88教案网

关于原点对称的点的坐标学案

教案课件是老师上课中很重要的一个课件,大家静下心来写教案课件了。只有规划好了教案课件新的工作计划,这样我们接下来的工作才会更加好!你们会写教案课件的范文吗?急您所急,小编为朋友们了收集和编辑了“关于原点对称的点的坐标学案”,相信能对大家有所帮助。<JaB88.COm/p>23.2.3关于原点对称的点的坐标
出示目标
1.理解P与点P′点关于原点对称时,它们的横纵坐标的关系.
2.掌握P(x,y)关于原点的对称点为P′(-x,-y)并会运用.
预习导学
自学指导自学课本第68页,并思考下列问题.
关于原点作中心对称时,①它们的横坐标与横坐标绝对值什么关系?纵坐标与纵坐标的绝对值又有什么关系?②坐标与坐标之间符号又有什么特点?
(1)横坐标与横坐标的绝对值相等,纵坐标与纵坐标的绝对值相等.(2)坐标符号相反,即P(x,y)关于原点O的对称点为P′(-x,-y).
知识探究
两个点关于原点对称,它们的坐标符号相反.即点P(x,y)关于原点O的对称点的坐标是P′(-x,-y).
自学反馈
1.如图,在直角坐标系中,已知A(-3,1)、B(-4,0)、C(0,3)、D(2,2)、E(3,-3)、
F(-2,-2),作出A、B、C、D、E、F点关于原点O的中心对称点,并写出它们的坐标,并回答:这些坐标与已知点的坐标有什么关系?
解:A、B、C、D、E、F点关于原点O对称点分别为A′(3,-1)、B′(4,0)、
C′(0,-3)、D′(-2,-2)、E′(-3,3)、F′(2,2).这些点的横纵坐标与已知点的横纵坐标互为相反数.
2.如图,利用关于原点对称的点的坐标的特点,作出与线段AB关于原点对称的图形.
解:
要作出线段AB关于原点的对称线段,只要作出点A、点B关于原点的对称点
A′、B′再连结即可.
合作探究
活动1小组讨论
如图,直线AB与x轴、y轴分别相交于A、B两点,将直线AB绕点O顺时针旋转
90°得到直线A1B1.
(1)在图中画出直线A1B1.
(2)求出过线段A1B1中点的反比例函数解析式.
(3)是否存在另一条与直线A1B1平行的直线y=kx+b(我们发现互相平行的两条直线k值相等)它与双曲线只有一个交点,若存在,求此直线的函数解析式,若不存在,请说明理由.
解:(1)略.(2)略.(3)略
(1)只需画出A、B两点绕点O顺时针旋转90°得到的点A1、B1,连结A1B1
(2)先求出A1B1中点的坐标,设反比例函数解析式为y=kx代入求k.
(3)要回答是否存在,如果你判断存在,只需找出即可;如果不存在,才加以说明.这一条直线是存在的,因为A1B1与双曲线是相切的,只要我们通过A1B1的坐标作A1、B1关于原点的对称点A2、B2,连结A2B2的直线就是我们所求的直线.
活动2跟踪训练
1.已知△ABC,A(1,2),B(-1,3),C(-2,4)利用关于原点对称的点的坐标的特点,作出△ABC关于原点对称的图形.
先在直角坐标系中画出A、B、C三点并连结组成△ABC,要作出△ABC关于原点O的对称三角形,只需作出△ABC中的A、B、C三点关于原点的对称点,依次连结,便可得到所求作的△A′B′C′.
2.教材第70页的第3、4题.
活动3课堂小结
本节课应掌握:两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点的对称点P′(-x,-y),及利用这些特点解决一些实际问题.
当堂训练
教学至此,敬请使用学案当堂训练部分.

延伸阅读

用坐标表示轴对称导学案


13.2.2用坐标表示轴对称

一、学习目标
1、能够经过探索利用坐标来表示轴对称;
2、掌握关于轴、轴对称的点的坐标特点。
二、温故知新
如图:(1)观察图(1)中两个圆脸有什么关系?
(2)若已知图(1)中圆脸右眼的坐标为(4,3),左眼
的坐标为(2,3),嘴角两个端点,右端点的坐标为(4,1),
左端点的坐标为(2,1).你能根据轴对称的性质写出左边圆
脸上左眼,右眼及嘴角两端点的坐标吗?
三、自主探究合作展示
探究(一)
1、在如图(2)所示平面直角坐标系内画出下列已知点以及对称点,并把坐标填在表格中,你能发现坐标间有什么规律?
已知点A(2,-3)B(-1,2)C(-6,-5)D(0.5,1)E(4,0)
关于轴对称的点()()()()()
关于轴对称的点()()()()()

2、归纳:点(,)关于轴对称的点的坐标是;
点(,)关于轴对称的点的坐标是

探究(二)
例题:
如图(3),四边形ABCD的四个顶点的坐标分别为A(-5,1),B(-2,1),C(-2,5),D(-5,4),分别作出四边形ABCD关于轴和轴对称的图形。
例题反思:

四、双基检测
1、分别写出下列各点关于轴和轴对称的点的坐标。

(3,6)(-7,9)(-3,-5)(6,-1)(0,10)
关于轴对称的点
关于轴对称的点

2、已知点(2a+b,-3a)与点(8,b+2).(1)若点与点关于轴对称,则a=_____;b=_______.
(2)若点与点关于轴对称,则a=_____;b=_______.
3、如图(4),△OBC关于轴对称,点A的坐标为(1,-2),标出点B的坐标.

