误.
B.单晶体具有各向异性,有些单晶体沿不同方向上的光学性质不同,故选项B正确.
C.例如金刚石和石墨由同种元素构成,但由于原子的排列方式不同而成为不同的晶体,故选项C正确.
D.晶体与非晶体在一定条件下可以相互转化.如天然水晶是晶体,熔融过的水晶(即石英玻璃)是非晶体,也有些非晶体在一定条件下可转化为晶体,故选项D正确.
E.熔化过程中,晶体的温度不变,但内能增加,故选项E错误.
2.(多选)下列说法正确的是()
A.把一枚针轻放在水面上,它会浮在水面.这是由于水表面存在表面张力的缘故
B.水在涂有油脂的玻璃板上能形成水珠,而在干净的玻璃板上却不能.这是因为油脂使水的表面张力增大的缘故
C.在围绕地球飞行的宇宙飞船中,自由飘浮的水滴呈球形.这是表面张力作用的结果
D.在毛细现象中,毛细管中的液面有的升高,有的降低,这与液体的种类和毛细管的材质有关
E.当两薄玻璃板间夹有一层水膜时,在垂直于玻璃板的方向很难将玻璃板拉开.这是由于水膜具有表面张力的缘故
解析:选ACD.由于液体表面张力的存在,针、硬币等能浮在水面上,A正确.水在涂有油脂的玻璃板上能形成水珠,这是不浸润的结果,而干净的玻璃板上不能形成水珠,这是浸润的结果,B错误.在太空中水滴呈球形,是液体表面张力作用的结果,C正确.液体的种类和毛细管的材质决定了液体与管壁的浸润或不浸润,浸润液体液面在细管中向下弯,不浸润液体液面在细管中向上弯,D正确.E项中,玻璃板很难被拉开是由于分子引力的作用,E错误.
文章来源://m.jab88.com/j/68731.html
更多