高三物理《曲线运动万有引力与航天》复习检测
一、选择题(本题共13小题,每小题5分,共65分.每小题列出的四个备选项中只有一个是符合题目要求的,不选、多选、错选均不得分)
1、在漂流探险中,探险者驾驶摩托艇想上岸休息.假设江岸是平直的,江水沿江向下游流去,水流速度为v1,摩托艇在静水中的航速为v2,原来地点A离岸边最近处O点的距离为d.若探险者想在最短时间内靠岸,则摩托艇登陆的地点离O点的距离为()
A.B.0
C.D.
C[根据运动的独立性与等时性可知,当摩托艇船头垂直江岸航行,即摩托艇在静水中的航速v2全部用来靠岸时,用时最短,最短时间t=,在此条件下摩托艇登陆的地点离O点的距离为x=v1t=.故选C.]
2.如图1所示,小物体A与圆盘保持相对静止跟着圆盘一起做匀速圆周运动,则A受力情况是()
图1
A.重力、支持力
B.重力、向心力
C.重力、支持力、指向圆心的摩擦力
D.重力、支持力、向心力、摩擦力
C[物体在水平面上,一定受到重力和支持力作用,物体在转动过程中,有背离圆心的运动趋势,因此受到指向圆心的静摩擦力,且静摩擦力提供向心力,故A、B、D错误,C正确.]
3.如图2所示是一个玩具陀螺.a、b和c是陀螺上的三个点.当陀螺绕垂直于地面的轴线以角速度ω稳定旋转时,下列表述正确的是()
图2
A.a、b和c三点的线速度大小相等
B.a、b和c三点的角速度相等
C.a、b的角速度比c的大
D.c的线速度比a、b的大
B[a、b、c三点为共轴转动,故角速度相等,B正确,C错误;又由题图知,三点的转动半径ra=rbrc,根据v=ωr知,va=vbvc,故A、D错误.]
4.1.(20xx·温州调研)若已知物体的速度方向和它所受合力的方向,如图所示,可能的运动轨迹是()
C[物体做曲线运动时,轨迹夹在速度方向和合力方向之间,合力大致指向轨迹凹的方向.故C正确,而B不应该出现向下凹的现象,故A、B、D错误.]
5.如图3所示,细线一端固定在天花板上的O点,另一端穿过一张CD光盘的中央小孔后拴着一个橡胶球,橡胶球静止时,竖直悬线刚好挨着水平桌面的边沿.现将CD光盘按在桌面上,并沿桌面边缘以速度v匀速移动,移动过程中,CD光盘中央小孔始终紧挨桌面边线,当悬线与竖直方向的夹角为θ时,小球上升的速度大小为()
图3
A.vsinθB.vcosθ
C.vtanθD.vcotθ
A[将光盘水平向右移动的速度v分解为沿细线方向的速度和垂直于细线方向的速度,而小球上升的速度大小与速度v沿细线方向的分速度大小相等,故可得:v球=vsinθ,A正确.]
6.(20xx·宁波选考模拟)光盘驱动器读取数据的某种方式可简化为以下模式,在读取内环数据时,以恒定角速度方式读取,而在读取外环数据时,以恒定线速度的方式读取.如图4所示,设内环内边缘半径为R1,内环外边缘半径为R2,外环外边缘半径为R3.A、B、C分别为各边缘线上的点,则读取内环上A点时的向心加速度大小和读取外环上C点时的向心加速度大小之比为()
图4
A.B.
C.D.
D[内环外边缘和外环内边缘为同一圆.A与B角速度相等,向心加速度之比为=.B与C线速度相等,向心加速度之比为=,读取内环上A点时的向心加速度大小和读取外环上C点时的向心加速度大小之比为=,选项D正确.]
7.火星的质量和半径分别约为地球的和,地球表面的重力加速度为g,则火星表面的重力加速度约为()
A.0.2gB.0.4g
C.2.5gD.5g
B[星球表面重力等于万有引力,即G=mg,故火星表面的重力加速度与地球表面的重力加速度之比为=×=0.4,故选项B正确.]
