88教案网

九年级上册《配方法的基本形式》学案

每个老师不可缺少的课件是教案课件,大家在仔细设想教案课件了。教案课件工作计划写好了之后,这样我们接下来的工作才会更加好!你们会写一段适合教案课件的范文吗?下面是小编帮大家编辑的《九年级上册《配方法的基本形式》学案》,仅供参考,大家一起来看看吧。

九年级上册《配方法的基本形式》学案

配方法的基本形式

理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题.
通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面两种形式的一元二次方程的解题步骤.

重点
讲清直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤.
难点
将不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧.

一、复习引入
(学生活动)请同学们解下列方程:
(1)3x2-1=5(2)4(x-1)2-9=0(3)4x2+16x+16=9(4)4x2+16x=-7
老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得
x=±p或mx+n=±p(p≥0).
如:4x2+16x+16=(2x+4)2,你能把4x2+16x=-7化成(2x+4)2=9吗?
二、探索新知
列出下面问题的方程并回答:
(1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢?
(2)能否直接用上面前三个方程的解法呢?
问题:要使一块矩形场地的长比宽多6m,并且面积为16m2,求场地的长和宽各是多少?
(1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x的完全平方式而后二个不具有此特征.
(2)不能.
既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化:
x2+6x-16=0移项→x2+6x=16
两边加(6/2)2使左边配成x2+2bx+b2的形式→x2+6x+32=16+9
左边写成平方形式→(x+3)2=25降次→x+3=±5即x+3=5或x+3=-5
解一次方程→x1=2,x2=-8
可以验证:x1=2,x2=-8都是方程的根,但场地的宽不能是负值,所以场地的宽为2m,长为8m.
像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法.
可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解.
例1用配方法解下列关于x的方程:
(1)x2-8x+1=0(2)x2-2x-12=0
分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上.
解:略.
三、巩固练习
教材第9页练习1,2.(1)(2).
四、课堂小结
本节课应掌握:
左边不含有x的完全平方形式的一元二次方程化为左边是含有x的完全平方形式,右边是非负数,可以直接降次解方程的方程.
五、作业布置

相关推荐

配方法


22.2.降次——解一元二次方程
22.2.1配方法(第2课时)
教学任务分析




标1、能说出用配方法解一元二次方程的基本步骤;知道“配方法”是一种常用的数学方法。
2、会用配方法解数字系数的一元二次方程。

教学过程
问题与情景师生活动设计意图
一、温故知新:
1、填上适当的数,使下列各式成立,并总结其中的规律。
(1)x2+6x+=(x+3)2(2)x2+8x+=(x+)2
(3)x2-12x+=(x-)2(4)x2-+=(x-)2
(5)a2+2ab+=(a+)2(6)a2-2ab+=(a-)2
2、用直接开平方法解方程:x2+6x+9=2

第一题为口答题,复习完全平方公式,旨在引出配方法,培养学生探究的兴趣。

二、自主学习:
自学课本P31---P32思考下列问题:
1、仔细观察教材问题2,所列出的方程x2+6x-16=0利用直接开平方法能解吗?
2、怎样解方程x2+6x-16=0?看教材框图,能理解框图中的每一步吗?(同学之间可以交流、师生间也可交流。)
3、讨论:在框图中第二步为什么方程两边加9?加其它数行吗?
4、什么叫配方法?配方法的目的是什么?
5、配方的关键是什么?

