88教案网

《加法结合律》教学设计与导学案

作为一位刚入职不久的新任教师,在授课上的经验比较少。有的老师会在很久之前就精心制作一份教学计划。让同学听的快乐,老师自己也讲的轻松。如何才能编写一份比较全面的教案呢?下面是由小编为大家整理的“《加法结合律》教学设计与导学案”,欢迎您参考,希望对您有所助益。

《加法结合律》教学设计与导学案
教学目的:
1.使学生理解和掌握加法结合律,并应用结合律使计算简便。
2.培养学生观察、归纳、概括能力以及思维灵活性。
3.对学生进行具体问题具体分析的辨证唯物主义的教育。
教学重点:理解并掌握加法结合律。
教学过程:
一、情景引入
1.同学们,暑假期间,我们学校举行军事夏令营活动,三年级一班有营员42人,二班有营员45人,三班有营员55人,请你计算一下,这三个班共有营员多少人?
(1)全班试做,指名板演。
(2)集体订正:42+45+55=142(人)
2.师:这道实际应用题同学们做得都很好,老师这还有一道例题(出示例2),同学们看能不能用两种方法解答?
[说明:从近期生活实际入手,使学生置于情景之中,便于激发学生学习兴趣,同时为学习例2连加法做好铺垫。]
二、尝试探究构建模型
1.出示例2。
例2.四年级一班有48人,二班有50人,三班有49人,三个班共有多少人?(用两种方法解答)
(1)全班试做。
(2)指名板演。
(3)做完的同学自己先说一说每种方法你是先算什么?再算什么?结果怎样?
(4)师:由两种算法的结果相间,可以看出这两个算式有什么关系?这种关系可以怎样表示?(同桌相互说一说,然后指名回答)教师板书如下:(48+50)+49=48+(50+49)
2.谁能编一道像例2这样的应用题,(指2至3名学生编)然后全班同学用两种方法解答。
3.观察下面每组的两个算式,它们有什么样的关系?(投影出示)
(12+13)+14○12+(13+14)
(320+150)+230○320+(150+230)
[说明:通过编题解答,使学生初步感知加法结合律,为后面归纳概括打下基础。]
4.归纳概括加法结合律。
(1)从黑板和投影上的算式同学们发现了什么规律?(以小组为单位说一说)
(2)指名回答发现了什么规律。
(3)教师准确口述规律,然后出示加法结合律内容。三个数相加,先把前两个数相加,再同第三个数相加;或者先把后两个数相加,再同第一个数相加,它们的和不变。我们把这样的规律叫做加法结合律。
(揭示并板书课题:加法结合律)
(4)全班整体感知加法结合律。(齐读)
[说明:由小组到个人可以从不同的角度不同的侧面发散学生的思雄,培养学生归纳概括能力。]
5.学习加法结合律字母公式。
(1)自学(a+b)+c=a+(b+c)
(2)弄清a、b、c的意思。
6.做一做。
根据运算定律在下面的□里填上适当的数。
(25+68)+32=25+(□+□)
130+(70+4)=(130+□)+□
7.探究复习题的另一种简便算法。
学习了加法结合律,同学们想一想:复习题怎样计算更为简便一些?
42+45+55=42+(45+55)
[说明:学以敢用,强化简算意识。]
8.小结:加法结合律对于我们今后的学习很有帮助,希望同学们在理解的基础上切实掌握好。
9.质疑:还有不明白的问题吗?
[说明:清除练习中的障碍与疑点,使学生真正学懂会用。]
三、解决应用
1.应用加法的交换律和结合律,可以使一些计算简便。
2.学习例3.计算480+325+75
(1)同学们观察这道题,怎样计算比较简便?
(2)全班试做,指名板演。
(3)集体订正,并指名说出这样算的根据。
3.学习例4.计算325+480+75
(1)以小组为单位讨论一下,例4怎样算比较简便?与例3有什么不同?应用了什么运算定律?
(2)全班试做,指名板演。
(3)集体订正,说出计算时应用了什么运算定律?
[说明:把两道例题放在解决应用这个环节,有利于培养学生运用所学知识解决问题的能力。]
4.问:我们在以前学习过程中有什么地方应用过加法结合律?
5.练:(做一做)
137+31+63怎样算比较简便?用了什么运算定律?
6.读:阅读教材第14一15页,看看还有什么地方不清楚?
7.结:这节课我们学习了加法结合律,并应用运算定律进行了简便运算,希望同学们在今后计算时,要根据题目特点,灵活运用运算定律,使计算简便。
[说明:对学生进行具体问题具体分析的思想教育。]
四、综合练习
1.根据运算定律,在下面的□里填上适当的数。
369+258+147=369+(□+147)
(23+47)+56=23+(□+□)
654+(97+a)=(654+□)+□
[说明:巩固结合律,打好基础。]
2.在符合加法结合律的等式后面打√号。
a+(20+9)=(a+20)+9()
△+(○+b)=(△+□)+b()
(10+20)+30+40=10+(20+30)+40()
3.有一天,小明爸爸对小明说:你从1数到100,小明刚数完,爸爸便说出了这l00个数的结果是5050,你能帮小明说明为什么算得这么快吗?
l+2+3+4+5+?+99+100=5050
[说明:培养学生思维灵活性,防止思维定势。]
4.用简便方法计算下面各题,说一说是怎样应用运算定律的?
91+89+1185+41+15+59
168+250+32135+49+65+24+11
[说明:巩固例题,打好基础。]
5.应用加法运算定律,你能很快算出下面两个算式的和吗?
1+3+5+7+??+17+19=
2+4+6+8+??+18+20=
[说明:进一步培养学生思维灵活性创造性以及较高的抽象逻辑思维能力。]
五、全课总结
通过这节课的学习,你有哪些新的收获?
《加法结合律》导学案
【知识梳理】
1、加法结合律:三个数相加,先把前两个数相加,再与第三个数相加;或者先把后两个数相加,再与第一个数相加,它们的和不变。字母表示:(a+b)+c=a+(b+c)
2、减法的性质:一个数连续减去两个数,可用这个数减去两个数的和。字母表示:a-b-c=a-(b+c)
【拓展提高】
怎样简便怎样算?
169-247+231-539+99+999+9999567-(245-123)

小编推荐

苏教版数学四年级上册教案 加法交换律和加法结合律


众所周知,一位优秀的老师离不开一份优质的教案。即使每天晚上一两点都要坚持制定出一份最详细的教学计划。上课才能够为同学讲更多的,更全面的知识。那么一份优秀的教案应该怎样写呢?以下是小编收集整理的“苏教版数学四年级上册教案 加法交换律和加法结合律”,希望对您的工作和生活有所帮助。

教材分析:

本教材是在学生经过较长时间的四则运算学习,对四则运算已有较多感性认识的基础上,结合一些实例,学习加法的运算律。学生从小学一年级开始,就在加法的计算中和演算中接触过这方面的知识,有较多的感性认识,这是学习加法交换律的基础。教材安排这两个运算律都是从学生熟悉的实际问题的解答引入,让学生通过观察、比较和分析,找到实际问题不同解法之间的共同特点,初步感受运算规律。然后让学生根据对运算律的初步感知举出更多的例子,进一步分析、比较,发现规律,并先后用符号和字母表示出发现的规律,抽象、概括出运算律。教材有意识地让学生运用已有经验,经理运算律的发现过程,让学生在合作与交流中对运算律的认识由感性逐步发展到理性,合理地构建知识。

“想想做做”先安排了一些基本练习,以填空、判断等形式巩固对加法运算律的理解;接着通过题组对比和凑整等练习,为学习简便计算作适当渗透。

教学目标:

1、教学技能目标:使学生理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。

2、过程方法目标:使学生经历探索加法交换律和结合律的过程,通过对熟悉的实际问题的解决,进行比较和分析,发现并概括出运算律。

3、情感、态度、价值观目标:使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考和探究问题的意识、习惯。

教学重点:使学生理解并掌握加法交换律和加法结合律,能用字母来表示加法交换律和结合律。

教学难点:使学生经理探索加法结合律和交换律的过程,发现并概括出运算律。

教学准备:配套课件。

教学过程:

一、课前谈话。

有牛顿因为看见苹果落地,进行思考,经过坚持不懈的努力,最后得出了万有引力定律这个伟大的成果。引导学生得出:要注意观察、思考生活中一些习以为常的问题,并从中探索出一些规律。

设计意图:由科学家从一个平常的现象得出伟大的发现,引导学生应注意观察身边的一些平常的、习以为常的现象,并从中的出一些规律,对学生进行良好学习习惯的教育。

二、教学加法交换律。

1、随着气候渐渐转凉,从下个月开始,同学们都将投入到冬季锻炼中去了。电脑出示第54页的例题,这是某个班级进行冬锻的情况,提问:从这张图片中,你获得了哪些数学信息?