8.由我国自主研发的北斗卫星导航系统,空间段计划由35颗卫星组成,包括5颗静止轨道卫星、27颗地球轨道卫星、3颗倾斜同步轨道卫星.目前已经实现了覆盖亚太地区的定位、导航和授时以及短报文通信服务能力,预计到2020年左右,建成覆盖全球的北斗卫星导航系统.关于其中的静止轨道卫星(同步卫星),下列说法中正确的是()
图5
A.该卫星一定不会运动到杭州正上方天空
B.该卫星处于完全失重状态,卫星所在处的重力加速度为零
C.该卫星若受到太阳风暴影响后速度变小,它的轨道半径将变大
D.该卫星相对于地球静止,其运行速度等于地球赤道处自转的线速度
A[根据同步卫星的定义知,它只能在赤道上空,故A项对;卫星处于完全失重状态,重力加速度等于向心加速度,故B错;速度变小后,万有引力大于所需向心力,卫星的轨道半径将变小,C项错;卫星相对地球静止是指角速度等于地球自转角速度,由v=ωr知,其运行速度大于地球赤道处自转的线速度,故D项错.]
9.如图6所示是某课外研究小组设计的可以用来测量转盘转速的装置.该装置上方是一与转盘固定在一起有横向均匀刻度的标尺,带孔的小球穿在光滑细杆上与一轻弹簧相连,弹簧的另一端固定在转动轴上,小球可沿杆自由滑动并随转盘在水平面内转动.当转盘不转动时,指针指在O处,当转盘转动的角速度为ω1时,指针指在A处,当转盘转动的角速度为ω2时,指针指在B处,设弹簧均没有超过弹性限度.则ω1与ω2的比值为()
图6
A.B.
C.D.
B[小球随转盘转动时由弹簧的弹力提供向心力.设标尺的最小分度的长度为x,弹簧的劲度系数为k,则有kx=m·4x·ω,k·3x=m·6x·ω,故有ω1∶ω2=1∶,B正确.]
10.如图7所示,我国的气象卫星有两类,一类是极地轨道卫星——风云一号,绕地球做匀速圆周运动的周期为12h,另一类是地球同步轨道卫星——风云二号,绕地球做匀速圆周运动的周期为24h.下列说法正确的是()
图7
A.风云一号的线速度大于风云二号的线速度
B.风云一号的向心加速度小于风云二号的向心加速度
C.风云一号的角速度小于风云二号的角速度
D.风云一号、风云二号相对地面均静止
A[卫星绕地球做匀速圆周运动:G=mr,可知,风云一号卫星的周期和半径均小于风云二号卫星的周期和半径.根据万有引力提供圆周运动向心力G=m,有卫星的线速度v=,所以风云一号卫星的半径小,线速度大,故A正确;根据万有引力提供圆周运动向心力G=ma,有卫星的向心加速度a=G,风云一号的半径小,向心加速度大于风云二号卫星的向心加速度,故B错误;根据万有引力提供圆周运动向心力G=mω2r,解得:ω=,风云一号的半径小,角速度大于风云二号卫星的角速度,故C错误;风云二号是同步卫星,相对地面静止,而风云一号不是同步卫星,相对地面是运动的,故D错误.]
11.(加试要求)如图8所示,两个倾角分别为30°、45°的光滑斜面放在同一水平面上,两斜面间距大于小球直径,斜面高度相等.有三个完全相同的小球a、b、c,开始均静止于同一高度处,其中b小球在两斜面之间,a、c两小球在斜面顶端.若同时释放,小球a、b、c到达该水平面的时间分别为t1、t2、t3.若同时沿水平方向抛出,初速度方向如图所示,到达水平面的时间分别为t1′、t2′、t3′.下列关于时间的关系错误的是()
图8
A.t1t3t2
B.t1=t1′、t2=t2′、t3=t3′
C.t1′t3′t2′
D.t1t3t2.当平抛三小球时,小球b做平抛运动,竖直方向运动情况同第一种情况;小球a、c在斜面内做类平抛运动,沿斜面向下方向的运动同第一种情况,所以t1=t1′、t2=t2′、t3=t3′.故选D.]