交流与点拨:
重点在第2个问题,可以互相交流框图中的每一步,实际上也是第3个问题的讨论,教师这时对框图中重点步骤作讲解,特别是两边加9是配方的关键,使之配成完全平方式。利用a2±2ab+b2=(a±b)2。注意9=()2,而6是方程一次项系数。所以得出配方是方程两边加上一次项系数一半的平方,从而配成完全平方式。

学生通过自学经历思考、讨论、分析的过程,最终形成把一个一元二次方程配成完全平方式形式来解方程的思想

三、例题学习:
例(教材P33例1)解下列方程:
(1)x2-8x+1=0(2)2x2+1=-3x
(3)3x2-6x+4=0
教师要选择例题书写解题过程,通过例题的学习让学生仔细体会用配方法解方程的一般步骤。
交流与点拨:
用配方法解一元二次方程的一般步骤:
(1)将方程化成一般形式并把二次项系数化成1;(方程两边都除以二次项系数)
(2)移项,使方程左边只含有二次项和一次项,右边为常数项。
(3)配方,方程两边都加上一次项系数一半的平方。
(4)原方程变为(x+k)2=a的形式。
(5)如果右边是非负数,就可用直接开平方法求取方程的解。

牢牢把握通过配方将原方程变为(x+k)2=a的形式方法。
四、课堂练习:
1、教材P34练习1(做在课本上,学生口答)
2、教材P34练习2

对于第二题根据时间可以分两组完成,学生板演,教师点评。
通过练习加深学生用配方法解一元二次方程的方法。
五、布置作业
1、教材P42习题22.2第3题
六、总结反思:(针对学习目标)可由学生自己完成,教师作适当补充。
1、理解配方法解方程的含义。
2、要熟练配方法的技巧,来解一元二次方程,
3、掌握配方法解一元二次方程的一般步骤,并注意每一步的易错点。
4、配方法解一元二次方程的解题思想:“降次”由二次降为一次。

八年级数学竞赛例题专题-配方法


专题25配方法
阅读与思考
把一个式子或一个式子的部分写成完全平方式或者几个完全平方式的和的形式,这种方法叫配方法,配方法是代数变形的重要手段,是研究相等关系,讨论不等关系的常用技巧.
配方法的作用在于改变式子的原有结构,是变形求解的一种手段;配方法的实质在于揭示式子的非负性,是挖掘隐含条件的有力工具.
配方法解题的关键在于“配方”,恰当的“拆”与“添”是配方常用的技巧,常见的等式有:
1、
2、
3、
4、
配方法在代数式的求值,解方程、求最值等方面有较广泛的应用,运用配方解题的关键在于:
(1)具有较强的配方意识,即由题设条件的平方特征或隐含的平方关系,如能联想起配方法.
(2)具有整体把握题设条件的能力,即善于将某项拆开又重新分配组合,得到完全平方式.

例题与求解
【例1】已知实数,,满足,那么_____
(“祖冲之杯”邀请赛试题)
解题思路:对题设条件实施变形,设法确定x,y的值.

【例2】若实数,,c满足,则代数式的最大值是()
A、27B、18C、15D、12
(全国初中数学联赛试题)
解题思路:运用乘法公式,将原式变形为含常数项及完全平方式的形式.

配方法的实质在于揭示式子的非负性,而非负数有以下重要性质;
(1)非负数的最小值为零;
(2)有限个非负数的和为零,则每一个非负数都为零.
【例3】已知,求a+b+c的值.
解题思路:题设条件是一个含三个未知量的等式,三个未知量,一个等式,怎样才能确定未知量的值呢?不妨用配方法试一试.
复合根式的化简,含多元的根式等式问题,常常用到配方法.

【例4】证明数列49,4489,444889,44448889,…的每一项都是一个完全平方数.
解题思路:,由此可猜想,只需完成从左边到右边的推导过程即可.

几个有趣的结论:
(1)
(2)
这表明:只出现1个奇数或只出现1个偶数的完全平方数分别有无限多个.