你能根据这些信息,提出几个用加法计算的问题吗?根据学生的回答,电脑依次出示:①参加跳绳的一共有多少人?

②参加活动的女生一共有多少人?

③跳绳的男生和踢毽子的女生一共有多少人?

④参加活动的一共有多少人?

设计意图:从创设的贴近学生的生活情境出发,让学生自由地提问,可以培养学生的发散性思维,并培养学生的问题意识。同时,也符合新课程“创造性使用教材”的理念。

2、今天这节课,我们就一起来研究其中的这两个问题:

在黑板上张贴:参加跳绳的一共有多少人?

参加活动的一共有多少人?

我们先来解决第一个问题:参加跳绳的一共有多少人?

3、你们能马上口头列式并口算出结果吗?

指名回答,教师板书:28+17=45,追问:还有其他的方法来解决吗?在学生回答后,教师完成板书:17+28 =45(人)

为什么这两个算式的结果一样?

4、你们能用一个符号把它们连接以来吗?教师继续板书:28+17=17+28

仔细地观察一下这两个算式,你们有什么发现?在等号的两边,什么地方相同?什么地方不同?

5、你们能够自己模仿写出几个这样的算式吗?根据学生回答,教师相机板书算式,并追问:这样的算式能写几个?

6、我们再仔细的观察这几个算式,从中你们有什么发现?你们能用一个算式来表示你们的发现吗?

教师巡视,并作相应的辅导,在学生交流后板书出示:两个数相加,交换加数的位置,它们的和不变。并板书学生回答的一些符号表示的算式。并追问:你这样表示,每个符号分别表示什么?

7、同学们都自己用自己的喜欢的方式表示了你们的发现,那你们想不想把这些算式都统一呢?国际上一般用字母来表示这些规律,假如我们用a来表示第一个加数,用b来表示第二个加数,那这些算式能够怎样来表示呢?板书:a+b=b+a。

8、教师小结知识点:在很平常的一些四则运算中包含了一些规律性的东西,我们把这些规律叫做运算律。板书:运算律。教师指着板书指出:我们刚才研究的就是加法交换律(板书:加法交换律),学生齐读一遍。

小结研究方法:刚才我们在研究加法法交换律的时候,我们是怎样一步一步开展研究的?引导学生能得出:列式计算——观察思考——猜测验证——得出结论。

9、练习:

完成想想做做第一题前面两小题。

设计意图:教师是教学的组织者和引导者,而不仅仅是解题指导者。本环节的设计,层层递进,紧密围绕并运用好问题情境,师生之间积极互动,教师引导学生自己去发现规律,并学会用字母表示,最后还归纳出了研究方法,都让学生有一种成就感。

三、学习加法结合律。

1、刚才通过解决第一题,我们得到了加法交换律,现在我们再来研究问题“参加活动的一共有多少人?”看看我们有没有新的发现?

2、你们会自己列式解决这个问题吗?想想你为什么这样列式?学生练习,教师巡视指导。

3、学生回答,教师有意识地板书:

(28+17)+23=68(人)

28+(17+23)

(28+23)+17

28+(23+17)

(23+17)+28

23+(17+28)

让回答的同学说说这么列式是怎么思考的?

下面,我们就来针对这两个算式开展研究:(28+17)+23 28+(17+23)

设计意图:本环节又是“用教材教”的一个很好体现,比较好地注意了关注学生的生成与教师预设之间的联系,并很好地引导到需要的算式。

4、根究研究方法,接下来我们应该进行哪一步?(观察思考)那你们观察一下,这两个算式有什么关系呢?(参与运算的数相同,运算结果一样;运算顺序不同)你们能用什么符号连接?教师板书:

(28+17)+23=28+(17+23)

5、电脑出示:下面的Ο里能填上等号吗?

(45+25)+13Ο45+(25+13)

(36+18)+22Ο36+(18+22)

学生回答,教师板书:(45+25)+13=45+(25+13)

(36+18)+22=36+(18+22)

6、看着黑板上的板书,你们从中有了什么新的发现?学生小组交流后大堂再交流,教师张贴:三个数相加,先把前两个数相加,再同第三个数相加,或者先把后两个数相加,再和第一个数相加,它们的和不变。

7、这样的描述太长又难记,你们从第一个运算律中能得到启发,用简便的方法来表示你们的发现吗?自己尝试写一下。

板书:(a+b)+c=a+(b+c)

教师揭示:这就是我们今天所学的第二个运算律——加法结合律(板书:加法结合律)。

8、完成“想想做做”第1题的后面两个小题。

设计意图:通过引导学生运用得到的研究方法开展研究,由扶到放,初步培养学生探索和解决问题的能力和语言的组织能力。

四、巩固练习。

1、完成“想想做做”第2题。

第4小题引导学生发现是运用了加法交换律和加法结合律。

2、完成“想想做做”第3题第1行。

3、插入“朝三暮四”的故事,让学生通过故事得出:猴子很愚蠢,因为总量不变,只是老头采用了加法交换律。

4、完成“想想做做”第4题。

使学生初步感受应用加法运算律可以使计算简便。

设计意图:几个层次的练习,内容丰富,提供了具有价值的学习内容,使全体同学都参与到有趣的数学学习中,从验算中明白了其理论依据,从故事中分析出了其中蕴涵的运算律,既体会到了数学的乐趣,又复习巩固了全课的内容。

五、课堂总结。

通过本节课的学习,你有什么新的收获?

设计意图:体现了教师的主导作用和学生的主体作用,使学生在自己的整理总结中再次巩固了本节课的重难点。

小学四年级数学加法结合律和简便算法教案


教学内容:

教科书例3、例4、例5,练习十一第5—10题。

(一)知识教学点

1.使学生理解、掌握加法结合律。

2.能够应用加法的交换律和结合律进行简便计算。

(二)能力训练点

结合教学内容培养学生观察、分析和推理能力。

(三)德育渗透点

用联系、发展的观点,观察分析知识的规律性,培养学生的兴趣,参与知识

教学过程:。’

(四)美育渗透点

使学生感悟到数学知识内在联系的逻辑之美,提高审美意识。

引导学生运用已有经验,上升理论,抽象概念。

引导学生观察、探索,学习新知。

教学重点:对加法结合律的理解、掌握和应用。

教学难点:加法结合律的运用。

投影仪、幻灯片、小黑板(转板)。

(一)铺垫孕伏

1.什么叫加法交换律?用字母如何表示?

2.根据运算定律在下面的()里填上适当的数。

43+67二()+()3

5+()二65+(

()+18:19+()o+100:()+(

3.下面各等式哪些符合加法交换律?