3、如图(5),利用关于坐标轴对称的点的坐标的特点,分别作出与△ABC关于轴和轴对称的图形.
五、学习反思

用坐标表示轴对称


学习课题:12.2.2用坐标表示轴对称(一课时)
学习内容:教材P43-44
学习目标:1、能够经过探索利用坐标来表示轴对称。
2、掌握关于x轴、y轴对称的点的坐标特点。
学习重点:关于x轴、y轴对称的点的坐标特点。
学习难点:用坐标表示轴对称的应用。
学习方法:操作、归纳、合作交流
学习过程:
一、知识回顾
已知△ABC,求作△A’B’C’,使它与△ABC关于直线l成轴对称

二、学习新知
(一)关于x轴、y轴对称的点的坐标特点
1、思考:教材P43
2、探索:在平面直角坐标系内画出下列已知点以及对称点,并把坐标填在表格中,你能发现坐标间有什么规律?
已知点A(2,-3)B(-1,2)C(-6,-5)D(0.5,1)E(4,0)
关于x轴对称的点A’()B’()C’()D’()E’()
关于y轴对称的点A’’()B’’()C’’()D’’()E’’()
(平面直角坐标系在教材P43图12.2-11)
3、归纳:点(x,y)关于x轴对称的点的作标是;
点(x,y)关于y轴对称的点的作标是
4、练习:教材P44练习第1题、第2题(完成于书上)
(二)应用:1、如图,四边形ABCD的四个顶点的坐标分别为A(-5,1),
B(-2,1),C(-2,5),D(-5,4),分别作出四边形ABCD关于y轴和x轴对称的图形。

三、巩固提高
1、分别写出下列各点关于x轴和y轴对称的点的坐标
(3,6)(-7,9)(-3,-5)(6,-1)(0,10)
关于x轴对称的点
关于y轴对称的点
2、如图,利用关于坐标轴对称的点的坐标的特点,分别作出与△ABC关于x轴和y轴对称的图形
四、反思归纳
1、本节课学习的内容:

2、数学思想方法归纳:

初二数学知识点归纳:用坐标表示轴对称


初二数学知识点归纳:用坐标表示轴对称

用坐标表示轴对称:
关于x轴对称的点的坐标的特点是:横坐标不变,纵坐标互为相反数;
关于y轴对称的点的坐标的特点是:横坐标互为相反数,纵坐标不变。
点(x,y)关于x轴对称的点的坐标为x,-y,
点(x,y)关于y轴对称的点的坐标为-x,y。

例如图中:
点A(2,3)关于x轴对称的点的坐标为A,,(-2,3);
点A(2,3)关于x轴对称的点的坐标为A,(2,3)。
点拨:
①写出平面坐标系中一个点关于x轴和y轴对称的点的坐标:
关于x轴对称的点横坐标相等,纵坐标互为相反数;关于y轴对称的点横坐标互为相反数,纵坐标相等。
②画出一个图形关于x轴或y轴对称:
先求出已知图形中的一些特殊点(如多边形的顶点)的对应点的坐标,描出并连接这些点,就可以得到这个图形的轴对称图形。

一、知识回顾
已知△ABC,求作△A’B’C’,使它与△ABC关于直线l成轴对称
二、学习新知
(一)关于x轴、y轴对称的点的坐标特点
1、思考:教材P43
2、探索:在平面直角坐标系内画出下列已知点以及对称点,并把坐标填在表格中,你能发现坐标间有什么规律?
已知点A(2,-3)B(-1,2)C(-6,-5)D(0.5,1)E(4,0)
关于x轴对称的点A’()B’()C’()D’()E’()
关于y轴对称的点A’’()B’’()C’’()D’’()E’’()
(平面直角坐标系在教材P43图12.2-11)
3、归纳:点(x,y)关于x轴对称的点的作标是;
点(x,y)关于y轴对称的点的作标是
4、练习:教材P44练习第1题、第2题(完成于书上)
(二)应用:1、如图,四边形ABCD的四个顶点的坐标分别为A(-5,1),
B(-2,1),C(-2,5),D(-5,4),分别作出四边形ABCD关于y轴和x轴对称的图形。
三、巩固提高
1、分别写出下列各点关于x轴和y轴对称的点的坐标
(3,6)(-7,9)(-3,-5)(6,-1)(0,10)
关于x轴对称的点
关于y轴对称的点
2、如图,利用关于坐标轴对称的点的坐标的特点,分别作出与△ABC关于x轴和y轴对称的图形

文章来源:http://m.jab88.com/j/68240.html

更多

最新更新

更多