【例5】一幢33层的大楼有一部电梯停在第一层,它一次最多容纳32人,而且只能在第2层至第33层中某一层停一次,对于每个人来说,他往下走一层楼梯感到1分不满意,往上走一层楼梯感到3分不满意,现在有32个人在第一层,并且他们分别住在第2至第33层的每一层,问:电梯停在哪一层时,可以使得这32个人不满意的总分达到最小?最小值是多少?(有些人可以不乘电梯即直接从楼梯上楼).
(全国初中数学联赛试题)

解题思路:通过引元,把不满意的总分用相关字母的代数式表示,解题的关键是对这个代数式进行恰当的配方,进而求出代数式的最小值.
把代数式通过凑配等手段,得到完全平方式,再运用完全平方式是非负数这一性质达到增加问题条件的目的,这种解题方法叫配方法.
配方法的作用在于改变代数式的原有结构,是变形求解的一种手段;配方法的实质在于揭示式子的非负性,是挖掘隐含条件的有力工具.

【例6】已知自然数n使得为完全平方数,求n的值.
(“希望杯”邀请赛试题)

解题思路:原式中n的系数为奇数,不能直接配方,可想办法化奇为偶,解决问题.

能力训练
1、计算=_________.
(“希望杯”邀请赛试题)
2、已知,则.
3、,y为实数,且,则+y的值为__________.
4、当>2时,化简代数式,得___________.
5、已知,当=________,y=______时,的值最小.
(全国通讯赛试题)

6、若,则M-N的值()
A、负数B、正数C、非负数D、可正可负
7、计算的值为()
A、1B、C、D、
(全国初中数学联赛试题)
8、设,,为实数,,则x,y,z中至少有一个值()
A、大于零B、等于零C、不大于零D、小于零
(全国初中数学竞赛试题)
9、下列代数式表示的数一定不是某个自然数的平方(其中n为自然数)的是()
A、B、C、
D、E、
10、已知实数,,c满足,则a+b+c的值等于()
A、2B、3C、4D、5
(河北省竞赛试题)
解“存在”、“不存在”“至少存在一个”等形式的问题时,常从整体考虑并经常用到一下重要命题:
设x1,x2,x3,…xn为实数.
(1)若则x1,x2,x3,…xn中至少有(或存在)一个为零;
(2)若,则x1,x2,x3,…xn中至少有(或存在)一个大于零;
(3)若,则x1,x2,x3,…xn中至少有(或存在)一个小于零.

11、解方程组(苏州市竞赛试题)

12、能使是完全平方数的正整数n的值为多少?
(全国初中数学联赛试题)

13、已知,且,,为自然数,求,的值.
(天津市竞赛试题)

13、设a为质数,b为正整数,且,求,的值.
(全国初中数学联赛试题)

14、某宾馆经市场调研发现,每周该宾馆入住的房间数y与房间单价x之间存在如图所示的一次函数关系.
(1)根据图象求y与x之间的函数关系式(0<<160);
(2)从经济效益来看,你认为该宾馆如何制定房间单价,能使其每周的住宿收入最高?每周最高住宿收入是多少元?

八年级竞赛讲座(第24讲配方法的解题功能)