270+380:390+26020+50+80二20+肋+50

o+400:400+O140+60:60+140

(检查学生对已学过知识的掌握情况,并为与新知识作比较打下基础。)

4.四年级一班有48人,二班有50人,两个班共有多少人?(转板出示)

学生计算完后,让学生用加法的意义说明为什么用加法计算。(理顺解题

思路,为参与知识教学过程学习例3,埋下伏笔。)

教师:以上,我们运用了加法的意义及交换律解决了一些问题,那么关于加

法还有没有其他的规律性知识?这些知识又有什么用途呢?这节课我们继续

学习这方面的知识——加法结合律和简便运算。(板书课题)

同学们看这道题(复习题4),求两个班一共有多少人,就是用48+50求出

结果,如果把题改一下又该怎样求呢?(教师翻转板)这就是我们今天要学习的

例2。(板书例2)

(二)探究新知

1.学习例3,学生读题后,指名找出已知条件和问题,教师边用线段表示出

数量关系。

求两个班人数的和一共是多少,用加法计算,现在我们求三个班一共是多

少。可怎样算呢?请同学们列出算式算出结果。(教师巡视,指名2人板演)集

体订正让板演的2名学生分别讲算理。

教师引导学生口述时并提示:第一种计算方法,表明先算一班和二班人数

的和,要在48与50的外面加上小括号。第二种计算方法,表明先算二班与三班

人数的和,要在50与49的外面加上小括号。引导学生明确:这两种解法的结果

相等,也就说明(48+50)+49与48+(50+49)这两个算式可用等号连接,教师

板书:(48+50)+49;48+(50+49)

教师:请同学们观察上面等式两边算式有什么相同点?有什么不同点?引

导学生明确:相同点:都有三个加数,左右两边的三个数相同;不同点:加的顺序

不同。

教师总结:无论先把48和50相加,再同49相加;还是先把50与49相加,

再与48相加,它们的得数都是一样的,也就是和不变。

2.观察下面每组的两个算式,它们有什么关系?

(12+13)+14012+(13+14)

(320+150)+2300320+(150+230)

先算一算,每组两个算式的结果怎样?用什么符号连接,每组算式说明什

么?引导学生观察,比较上面三个等式,归纳出加法的结合律。

(1)两个等式中,每组算式有3个加数,每个等式中的加数都一样。

(2)等号两边的算式中加数交换了位置,和没有变。

(3)教师说明这一规律叫做加法结合律。引导学生看一看教材第49页的

结束语。

3.用字母表示加法结合律。

如果用字母o、凸、c分别表示3个加数,怎样用字母表示加法结合律呢?教

师说明板书:(o+6)+c:o+(6+c)

等号左边(o+凸)十c表示先把前两个数相加,再同第三个数相加。

等号右边o+(6+c)表示先把后两个数相加,再同第一个数相加。

o、凸、c表示的数是什么范围的数?学生讨论,然后回答。

4.练习:教材第50页上面的“做一做”,填在书上。订正时,请学生说出是

根据哪个运算定律填写的。‘·一

(引导学生利用已有经验,观察、总结、概括、抽象出概念,提高学生的认识

水平。)

5.教学简便算法。

应用加法结合律我们可以改变一些数的运算顺序,但应用加法交换律更主

要的一点是可以使一些计算简便,同学们看这道题:(板书例3)

(1)计算.480+325+75

同学们想要计算480+325+75,怎样计算比较简便?为什么?应用了什么

运算定律?让学生先讨论后试算,接着学生汇报其结果。教师板书:

480+325+75

=480+(325+75)

480+400

=880

提醒学生注意应用加法结合律,计算时方框里的这一步熟练后可省略不

写,以达到更简便的目的,但如果题目要求写出简算过程,此步不能省略。

(2)再看这道题,教师板书:计算:325+480+75

这道题怎样算比较简便?为什么?应用了什么运算定律?

学生试算后,小组内检查,讨论订正。教师指定一名学生到黑板上板演,教

师引导学生,让板演的同学讲思考过程,集体订正。

教师提示:哪一步可以省略?

再请一名同学板书:

325+480+75

=325+75+480

=(325+75)+480

=400+480

=880

325+480+75

=325+75+480

=400+480

=880

板演后订正,使学生明确省略的步骤及每步运用的定律。

(3)通过对例4、例5的学习,(板书:例4、例5)知道加法的运算定律,可以

使一些计算简便。那么,例4、例5在应用运算定律方面又有什么不同呢?请同

学们比较一下。引导学生明确:例4没有调换加数的位置,直接应用了加法结

合律进行了简算;例5要使325与75相加,则必须先应用加法交换律将75交换

到480的前面,再应用加法结合律简算。另外,启发学生说出还可将325交换到

480后面进行简算。

反馈练习:课本第50页最下面“做一做”。

(引导学生通过比较,体验计算的简便,加深印象,提高计算的灵活性,开拓

学生思维。)

(4)想一想,过去哪些计算应用了加法的结合律?引导学生说出,在做口算

加法时应用了加法结合律。如36+48结果是多少?可以想:

36+48;36+(40+8);(36+40)+8;76+8;84

教师说明:根据加法结合律不仅可以做口算加法,还使一些计算简便。

我们学习了加法结合律及应用加法运算定律进行简算,要注意进行简算时

要先看一看题目的数字特点。

(三)巩固发属

1,练习十一第5-7题。

2.选择比较简便的方法填在括号里

(1)399+154+201;()

(投影)

①399+(154+201)②(399+201)+154

(2)374+268+126+432;()

①(374+126)+(268+432)②(374+126)+268+432

3.练习十一第8题前2行。

(四)全课小结

师生共同总结加法结合律和简便计算。

练习十一第8题后一行,第10题。

(48+50)+49

=98+49

=147(人)

加法结合律和简便算法

答:四年级一共有147人。

(48+50)+49;48+(50+49)

(12+13)+14二12+(13+14)

48+(50+49

=48十99

=147(人)

(320+150)+200=320+(150+200)

例4计算480+325+75

例5

480+325+75

=480+(325+75)

=880

计算325+480+75

325+480+75

=325+75+480

=(325+75)+480

=400十480

二880

《乘法结合律和交换律》教学设计


《乘法结合律和交换律》教学设计
一、教学内容:北师大版四年级上册数学第二单元P45-P46
二、教学目标:
1、经历探索过程,发现乘法结合律和交换律,并用字母表示。
2、在理解乘法结合律和交换律的基础上,会对一结算式进行简便计算。
3、感受数学探索的乐趣,培养自主探索问题的能力。
三、教学重、难点
1、重点:探索、发现、理解和应用乘法结合律和交换律。
2、难点:乘法结合律和交换律的探索过程。
四、教学过程
(一)口算比赛,激发学习兴趣
1、出示口算题
5×225×425×8125×8
2、师:以后在计算乘法时,一般看到“5”想到2,看到“25”想到4,看到“125”想到8;因为这样的两个数相乘能整到十、整百、整千数,这样可以快速计算。
3、谈话引入:我们在前面已学过乘法的计算,在教学运算中,有许多有趣的规律,这节课请同学们和老师一起去探索,看看你能发现什么?
4、板书:探索与发现(二)
(二)创设情境,发现问题
1、多媒体出示情境图
2、估一估
师:请大家认真观察,估一估这个长方体是由多少个小正方体搭成的?
3、算一算
师:谁估计的准确呢?请同学们在本子上算一算,比一比看谁做的又对又快。
4、交流算法。
师:谁愿意把你的办法介绍给大家?学生汇报,汇报时说一说自己是怎样想的。
师板书:(3×5)×4=60(个)
3×(5×4)=60(个)
(三)比较算式的特点,发现规律
1、刚才两位同学不同的方法解决了这个问题,现在请同学们一起观察这两个算式,看看你能发现什么?
2、学生汇报:略
3、小结:(3×50)×4=3×(5×4)
(四)提出假设,举例验证
1、师:用别的三个数这样计算会不会结果也相同呢?请在本子上举例计算。
2、学生举例
同桌之间互相交流?
3、集体交流
谁愿意介绍一下你们小组举例的情况?
(五)概括规律
1、从刚才大家所举的例子看,每一组的结果都是相同的。这样的例子多不多?能举的完吗?
2、如果用字母a、b、c分别表示乘法算式中的三个数字,你能写出所发现的规律吗?
板书(a×b)×c=a×(b×c)
板题:乘法结合律
(六)运用规律,解决问题
1、比较(3×5)×4=603×(5×4)=60两个算式,哪个更简便?
2、看来运用乘法结合律可以使一些计算简便。
3、练习:P46“试一试”的题目
学生独立完成,集体订正。
(七)探索乘法交换律
1、出示两组数据
4×5=5×412×10=10×12
2、师:认真观察,看看你有什么新发现?
3、学生汇报。
4、学生举例验证。
师:你能举出像这样的例子吗?
5、师:如果用字母a、b表示两个数,你能写出发现的规律吗?
6、板书:a×b=b×a
板题:乘法交换律
三、巩固练习
1、(完成课本第46页练一练第1题)
学生口答,集体订正。
2、应用乘法结合律和交换律,快速计算下面各题。
25×17×413×8×128(25×125)×(8×4)
(1)学生独立完成,个别板演。
(2)订正时让学生说说运用什么运算定律。
四、总结:这节课你有什么收获?
五、学生读课本第45、46页,质疑。
六、作业:课本第46页第2题。
探索与发现(二)
乘法结合律乘法交换律
(3×4)×5=60(个)6×9=9×6
3×(5×4)=60(个)7×8=8×7
(3×4)×5=3×(5×4)
(a×b)×c=a×(b×c)a×b=b×a