12.(20xx·台州市调研)如图9所示,一小物块以大小为a=4m/s2的向心加速度做匀速圆周运动,半径R=1m,则下列说法正确的是()
图9
A.小物块运动的角速度为2rad/s
B.小物块做圆周运动的周期为2πs
C.小物块在t=s内通过的位移大小为m
D.小物块在πs内通过的路程为零
A[因为a=ω2R,所以小物块运动的角速度ω==2rad/s,周期T==πs,选项A正确,B错误;小物块在s内转过,通过的位移为m,在πs内转过一周,通过的路程为2πm,选项C、D错误.]
13.(加试要求)如图10所示为游乐园中空中转椅的理论示意图.长度不同的两根细绳悬挂于同一点,另一端各系一个质量相同的小球,使它们在同一水平面内做圆锥摆运动,则两个圆锥摆相同的物理量是()
图10
A.周期B.线速度的大小
C.绳的拉力D.向心力
A[对其中一个小球受力分析,如图,受重力、绳子的拉力,由于小球做匀速圆周运动.故合力提供向心力;
将重力与拉力合成,合力指向圆心,由几何关系得,合力:F=mgtanθ①由向心力公式得到:F=mω2r②设球与悬挂点间的竖直高度为h,由几何关系,得:r=htanθ③由①②③三式得,ω=,与绳子的长度和转动半径无关;又由T=,故周期与绳子的长度和转动半径无关,故A正确;由v=ωr,两球转动半径不等,故线速度不同,故B错误;绳子拉力:FT=,故绳子拉力不同,故C错误;由F=ma=mω2r,两球转动半径不等,故向心力不同,故D错误.]
二、非选择题(本题共4小题,共35分)
14.(7分)(20xx·丽水调研)在“探究平抛运动的运动规律”的实验中,可以描绘出小球平抛运动的轨迹,实验简要步骤如下:
图11
A.让小球多次从________释放,在一张印有小方格的纸上记下小球经过的一系列位置,如图11中a、b、c、d所示.
B.安装好器材,注意使________,记下平抛初位置O点和过O点的竖直线.
C.取下白纸,以O为原点,以竖直线为y轴建立坐标系,用平滑曲线画平抛运动物体的轨迹.
(1)完成上述步骤,将正确的答案填在横线上.
(2)上述实验步骤的合理顺序是________.
(3)已知图中小方格的边长L=1.25cm,则小球平抛的初速度为v0=________(用L、g表示),其值是________.(g取9.8m/s2)
【解析】(1)这种方法,需让小球重复同一个平抛运动多次,才能记录出小球的一系列位置,故必须让小球每次由同一位置静止释放.斜槽末端切线水平,小球才会做平抛运动.(3)由Δx=aT2得两点之间的时间间隔T=,所以小球的初速度v0==2代入数据得v0=0.70m/s.
【答案】(1)同一位置静止斜槽末端切线水平
(2)BAC
(3)20.70m/s
15.(8分)(20xx·湖州市联考)如图12所示,小球以15m/s的水平初速度向一倾角为37°的斜面抛出,飞行一段时间后,恰好垂直撞在斜面上.g取10m/s2,tan53°=,求:
图12
(1)小球在空中的飞行时间;
(2)抛出点距落点的高度.
【解析】如图所示.由几何关系知
β=90°-37°=53°.(1)由图得tanβ==,得飞行时间t=tanβ=2s.(2)高度h=gt2=×10×22m=20m.
【答案】(1)2s(2)20m
16.(9分)如图13为“快乐大冲关”节目中某个环节的示意图.参与游戏的选手会遇到一个人造山谷AOB,AO是高h=3m的竖直峭壁,OB是以A点为圆心的弧形坡,∠OAB=60°,B点右侧是一段水平跑道.选手可以自A点借助绳索降到O点后再爬上跑道,但身体素质好的选手会选择自A点直接跃上水平跑道.选手可视为质点,忽略空气阻力,重力加速度g取10m/s2.
图13
(1)若选手以速度v0水平跳出后,能跳在水平跑道上,求v0的最小值;
(2)若选手以速度v1=4m/s水平跳出,求该选手在空中的运动时间.