第二十四讲配方法的解题功能
把代数式通过凑配等手段,得到完全平方式,再运用完全平方式是非负数这一性质达到增加问题的条件的目的,这种解题方法叫配方法.
配方法的作用在于改变代数式的原有结构,是求解变形的一种手段;配方法的实质在于改变式子的非负性,是挖掘隐含条件的有力工具,配方法在代数式的化简求值、解方程、解最值问题、讨论不等关系等方面有广泛的应用.
运用配方法解题的关键是恰当地“配凑”,应具有整体把握题设条件的能力,即善于将某项拆开又重新分配组合,得到完全平方式.
例题求解
【例1】已知有理数x,y,z满足,那么(x—yz)2的值为.(北京市竞赛题)
思路点拨三元不定方程,尝试从配方法人手.
【例2】若,则可取得的最小值为()
A.3B.C.D.6
(武汉市选拔赛试题)
思路点拨通过引参,设,把x,y,z用k的代数式表示,则转化为关于k的二次三项式,运用配方法求其最小值.
【例3】怎样的整数a、b、c满足不等式:.
(匈牙利数学奥林匹克试题)
思路点拨一个不等式涉及三个未知量,运用配方法试一试.
【例4】求方程m2-2mn+14n2=217的自然数解.(上海市竞赛题)
思路点拨本例是个复杂的不定方程,由等式左边的特点,不难想到配方法.
【例5】求实数x、y的值,使得(y-1)2+(x+y-3)2+(2x+y-6)2达到最小值.
(全国初中数学联赛试题)
思路点拨展开整理成关于x(或y)的二次三项式,从配方的角度探求式子的最小值,并求出最小值存在时的x、y的值.
【例6】为了美化校园环境,某中学准备在一块空地(如图,矩形ABCD,AB=10m,BC=20m)上进行绿化,中间的一块(图中四边形EFGH)上种花,其他的四块(图中的四个直角三角形)上铺设草坪,并要求AC=AH=CF=CG,那么在满足上述条件的所有设计中,是否存在一种设计,使得四边形EFGH(中间种花的一块)面积最大?若存在,请求出该设计中AE的长和四边形EFGH的面积;若不存在,请说明理由.
(2温州市中考题)
思路点拨这是一道探索性几何应用题,解题的关键是代数化.设AE=AH=CF=CG=xm,则BE=DG=(20-x)m,四边形EFGH的面积可用x的代数式表示,利用配方法求该代数式的最大值.
注配方的对象具有多样性,数,字母、等式、不等式都可以配方;同一个式于可以有不同的配方结果,可以配一个平方式,也可以配多个平方式.
配方法的实质在于揭示式子的非负性,而非负数有以下重要性质:
(1)若有限个非负数的和为0,则每一个非负数都为零;
(2)非负教的最小值为零.
学历训练
1.若,则.
(2江西省中考题)
2.设,,则的值等于.
(“希望杯”邀请赛试题)
3.分解因式:=.
4,已知实数x、y、z满足,,那么=.
(“祖冲之杯”邀请赛试题)
5.若实数x、y满足,则的值是()
A.1B.C.D.
6.已知,,,则多项式的值为()
A.0B.1C.2D.3
(全国初中数学竞赛题)
7.整数x、y满足不等式,则x+y的值有()
A.1个B.2个C.3个D.4个(“希望杯”邀请赛试题)
8.化简为()
A.5-4B.4-lC.5D.1(2003年天津市竞赛题)
9.已知正整数a、b、c满足不等式,求a、b、c的值.
(江苏省竞赛题)
10.已知x、y、z为实数,且满足,求的最小值.
(第12届“希望杯”邀请赛试题)
11.实数x、y、z满足,则的值为.
12.若,则a+b+c的值为.
13.x、y为实数,且,则x、y的值为x=,y=.
14.已知,那么当x=,y=时,M的值最小,M的最小值为.
15.已知,,则a+b=()
A.4B.0C.2D.-2
(重庆市竞赛题)
16.设,,则的值为()
A.B.C.2D.(江苏省竞赛题)
17.若a、b、c、d是乘积为l的4个正数,则代数式的最小值为()
A.0B.4C.8D.10
18.若实数a、b、c满足,代数式的最大值是()
A.27D.18C.15D.12
19.已知x+y+z=1,求证:.
(苏奥尔德莱尼基市竞赛题)
20.已知a>b,且,a、b为自然数,求a、b的值.
21.已知a、b、c是△ABC的三边长,且满足,,,试求
△ABC的面积.
22.某种产品按质量分为10个档次,生产最低档次产品,每件获利润8元,每提高一个档次,每件产品利润增加2元.用同样工时,最低档次产品每天可生产60件,提高一个档次将减少3件.如果获利润最大的产晶是第k档次(最低档次为第一档次,档次依次随质量增加),求k的值.(山东省竞赛题)

文章来源:http://m.jab88.com/j/68598.html

更多

最新更新

更多