四年级下册《加法交换律和结合律》导学案


四年级下册《加法交换律和结合律》导学案
一、教学内容:加法交换律和结合律P17——P18
二、教学目标:
1、在解决实际问题的过程中,发现并掌握加法交换律和结合律,学会用字母表示加法交换律和结合律。
2、在探索运算律的过程中,发展分析、比较、抽象、概括能力,培养学生的符号感。
3、培养学生的观察能力和概括能力。
三、教学重难点
重点:发现并掌握加法交换律、结合律。
难点:由具体上升到抽象,概括出加法交换律和加法结合律。
四、教学准备
多媒体课件
五、教学过程
(一)导入新授
1、出示教材第17页情境图。
师:在我们班里,有多少同学会骑自行车?你最远骑到什么地方?
师生交流后,课件出示李叔叔骑车旅行的场景:骑车是一项有益健康的运动,你看,这位李叔叔正在骑车旅行呢!
2、获取信息。
师:从中你知道了哪些数学信息?(学生回答)
3、师小结信息,引出课题:加法交换律和结合律。
(二)探索发现
第一环节探索加法交换律
1、课件继续出示:“李叔叔今天上午骑了40km,下午骑了56km,一共骑了多少千米?”
学生口头列式,教师板书出示:40+56=96(千米)56+40=96(千米)
你能用等号把这两道算式写成一个等式吗?40+56=56+40
你还能再写出几个这样的等式吗?
学生独自写出几个这样的等式,并在小组内交流各自写出的等式,互相检验写出的等式是否符合要求。
2、观察写出的这些算式,你有什么发现?并用自己喜欢的方式表示出来。
全班交流。从这些算式可以发现:两个数相加,交换加数的位置,和不变。
可以用符号来表示:△+☆=☆+△;
可以用文字来表示:甲数十乙数=乙数十甲数。
3、如果用字母a、b分别表示两个加数,又可以怎样来表示发现的这个规律呢?
a+b=b+a
教师指出:这就是加法交换律。
4、初步应用:在()里填上合适的数。
37+36=36+()305+49=()+305b+100=()+b
47+()=126+()m+()=n+()13+24=()+()第二环节探索加法结合律
1、课件出示教材第18页例2情境图。
师:从例2的情境图中,你获得了哪些信息?
师生交流后提出问题:要求“李叔叔三天一共骑了多少千米”可以怎样列式?
学生独立列式,指名汇报。
汇报预设:
方法一:先算出“第一天和第二天共骑了多少千米”:
(88+104)+96
=192+96
=288(千米)
方法二:先算出“第二天和第三天共骑了多少千米”:
88+(104+96)
=88+200
=288(千米)
把这两道算式写成一道等式:
(88+104)+96=88+(104+96)
2、算一算,下面的○里能填上等号吗?
(45+25)+13○45+(25+13)(36+18)+22○36+(18+22)
小组讨论。先比较每组的两个算式,再比较这三组算式,在小组里说说你有什么发现。
集体交流,使学生明确:三个算式加数没变,加数的位置也没变,运算的顺序变了,它们的和不变。也就是:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
3、如果用字母a、b、c分别表示三个加数,可以怎样用字母来表示这个规律呢?
(a+b)+c=a+(b+c)
教师指出:这就是加法结合律。
4、初步应用。
在横线上填上合适的数。
(45+36)+64=45+(36+)
(560+)+=560+(140+70)
(360+)+108=360+(92+)
(57+c)+d=57+(+)
(三)巩固发散
1、完成教材第18页“做一做”。
学生独立填写,组织汇报时,让学生说说是根据什么运算律填写的。
2、下面各等式哪些符合加法交换律,哪些符合加法结合律?
(1)470+320=320+470
(2)a+55+45=55+45+a
(3)(27+65)+35=27+(65+35)
(4)70+80+40=70+40+80
(5)60+(a+50)=(60+a)+50
(6)b+900=900+b
(四)评价反馈
通过今天这节课的学习,你有哪些收获?
师生交流后总结:学习了加法交换律和结合律,并知道了如何用符号和字母来表示发现的规律。
(五)板书设计
加法交换律和结合律
加法交换律加法结合律
例1:李叔叔今天一共骑了多少千米?例2:李叔叔三天一共骑了多少千米?
40+56=96(千米)(88+104)+9688+(104+96)
56+40=96(千米)=192+96=88+200
=288(千米)=288(千米)
40+56=56+40(88+104)+96=88+(104+96)
a+b=b+a(a+b)+c=a+(b+c)
两个数相加,交换加数的位置,和不变。三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
六、教学后记

数学四下:《加法交换律和结合律》教案


老师讲课学生爱听,还愿意自学的情况下,往往少不了一份教案。即使每天晚上一两点都要坚持制定出一份最详细的教学计划。上课自己轻松的同时,学生也更好的消化课堂内容。你们有没有写过一份完整的教学计划?下面是由小编为大家整理的“数学四下:《加法交换律和结合律》教案”,仅供参考,但愿对您的工作带来帮助。

课 题 加法交换律和结合律

教学内容 教材第56~58页

教学目标 1、 在教学中从学生熟悉的实际问题的解答引入,让学生通过观察比较和分析,找到实际问题的不同解法之间的共同特点,初步感受运算规律。

2、能够用字母来表示加法交换律和加法结合律

3、使学生在合作与交流中对运算律的认识由感性逐步发展到理性、合理地建构知识。

教学重点 理解加法交换律和加法结合律

教学难点 判断加法交换律和加法结合律

教学准备 教学课件

教学流程 教师、学生活动 设计意图

一、创设情境,导入新课。 出示例题情景图,问:

1、图中的小朋友在干什么?从图中你了解到了什么信息?能提出数学问题吗?

2、选择其中一个问题:跳绳的有多少人?怎样列式解答?(屏示问题。) 从学生感兴趣的体育运动活动开始引入,增加课的兴趣。

二、探索加法交换律:

三、探索加法结合律。

四、巩固练习。

五、总结

六、板书设计 1.在情境中初步感知加法交换律。

学生列式:28+17=45(人)或17+28=45(人)。

同样的一幅图,同样的一个问题,我们列出了两道不同的算式,其中28+17是用男生人数加上女生人数,

17+28呢?(女生人数加上男生人数)

两道算式都表示把男生人数和女生人数合起来,所以都等于?(45人)

两道算式得数相同,我们可以用=把它们连成一个等式。

(屏示等式:28+17=17+28)

2.观察等式,发现个案特点:

仔细看,等号左右两边有什么相同?

都是在加法中,两个加数相同,得数都等于45。(板书:加法)

不同呢?两个加数的位置不同。

位置怎样了?(屏示动态交换过程)(板书:交换)

3.举例验证,并简要表示规律。

像这样的等式你能再写几个吗?(汇报时,教师在屏幕上输出学生举出的等式:)

追问:类似这样的等式能写完吗?(屏示省略号。)

虽然咱们写出的等式各不相同,但是仔细观察,它们却蕴藏着共同的规律,你发现了吗?交流一下。

师小结:两个数相加,交换加数的位置,和不变。

刚才,我们用语言把加法中的这个规律表达了出来,其实,我们还可以用一些更为简洁的方式来表达,比如用汉字、图形、字母等写成等式,也能表示这样的规律,你能用自己喜欢的方式来表达吗?(在实物投影上展示交流。)

4.用字母表示交换律:

刚才大家想出的等式都很好,不仅能把我们发现的规律表示出来,而且比语言叙述更简洁。其实这个规律,是加法的一个很重要的运算律。(板书:运算律)能给它取个名字吗?加法交换律。

在数学上,我们通常用字母a和b来表示两个加数,那么,加法交换律可以写成:a+b=b+a。

加法交换律是我们的老朋友了,想一想,什么时候曾经用过它?