【解析】(1)若选手以速度v0水平跳出后,能跳在水平跑道上,则水平方向有hsin60°≤v0t,竖直方向有hcos60°=gt2解得v0≥m/s.(2)若选手以速度v1=4m/s水平跳出,因v1
20xx高三物理复习知识点:曲线运动、万有引力
1)平抛运动
1.水平方向速度:Vx=Vo2.竖直方向速度:Vy=gt
3.水平方向位移:x=Vot4.竖直方向位移:y=gt2/2
5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)
6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2
合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0
7.合位移:s=(x2+y2)1/2,
位移方向与水平夹角α:tgα=y/x=gt/2Vo
8.水平方向加速度:ax=0;竖直方向加速度:ay=g
注:
(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;
(2)运动时间由下落高度h(y)决定与水平抛出速度无关;
(3)θ与β的关系为tgβ=2tgα;
(4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。
2)匀速圆周运动
1.线速度V=s/t=2πr/T2.角速度ω=Φ/t=2π/T=2πf
3.向心加速度a=V2/r=ω2r=(2π/T)2r4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合
5.周期与频率:T=1/f6.角速度与线速度的关系:V=ωr
7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)
8.主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。
注:
(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;
(2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。
3)万有引力
1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}
2.万有引力定律:F=Gm1m2/r2(G=6.67×10-11N?m2/kg2,方向在它们的连线上)
3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2{R:天体半径(m),M:天体质量(kg)}
4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}
5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s
6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}
注:
(1)天体运动所需的向心力由万有引力提供,F向=F万;
(2)应用万有引力定律可估算天体的质量密度等;
(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;
(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);
(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。
作为优秀的教学工作者,在教学时能够胸有成竹,高中教师要准备好教案,这是每个高中教师都不可缺少的。教案可以让讲的知识能够轻松被学生吸收,帮助授课经验少的高中教师教学。你知道如何去写好一份优秀的高中教案呢?以下是小编为大家收集的“万有引力理论”欢迎您阅读和收藏,并分享给身边的朋友!
总课题万有引力与航天总课时第14课时
课题万有引力理论的成就课型新授课
教
学
目
标知识与技能
1、了解万有引力定律在天文学上的应用
2、会用万有引力定律计算天体的质量和密度
3、掌握综合运用万有引力定律和圆周运动学知识分析具体问题的方法
过程与方法
通过求解太阳.地球的质量,培养学生理论联系实际的运用能力
情感态度与价值观
通过介绍用万有引力定律发现未知天体的过程,使学生懂得理论来源于实践,反过来又可以指导实践的辨证唯物主义观点
教学
重点1、行星绕太阳的运动的向心力是由万有引力提供的。
2、会用已知条件求中心天体的质量。
教学
难点根据已有条件求中心天体的质量。
学法
指导自主阅读、合作探究、精讲精练、
教学
准备
教学
设想知识回顾→合作探究→突出重点,突破难点→典型例题分析→巩固知识→达标提升
教学过程
师生互动补充内容或错题订正
任务一知识回顾
1、请同学们回顾前面所学匀速圆周运动的知识,然后写出向心加速度的三种表达形式?
2、上节我们学习了万有引力定律的有关知识,现在请同学们回忆一下,万有引力定律的内容及公式是什么?公式中的G又是什么?G的测定有何重要意义?
任务二合作探究
(认真阅读教材,回答下列问题)
一、“科学真实迷人”
引导:求天体质量的方法一:是根据重力加速度求天体质量,即引力=重力mg=GMm/R2
1、推导出地球质量的表达式,说明卡文迪许为什么能把自己的实验说成是“称量地球的重量”?
2、设地面附近的重力加速度g=9.8m/s2,地球半径R=6.4×106m,引力常量G=6.67×10-11Nm2/kg2,试估算地球的质量。(写出解题过程。)
二、计算天体的质量
(学生阅读教材“天体质量的计算”部分的内容,同时考虑下列问题)
引导:求天体质量的方法二:是根据天体的圆周运动,即其向心力由万有引力提供,
1、应用万有引力定律求解中心天体质量的基本思路是什么?
2、根据环绕天体的运动情况求解其向心加速度有几种求法?
3、应用天体运动的动力学方程——万有引力充当向心力求出的天体质量有几种表达式?各是什么?各有什么特点?
4、应用此方法能否求出环绕天体的质量?为什么?
例题:把地球绕太阳公转看做是匀速圆周运动,平均半径为1.5×1011m,已知引力常量为:G=6.67×10-11Nm2/kg2,则可估算出太阳的质量大约是多少千克?(结果取一位有效数字,写出规范解答过程)
三、发现未知天体
(请同学们阅读课文“发现未知天体”部分的内容,考虑以下问题)
1、应用万有引力定律除可估算天体质量外,还可以在天文学上有何应用?