加法验算,交换两个加数的位置再加一遍就是运用了加法交换律。

5.巩固练习(抢答)。(屏示:你能根据运算律填一填吗?)

屏示:96+35=35+□ 204+□=57+204

37+□=59+□ 76+□=□+7

这4道练习都用到了哪个运算律?(加法交换律)

1.在情境中初步感知加法结合律。

回到操场,刚才是跳绳的同学,现在有什么变化?(屏示:23个踢毽子的女同学)仔细看(屏示大括号),你看懂了吗?(求参加活动的一共有多少人?)

有三部分,你打算先求什么?(跳绳的有多少人?)(屏示动态结合过程)会列综合算式吗?(28+17)+23。

师:你给28、17加上了括号,表示什么?(先算28加17)先把跳绳的人数合起来,再加上踢毽子的人数。

还可以先求什么?(女生的总人数)(屏示动态结合过程)现在算式怎么列?

28+(17+23),现在括号加在了什么位置?表示什么?(先算17加23),也就是先把女生的人数合起来,再加上男生的人数。

两道算式都能求出参加活动的总人数,会计算吗?要求:一、二两组算第一题,三、四两组算第二题:

汇报:两道算式都等于68人,得数相同!

2.比较异同点,连成等式。(屏示:(28+17)+23,28+(17+23))

两道算式完全一样吗?有什么不同?

第一道括号在前,表示先把前两个数相加,再和第三个数相加。

第二道括号在后,表示先把后两个数相加,再和第一个数相加:

运算的顺序不同,为什么得数还相同呢?

因为两道算式都是把28、17、23三个加数相加。

师:三个加数是相同的,就连先后的位置也相同,所以得数相同,连成等式!(动态屏示等式:)

3.感知众多案例,积累感性认识。

钟老师这里还有两道算式,注意看!(屏示:(13+45)+25,13+(45+25))

猜一猜,它们的得数可能会怎样?悄悄告诉同桌!同桌分工,一人算一道,看看结果怎样?

汇报:左右得数相同,连成等式!(屏示:=)

再看,(屏示:(36+18)+22和36+(18+22))。

仔细观察,大胆猜测,它们的结果又会怎样?

认为相同的举手!为什么这么肯定?(因为都是这三个数相加,只不过运算顺序不同,但得数还是相同的)口说无凭!(屏示:?)还得算算!左边?右边?得数确实一样,你们真厉害!(?消失)

猜得这么准,你们是不是隐隐约约发现什么规律了?能说说吗?(屏示三组等式)这三组等式中都是三个数相加,左边都是先把前两个数相加,再和第三个数相加,右边都是?(先把后两个数相加再和第一个数相加)它们的和都怎么样?(不变)。

4.猜测规律,举例验证。

这个发现,会不会仅仅是一种巧合呢?如果换成其他的三个数相加,左右两边的得数还会相同吗?你能不能再举些例子来验证?同桌互相验证,全班汇报。

像这样举出的例子,被同桌证实和不变的举手!有没有同学举出的例子左右两边和不相同的?这样的例子能举完吗?(屏示省略号)

5.归纳加法结合律。

看来,我们的发现不仅仅是巧合,三个数相加一定有规律!

师生共同小结:三个数相加,可以先把前两个数相加,再和第三个数相加;也可以先把后两个数相加,再和第一个数相加,它们的和不变。

师:这个规律又是我们今天要认识的另一个运算律加法结合律。(板书:加法结合律)

加法结合律也可以用字母来表示,现在需要几个字母?(3个,a、b、c)

你能用丰母把加法结合律表示出来吗?(板书:(a+b)+c=a+(b+c))

1.你能在方框内填出合适的数吗?

(45+36)+64=45+(36+□)

(72+20)+□=72+(20+8)

560+(140+70)=(560+□)+□

2.你能把得数相同的算式连一连吗?

(1)72+16 A.(75+25)+48

(2)45+(88+12) B.16+72

(3)75+(48+25) C.(45+88)+12

真了不起!完成得这么好,还有两道算式也想请你们帮帮忙呢,愿意吗?如果这两道算式得数相同,你就起立证明自己的观点,看谁反应快!准备!

(84+68)+32 84+(68+23)

哎,站了又坐下去,怎么回事?不能连!为什么?(三个加数中有一个不同了)哪个加数不同?一个是32,一个是23,既然两边不等,那你知道哪边大吗?现在你有什么想说的?(看题要仔细)

3.渗透简算意识。

计算比赛:一二两组算左边,三四两组算右边,不写过程,直接写得数,半分钟,看哪组速度最快!

45+(88+12) (45+88)+12

时间到!停笔!我宣布,一二两组快!三四两组慢!老师这样评价,你们有话要说吗?尤其是三四两组!不公平?左边算式中先算88加12,正好凑成100。右边呢?(凑不成100)能凑整的快是吗?

好,再来一题!这次公平一点,自己选择,想算哪道就算哪道!师出示:75+(48+25) (75+25)+48

等于多少?你算的是哪道?为什么都选这道?因为先算75加25正好得到100。

原来巧用运算律还能使一些计算更简便呢!这就是我们下一节课研究的内容!

这节课你学到了什么?

运算律

加法交换律 加法结合律

28+17=45(人) (28+17)+23 28+(17+23)

17+28=45(人) =45+23 =28+40

28+17=17+28 =68(人) =68(人)

(学生说的算式) (28+17)+23=28+(17+23)

a+b=b+a (a+b)+c=a+(b+c

让学生根据已知条件,紧扣数量关系来列式,为理解加法意义服务。由于学生思考的角度不同,所依据的数量关系和列出的算式也就不同,因此运算的顺序也就不同,为教学下面的内容作了很好的铺垫。

通过图片、数据的移动,对学生感知加法交换律起了很好的意会作用;同时根据学生的回答,在屏幕上随机生成算式,激发了学生的学习热情,让学生感受到类似算式所具有的普遍性,为抽象出加法交换律奠定基础。

学生用符号和文字表示算式后,再次让学生说出符号和文字所表示的意义,让学生经历由数上升到用符号、字母表示的一种抽象过程,学生在此过程中感受到了方法的形成,并且能把这种方法迁移到加法结合律的学习上。

猜测一举例验证一归纳结论一运用是教学运算律的主要思路,此处重视学习方法的指导与形成。两次列式得出两个运算律,第一次重在方法的形成,第二次重在方法的运用。巧用上当法,制造错误陷阱,使学生在不经意间犯错。在一路都对的情况下,思维定势让学生必然要错,然而,这样的错误对于学生来说,记忆却异常深刻,旨在使学生认识到,计算时一定要仔细看清题。

四年级数学下册《加法交换律和结合律》教学设计


在上课时老师为了能够精准的讲出一道题的解决步骤。通常大家都会准备一份教案来辅助教学。这样可以有效的提高课堂的教学效率,你知道有哪些教案是比较简单易懂的呢?下面是小编为大家整理的“四年级数学下册《加法交换律和结合律》教学设计”,仅供参考,但愿对您的工作带来帮助。

教学内容:

教科书第27、28、29页的例题1和例题2。

教学目标:

知识与技能

1、 通过学习,使学生理解和掌握加法交换律和结合律。

2、 让学生学会用符号或字母表示加法交换律和结合律。

过程与方法

通过观察比较、归纳的方法,来进行教学。

情感态度与价值观

培养学生抽象概括的能力,引导学生由感性认识上升到一定的理性认识。

教学重点、难点:理解和掌握加法交换律和结合律,学会用符号或字母表示加法交换律和结合律。

教学用具:主题图、课件。

教学过程:

一、 创设情境、生成问题

课件出示主题图:看图,你发现了哪些数学信息?

二、探索交流、解决问题

(1)学习例题1:李叔叔今天上午骑了40千米,下午骑了56千米。李叔叔今天一共骑了多少千米?

教师:这个问题该怎样解决呢?如何列算式。

40+56=96(千米)

或56+40=96(千米)

观察,这两道算式有什么联系?

(结果相同,所以可以写成40+56=56+40)

(2)你还能举出这样的例子吗?(学生举例)

如:37+45=45+37

88+32=32+88

53+29=29+53

(3)观察每组算式的结果,你发现了什么?(结果都相同)用自己的话说一说。

学生发言,交流并归纳板书:两个加数相加,交换两个加数的位置,和不变。也就是加法的交换律。

(4)如果用符号来表示,该怎样写呢?

甲数+乙数=乙数+甲数

☆ +△=△+☆

a+b=b+a

(5)学习教科书第28页的例题2。

出示主题图,通过看图你找到了哪些有用的信息?

李叔叔第一天行了88千米,第二天行了104千米,第三天行了96千米,这三天李叔叔一共行了多少千米?

学生独立思考,列出算式:88+104+96

=192+96

=288(千米)

或88+(104+96)

=88+200

=288(千米)

答:李叔叔三天一共行了288千米。

比较这两题的结果怎么样啊?(相同)

因此可以写成:(88+104)+96=88+(104+96)

用自己的话说说,三个数相加,可以先把前两个数先加,再加上后一个数,也可以先把后两个数先加,再加上前一个数,和不变。这就是加法的结合律。

(6)谁还能举出这样的例子来。

学生举例:(69+172)+28=69+(172+28)

155+(145+207)=(155+145)+207

加法结合律又该怎样用字母表示呢?

(a+b)+c=a+(b+c)

三、巩固应用、内化提高

1、完成教科书第28页的做一做。

2、完成教科书第31页练习五的第1题。

学生独立填写表格,找找表格中数的特点。

3、完成教科书第31页练习五的第2、3题。

加法的验算是根据什么运算定律进行的?

四、回顾整理、反思提升

通过今天的学习,你有哪些收获?

乘法交换律和结合律


每一位任课老师,为了能够给学生给一个最简单易懂的教学思路。就必须编写一份较为完整的教案,这样有利于我们准确的把握教材中的重难点。从而在课堂上与学生更好的交流,你们有没有写过一份完整的教学计划?小编特地为您收集整理“乘法交换律和结合律”,仅供您在工作和学习中参考。

教学内容:

人教版义务教育教科书数学四年级下册第三单元第一节内容。

课程标准:

《数学课程标准(2011版)》学段目标:掌握必要的运算技能;在观察、实验、猜想、验证等活动中,发展合情推理能力。《义务教育数学课程标准(2011年版)》在课程内容的第二学段中提出:探索并了解运算律,会应用运算律进行一些简便运算经历与他人交流各自算法的过程,并能表达自己的想法。

教学目标:

1.理解加法交换律和乘法交换律的含义,能用字母式子表示加法交换律和乘法交换律。

2.经历交换律的探索过程,体会观察发现、猜测验证、归纳概括的数学学习方法,发展合情推理能力。

3.在自主探究、合作交流的过程中,体会数学研究的乐趣。

重点难点

通过观察、猜测、验证、归纳概括出加法和乘法交换律,发展合情推理能力。

教学过程:

一、谈话引入

1.以本班那女生人数为例复习加法意义。

2.口算比赛,质疑引思:在刚才的计算中,你有什么发现?

二、新知探究

1.提出猜想。

只要是两个数相加,交换它们的位置,和都不变吗?也许有不同的意见,引导学生展开验证活动。

2.举例验证。

(1)引导学生口头举例,计算两个算式,看他们的结果是否相等。

(2)分头举例。给学生一、两分钟时间,举出像这样的例子,并汇报。引导学生明确只有足够多,比较全面的例子才能证明结论的正确性。

(3)得出结论:两个数相加,交换加数位置,和不变。

3.再次提出猜想:得到加法交换律这个结论后,你有没有产生什么联想?学生质疑,两数相减、相乘、相除,交换它们的位置,结果会是怎样的呢?

4.验证结论。

(1)举例验证。学生独立完成,有困难或疑问可以和同学商量,或者向老师提问。

(2)汇报成果。第几个猜想是成立的?说出理由。

(3)就学生中可能出现的不计算,直接用等号连接两个算式的做法,强调研究的真实性。

5.结合加法和乘法的意义理解交换律。

你有什么办法说明交换两个加数的位置,和确实是不变的呢?

结合线段图和生活实例来说明结论的正确性。

6.唤起原有经验,完善认知结构。

我们以前在哪里见过加法和乘法的交换律?回顾小学数学学习经历中关于加法交换律和乘法交换律的内容,建立起新旧知的联系。

三、巩固练习

1. 16+35=35+( )

308+52=( )+308

5678287=( )5678

(现在为什么可以直接填写?)

25○16=16 ○25 ○可以填什么?

2. 用字母表示运算定律。

( )+( )=( )+( ),( )( )=( )( )

你想填什么数?写得完吗?有没有一种办法把所有情况都表示出来呢?

四、全课总结谈收获

通过学习,你有什么收获?

乘法的交换律和结合律


教学内容:教材第8l一83页例1、例2和“练一练”,练习十七第1—4题。

教学要求:

1.使学生初步理解和掌握乘法交换律和乘法结合律,并能用字母表示。

2.培养学生观察、比较、分析、综合和归纳、概括等思维能力。

教学过程:

一、揭示课题

我们在加法里,学过两个运算定律。谁还记得是哪两个运算定律?什么是加法交换律?用字母怎样表示?

什么是加法结合律?用字母怎样表示?

乘法也有类似的运算定律,这就是今天要学习的乘法交换律和乘法结合律。(板书课题)

二、教学乘法交换律

1.教学例l。

(1)出示例1及挂图。

提问:请同学们看一看,有几个几张?怎样算一共多少张?[板书:4x3=12(张)]

还可以怎样算一共多少张?[板书:3x4=12(张)]

(2)这两种算法都是求的什么?结果怎样?4x3和3x4有怎样的关系?(板书:4x 3=3x4)

这两个算式有什么相同和不同的地方?把4和3交换位置相乘,积怎样?

2.题组的计算、比较。

(1)用小黑板出示第8l页下面的题组。

(2)让学生计算,比较每组两个算式的结果,在课本上o里填上适当的符号。

学生口答练习结果,老师在o里板书符号。

(3)提问:第一组里两个因数15和4相乘,交换因数的位置再乘,积有什么特点?第二组的两个算式之间有什么联系和特点?第三组呢?

3.归纳乘法交换律。

这三组算式里,每组两个算式之间有什么共同的特点?

从这些例子里你能看出有什么规律吗?

老师总结乘法的交换律,说明这是乘法运算里的一条定律。

让学生读书上的乘法交换律结语。

4.用字母表示乘法交换律。

乘法交换律也可以用字母表示。如果用口、6表示两个因数,应该怎样表示乘法交换律?(板书:axb=bxa)

追问:axb=bxa表示的是什么意思?

5.认识乘法交换律的应用。

(1)我们学过用交换因数的位置再乘一遍的方法来验算乘法。想一想,为什么可以这样验算?这是应用了什么定律?

(2)做“练一练”第1题。

指名一人板演,其余学生做在练习本上。

集体订正。你是怎样看出前面的乘法计算是不是正确?

三、教学乘法结合律。 、

1.教学例2。

(1)出示例2。

让学生按运算顺序计算。

提问:第(1)题先算什么,再算什么?第(2)题呢?

指出:这两道题都先算括号里的,再算括号外面的

(2)比较两个算式的结果。

提问:这两个算式的结果怎样?[板书:(14x12)x5=14x(12x 5)]这两个算式有什么相同和不同的地方?它们的积有什么特点?

2.题组计算、比较。

(1)用小黑板出示第83页上面三行的三组题。

提问:第一组里两个算式有什么相同和不同的地方?第二组和第三组呢?

(2)大家计算一下每组里两个算式的积,看看它们的积有什么关系,在书上o里填上适当的符号。

学生口答,老师在小黑板上o里板书等号。

3.归纳乘法结合律。

提问:这三组算式里,你看出有什么共同的特点吗?