2、应用万有引力定律发现了哪些行星?
3、怎样应用万有引力定律来发现未知天体的?发表你的看法。(交流讨论)
任务三达标提升
1.地球公转的轨道半径是R1,周期是T1,月球绕地球运转的轨道半径是R2,周期是T2,则太阳质量与地球质量之比是()
A.B.C.D.
2.把太阳系各行星的轨迹近似的看作匀速圆周运动,则离太阳越远的行星,写列说法错误的是()
A.周期越小B.线速度越小C.角速度越小D.加速度越小
3.一颗小行星绕太阳做匀速圆周运动的半径是地球公转半径的4倍,则这颗小行星运转的周期是()
A.4年B.6年C.8年8/9年
4.下面说法错误的是()
A.海王星是人们依据万有引力定律计算出轨道而发现的
B.天王星是人们依据万有引力定律计算出轨道而发现的
C.天王星的运动轨道偏离根据万有引力定律计算出来的轨道,其原因是由于天王星受到轨道外面其他行星的引力作用
D.冥王星是人们依据万有引力定律计算出轨道而发现的
5、(多项选择)利用下列哪组数据,可以计算出地球的质量(已知引力常量G)()
A.已知地球的半径R和地面的重力加速度g
B.已知卫星绕地球做匀速圆周运动的轨道半径r和线速度v
C.已知卫星绕地球做匀速圆周运动的轨道半径r和周期T
D.以上说法都不正确
6、设地球表面重力加速度为g0,物体在距离地心4R(R是地球的半径)处,由于地球的作用而产生的加速度为g,则g/g0为()
A.1B.1/9C.1/4D.1/16
7.假设火星和地球都是球体,火星质量M火和地球质量M地之比为M火/M地=p,火星半径R火和地球半径R地之比为R火/R地=q,那么火星表面处的重力加速度g火和地球表面处的重力加速度g地之比g火/g地等于()
A.p/q2B.pq2C.p/qD.pq
8.通过天文观测到某行星的一个卫星运动的周期为T,轨道半径为r,若把卫星的运动近似看成匀速圆周运动,试求出该行星的质量.
经验告诉我们,成功是留给有准备的人。准备好一份优秀的教案往往是必不可少的。教案可以让上课时的教学氛围非常活跃,帮助教师提前熟悉所教学的内容。那么如何写好我们的教案呢?下面是小编精心为您整理的“圆周运动- 万有引力-试题”,相信您能找到对自己有用的内容。
[科目]物理
[文件]wltb5.doc
[标题]六、圆周运动万有引力
[考试类型]同步测试
[内容]
六、圆周运动万有引力
一、选择题:
1.关于圆周运动的下列论述正确的是()
A.做匀速圆周运动的物体,在任何相等的时间内通过的位移都相等
B.做匀速圆周运动的物体,在任何相等的时间内通过的路程都相等
C.做圆周运动的物体的加速度的方向一定指向圆心
D.做圆周运动的物体的线速度的方向一定跟半径垂直
2.如图6-1有一个空心圆锥面开口向上放置着,圆锥面绕几何轴线匀速转动,在圆锥面内表面有一个物体m与壁保持相对静止,则物体m所受的力为()
A.重力、弹力、下滑力共三个力
B.重力、弹力共两个力
C.重力、弹力、向心力共三个力
D.重力、弹力、离心力共三个力
3.一个水平的圆盘上放一个木块,木块随圆盘绕通过圆盘中心的竖直轴匀速转动,如图6-2所示。木块受到的圆盘所施的摩擦力的方向为()
A.方向指向圆盘的中心
B.方向背离圆盘的中心
C.方向跟木块运动的方向相同
D.方向跟木块运动的方向相反
4.长l的细绳一端固定,另一端系一个质量为m的小球,使球在竖直面内做圆运动,那么()
A.小球通过圆周上顶点时的速度最小可以等于零
B.小球通过圆周上顶点时的速度不能小于
C.小球通过最高点时,小球需要的向心力可以等于零
D.小球通过最高点时绳的张力可以等于零
5.人造卫星在轨道上绕地球做圆周运动,它所受的向心力F跟轨道半径r的关系是()
A.由公式F=可知F和r成反比
B.由公式F=mω2r可知F和ω2成正比