从上面的例子里,你发现了什么规律吗?

老师总结乘法结合律,说明这也是乘法的一条运算定律。

让学生读书上的乘法结合律。

4.用字母表示乘法结合律。

如果用a、b、c分别表示三个因数,你能根据上面的例子,用字母表示乘法的结合律吗?[板书:(axb)xc=ax(bxc)]

追问:这个字母式子表示的是什么运算定律?你能看着这个式子说说它表示的是什么意思吗?

四、巩固练习

1.这节课学习了什么内容?谁来说一说什么叫做乘法的交换律?乘法的结合律呢?

2.“练一练”第2题。

小黑板出示,指名一人板演;其余学生填在课本上。

集体订正。结合订正让学生说明理由。

3.练习十七第2题。

学生口答。

结合判断提问:为什么2lx 24=42x12不是应用的乘法交换律?

4x5x7=5x4x7是把哪两个因数交换位置的?

3x2x1=3+2+1为什么不是应用的乘法交换律?

4.练习十七第3题。

学生口答。

结合判断提问:为什么7x(8x 6)=7x(6x8)不是应用的乘法结合律?

(3x2)xl=3+(2+1)为什么也不是应用的乘法结合律?

第四小题12x4x 5x3里的因数是怎样结合起来相乘的?

五、课堂作业

练习十七第1、4题。

乘法交换律和结合律的应用


教学内容:教材第84页例3、例4和“练一练”,练习十七第5~7题。

教学要求:

使学生初步理解和学会应用乘法交换律、结合律进行简便计算的方法,并能对一些乘法算式用简便算法正确计算,培养学生采用合理、灵活的方法进行乘法计算的能力。

教学过程:

一、复习引新

1.什么叫做乘法的交换律?你能用字母表示吗?(板书字母表示的乘法交换律)

2.什么叫做乘法的结合律?你能用字母表示吗?(板书字母表示的乘法结合律)

3.口算。

15x2x12= 25x4x17= 35x2x9=

125x8x3= 45x2x8= 4x15x13=

提问:上面各题口算时为什么比较方便?(前两个因数相乘的积是整十、整百或整千数)

指出:连乘时如果两个数先乘得的积是整十、整百或整千数,再和第三个数相乘就比较简便。

4.引入新课。

应用刚才复习的乘法的交换律和结合律,可以使一些计算简便。这节课就学习应用乘法的交换律和结合律,进行简便计算(板书课题)。应用这两个运算定律进行简便计算时,就是要先把能乘得整十、整百或整千的数先乘起来,然后再计算就比较简便。请看下面的例题;

二、教学新课

1.教学例3。

(1)出示例3的第(1)、(2)题。

(2)请看第(1)题。(板书:23x15x2)

提问:三个因数里哪两个数相乘可以得到整十数的积?先算什么比较简便?[板书:=23x(15x 2)]为什么?应用了什么运算定律?

谁能说一说,这道题哪两个数相乘得整十数,应用乘法结合律先算什么?

让学生口算,老师板书计算过程。

提问:这里的简便算法是怎样想到的?

(3)再看第(2)题。[板书:125x(7x8)]

提问:这里哪两个数先相乘比较简便?要先算125x8,要把因数7和8的位置怎样变化?这就应用了什么运算定律?[板书:=125x(8x 7)]交换7和8的位置后,又要应用什么运算定律先算8乘1257

谁来告诉大家,怎样看出这道题是可以简便计算的?先应用乘法交换律怎样做,再应用乘法结合律怎么做?

哪位同学连起来说说看,用简便算法这道题要怎样想?(板书计算过程)

(4)提问:从上面两道题可以看出,在连乘里怎样的题可以应用乘法运算定律使计算简便?第(1)题应用了什么运算定律使计算简便?第(2)题应用了哪些运算定律使计算简便?

2.“练一练”第1题。

(1)提问每道题怎样算比较简便。

(2)指名三人板演,其余学生做在练习本上。

集体订正,让学生说一说每道题是怎样想的。

3.教学例4。

(1)出示例4。

提问:35乘以18不便口算。想一想,35和几相乘可以得十数?这就要把18看成2和几的积?[板书:=35x(2x 9)]

你能看出怎样算比较简便吗?这是应用了什么运算定律?

谁来说一说,用简便算法这道题要怎样想?

(2)小结:35和18相乘不便用口算时,把18看成2和9的积,应用乘法结合律,先算35乘以2得整十数70,就可以使计算简便。

4.“练一练”第2题。

(1)请大家按照例4这样的算法,说说“练一练”第2题里每道题怎样算。

(2)指名三人板演,其余学生做在练习本上。

集体订正,让学生说一说每道题是怎样想的。

小结:当两个因数相乘不便用口算时,如果一个因数看做几与几相乘的积之后,就能得到整十、整百的数,那么按刚才的算法就比较简便。

三、课堂练习

1.练习十七第5题。

指名四人板演,其余学生分两组,每组做一行的两道题。

先按照原来的运算顺序算一遍,再应用乘法的运算定律来简便计算。然后集体订正。

提问:这里四道题,都是哪一种算法比较简便?为什么这样算比较简便?

小结:在乘法计算时,如果有两个因数相乘的积是整十、整百的数,就可以应用乘法的交换律或结合律,把这两个数先乘,再和其他因数相乘,使计算简便。

2.练习十七第6题。

小黑板出示,让学生说一说每道题先算哪两个数相乘,应用的什么运算定律。

四、课堂作业

练习十七第6、7题。

苏教版数学四年级上册教案 加法的交换律和结合律


作为一小学位老师,我们要让同学们听得懂我们所讲的内容。为了不消耗上课时间,就需要有一份完整的教学计划。让同学们很好的吸收课堂上所讲的知识点,你们知道那些比较有创意的教学方案吗?小编收集整理了一些苏教版数学四年级上册教案 加法的交换律和结合律,供您参考,希望能够帮助到大家。

教学目标:

1、使学生经历探索加法交换律和结合律的过程,理解并掌握加法交换律和结合律,初步感知加法运算律的价值,发展应用意识。

2、使学生在学习用符号、字母表示自己发现的运算律的过程中,初步发展符号感,初步培养归纳、推理的能力,逐步提高抽象思维能力。

3、使学生在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成独立思考和探究问题的意识和习惯。

教学过程:

一、情境引入:

(1)同学们你们喜欢体育活动吧?谁来说说你最喜欢哪项体育活动?

(2)下面请同学们看屏幕(出示图),仔细观察这幅图,你从图上知道哪些信息?

(3)根据这些信息,你能提出哪些用加法计算的问题?

B、参加活动的女生有多少人?

C、男生跳绳和女生踢毽子的有多少人?

D、参加活动的一共有多少人?

同学们提出的问题都非常好,下面我们先来解决第一个问题。

二、探索加法交换律:

1、(1)要求参加跳绳的有多少人,应该怎样列式计算?

指名回答,教师板书:28+17=45(人)

(2)还可怎么列式?板书:17+28=45(人)

(3)这两道算式都是求什么的人数?结果都是多少?再观察算式它们有什么相同点?不同在哪里?

(引导学生说出:加数相同,得数也一样,只不过是把加数的位置调换了一下)。

师:这两道算式的得数相同,都是求的跳绳的总人数。我们可以用怎样的方法连接这两道算式?(等号)板书:28+17=17+28

这是一个等式,读一读。

(4)你能照样子说出一个这样的等式吗?试试看。(指名学生回答说,教师把学生说的等式有序地板书在黑板上)。

(5)请同学们仔细观察这些等式,你发现每一组的两个算式都有什么共同的地方?有什么不同的地方(同桌交流)?

(6)从这些例子中,你可以发现什么规律?(让学生用自己的语言说一说)

(7)你能用自己喜欢的方法把它们的规律表示出来吗?可以用符号、字母、文字等等表示,试试看。谁愿意上黑板写?(学生写,教师了解学生写的情况)。

(8)观察板演的等式,问:等式中的符号代表什么,如:○+□=□+○,教师就提问:“□”和“○”都代表什么,○+□=□+○表示什么呢?(代表任意的数)……

小结:同学们想出来的方法可真多!两个数相加,交换加数的位置和不变这一规律叫做加法的交换律(板书:加法交换律),通常用字母表示:a+b=b+a

2、练习。

(1)想想做做第2题第1排的两题填好。

96+35=35+□ 204+□=57+204

指名回答,为什么?