C.由公式F=mωv可知F和r无关
D.由公式F=可知F和r2成反比
6.由于某种原因,人造地球卫星的轨道半径减小了,那么,卫星的()
A.速变率大,周期变小B.速率变小,周期变大
C.速率变大,周期变大D.速率变小,周期变小
7.关于同步定点卫星(这种卫星相对于地面静止不动),下列说法中正确的是()
A.它一定在赤道上空运行
B.同步卫星的高度和运动速率是一个确定的值
C.它运行的线速度一定小于第一宇宙速度
D.它运行的线速度介于第一和第二宇宙速度之间
8.两行星A和B各有一颗卫星a和b,卫星的圆轨道接近各自行星表面,如果两行星质量之比MA:MB=p,两行星半径之比RA:RB=q,则两个卫星周期之比TA:TB为()
A.q·B.q·C.p·D.q·
二、填空题
9.质量为m的小球,沿着在竖直平面的圆形轨道的内侧运动,它经过最高点而不脱离轨道的最小速度是v,当小球以2v的速度经过最高点时,这对轨道的压力是___________。
10.一个做匀速圆周运动的物体,如果轨道半径不变,转速变为原来的3倍,所需的向心力就比原来的向心力大40N,物体原来的向心力大小为___________;若转速不变,轨道半径变为原来的3倍,所需的向心力比原来大40N,那么物体原来的向心力大小为__________。
11.用长为L的细绳拴一质量为m的小球,当小球绕悬挂点O摆动经过最低点时,已知细绳的拉力为3mg。若在小球经过最低点时,用细杆挡在绳中点O′如图6-3所示,则这时球对绳拉力的大小将是________
12.如图6-4所示的皮带传动装置,皮带轮O和O′上的三点A、B、C,OA=O′C=r,O′B=2r。则皮带轮转动时,A、B、C三点的运动情况是WA_WB_WC,VA_VB__VC,aA_aB_ac(填=,>,<=
13.两颗人造地球卫星,它们的质量之比为m1:m2=1:2,它们的轨道半径之比为R1:R2=1:3,那么它们所受的向心力之比F1:F2=______;它们角速度之比ω1:ω2=________。
14.如图6-5所示,在一水平转台上放置两个物体甲和乙,已知M甲=2M乙,两物体所受转台的最大静摩擦力与其质量成正比,则当转台转速逐渐增加时,________物体先滑动。
三、计算题:
15.司机为了能够控制驾驶的汽车,汽车对地面的压力一定要大于零。在高速公路上所建的高架桥的顶部可以看作是一个圆弧。若高速公路上汽车设计时速为180km/h,求高架桥顶部的圆弧半径至少是多少?(g取10m/s2)
16.汽车起重机用5m长的缆绳吊着lt重的重物,以2m/s的速度水平行驶,若突然刹车,求此瞬间缆绳所受的拉力大小。(取g=10m/s2)
17.若地球绕太阳公转的周期与月球绕地球公转的周期之比为p,地球绕太阳公转的半径与月球绕地球公转的半径之比q,则太阳质量与地球质量之比M日/M地是多少?
18.一根轻杆长为l,顶端有质量为m的小球,另一端为轴。如轻杆在竖直平面内匀速旋转角速度为ω,求:(1)小球经过圆周轨道最低点时小球给杆的作用力;(2)小球经过圆周轨道最高点时,小球给杆的作用力(区分为拉力、压力及无力三种情况加以说明)。
19.在离地球表面等于3倍地球半径的高度上,运行一颗人造地球卫星,已知地球半径为R=6.4×106m,取g=10m/s2,则这颗人造地球卫星的运行速度是多少?
20.在一次测定万有引力恒量的实验里,两个小球的质量分别是0.80kg和4.0×10-3kg,当它们相距4.0×10-2m时相互吸引的作用力是1.3×10-10N。如果地球表面的重力加速度是9.8m/s2,地球的半径取6.4×106m,试计算出地球的质量。
文章来源:http://m.jab88.com/j/68673.html
更多