(2)下面的等式符合加法交换律吗?为什么?

46+59=46+59 90+10=5+95

[没有交换加数的位置;等号两边的加数不同。]

(3)同学们,想一想:过去我们学过的计算中,哪些地方应用过加法交换律?

下面一道题357+218,请同学们计算并用加法交换律进行验算。指名板演,集体订正。

同学们,刚才我们通过计算加法找出了一条规律(加法交换律),接下来我们继续研究加法的另一条规律

三、探索加法结合律

1、 同学们根据例题这幅图再算一算“参加活动的一共有多少人”会列式吗?

(1)指名回答,板书:28+17+23

第一步先求什么?为了看得更清楚,我们可给28+17添上括号,表示参加跳绳的总人数:(28+17)+23,再求什么?结果是多少?

(2)还是这个式子28+17+23(板书)如果要先算参加活动的女生人数应该怎么办?教师添上括号:28+(17+23),添上括号后表示先求什么,再求什么?结果是多少?

(3)请同学们比较这两道算式:它们有什么相同点和不同点?

(4)这两道算式结果相同我们可把它写成怎样的等式?

板书:(28+17)+23=28+(17+23)

(5)算一算,下面的○里能填上等号吗?(教师当场板书)

(45+25)+13○45+(25+13)

(36+18)+22○36+(18+22)

3、归纳加法结合律:

(1)观察这三个等式, 每组的两个算式有什么相同的地方?有什么不同的地方? 你从这些等式中能发现怎样的规律?和你的同桌交流一下。

(2)你能用字母a、b、c代表这三个加数把上面的规律表示出来吗?(独立写一写) 板书:(a+b)+c=a+(b+c)

a、b、c代表什么?(a+b)+c表示什么?a+(b+c)表示什么?

(3)小结:三个数连加,改变运算顺序,和不变。这就是加法结合律。(板书:加法 结合律)

4、练习:在□里填上合适的数,想想做做2后两排。

(45+36)+64=45+(□+□)

560+(140+70)=(560+□)+□

全课总结:这节课我们一起学习了加法的交换律和结合律,知道两个数相加,交换加数的位置和不变,还知道了三个数连加,改变运算顺序和不变。

四、巩固练习

1、“想想做做”1

下面的等式各运用了加法的什么运算律?

82+0=0+82

47+(30+8)=(47+30)+8

(84+68)+32=84+(68+32)

75+(48+25)=(75+28)+48

(以游戏的方式进行:女生代表加法交换律,男生代表加法结合律)

2、想想做做4

38+76+24 (88+45)+12

38+(76+24) 45+(88+12)

请每个同学选一组题独立完成。

反馈提问:为什么每组两道题的得数相同?哪种方法简便,为什么?

小结:可见,合理地运用加法的交换律和结合律可以使计算简便。

3、想想做做5

出示题目后学生说。

五、拓展练习

1、 在□里填上合适的数

□+147=□+a

45+□+55=74+(□+□)

18+(c+□)=(18+□)+a

2、想一想:怎样应用加法运算律使计算简便。

30+28+70+45+72

=(30+70)+45+(28+72)

=100+45+100

=245

同学们,加法的这两个运算律,可以推广到任意多个数相加,即多个

数相加,任意交换加数的位置,或者把其中的几个数结合成一组相加,它们的和不变!应用加法交换律和结合律,有时可以使计算简便。下一节课我们将继续学习。

数学四下:《乘法交换律结合律》教案


课题

乘法交换律结合律

教学内容

苏教版小学数学四年级上册第61-62页例题,及62-63页想想做做的第1-6题。

教学目标

1.让学生经历乘法交换律和乘法结合律的探索过程,理解并掌握规律,能用字母表示规律。

2.培养学生观察、比较、分析、综合和归纳、概括等思维能力。

3.培养学生的探究意识和问题解决能力。增强合作意识,激发学生学习数学的兴趣。

教学重点

引导学生概括出乘法结合律,并运用乘法结合律进行简便计算

教学难点

乘法结合律的推导过程是学习的难点。

教学准备

教学课件

教学流程

教师、学生活动

设计意图

一、

故事引入,揭示课题

①课件出示球赛换场的图片,引入交换位置的概念。

球赛时交换了位置,是为了比赛的公平性。我们刚学了加法的运算定律,也和交换位置有关。将加法交换律说给同学们听听。

②复习用字母表示加法交换律、结合律并板书。

板书:a+b=b+a a+b+c=a+(b+c)

③引入课题乘法有没有类似的规律?今天我们就来学习乘法的一些运算定律。(板书课题) 乘法交换律结合律

用球赛规则拉开学习的序幕,激发学生学习的兴趣,活跃课堂气氛,让学生在轻松的环境中开始学习。以复习加法交换律和结合律作为教学的起点,为学生的探索规律作好知识铺垫。

二、猜测验证,探索规律

1. 大胆猜测。 猜一猜乘法可能有哪些运算定律?

学生根据已有的知识体验和迁移能够猜出:可能有交换律、结合律。

提出与旧知相关联的问题,让学生产生疑问、猜想,目的是能有效地激发学生学习的动机。

2. 学习乘法交换律

①乘法是否具有你们猜测的规律呢?怎样确认自己的猜测?请大家在小组内交流。(要求每人都把自己的想法介绍给自己的合作伙伴)

②学生分组研究,教师巡视。(及时参与学生的讨论,寻找教学资源)

③小结乘法的交换律。

两个数相乘,交换乘数的位置,积不变。

放手让学生去探索规律,并通过小组合作想办法予以确认,这样的目的是想充分激发学生学习的积极性,并且使学生体会发现新规律的方法。在此过程中,培养学生的探究意识,并获得成功的体验。

3、学习例题

①最近学校要举行亲子运动会了,每个班的学生都在练习,看!这是老师在校园里看到的景象。(课件出示踢毽子的场景图。)

②你能看图把下面的等式填写完整吗?

35=( )( )

你能再举一些象这样的例子吗?

能用字母来表示:ab=ba (板书)

③ 小结:这就是乘法交换律。

④运用乘法交换律,在下面的□里

填上适当的数。

7324=24□

26□=6326

b12=12□

出示例题,巩固所学的新知。让学生在自己的探索中学习,目的是体现新课程下的自主学习。

及时巩固练习,使知识进一步深化。

4.学习乘法结合律。

问:乘法也有结合律吗?

①将学生发现的乘法结合律投影显示。如:(34)6=3(46)。

②我们一起来证明一下这个结论是否正确?

③学习例2

出示例题2: 华风小学6个年级的同学参加跳绳比赛,每个年级有5个班,每班有23人参加。一共有多少人参加比赛?

㈠小组讨论,你们是怎样计算的,体会结合律.

方法1:先算出一个年级参加的人数。

(235)6=1156=690(人)

方法2:先算出全校有多少个班。

23(56)=2330=690(人)

师:你会把上面的两道算式写成一个等式吗?

(235)6= ( )

㈡比较等号两边的算式,有什么相同点和不同点?

相同点:比较左右两边的数字位置没变,结果也相同。

不同点:等号两边的运算顺序不同.

右边的算式计算简便,可以直接口算出答案。

师:非常好,我们在计算的时候,可以根据运算定律来简便计算,这样能节省时间。

先让学生自己感受交换两个乘数的位置,计算起来比较简便,为下面学习试一试部分奠定基础。而放手让学生去探索规律,目的是激发学生学习的积极性,体会发现新规律的方法。

5、小结:

请同学们也写几组这样的等式,把你的发现在小组里交流。能用自己的语言描述一下乘法结合律吗?

结论:三个数相乘,可以先把前两个数相乘,再和第三个数相乘,或者先把后两个数相乘,再同第一个数相乘,它们的积不变。

协助记忆的方法,用手势表示。(边说边演示)用三个手指代表三个数,其中两个手指靠在一起,表示先把前两个数相乘,第三个手指靠过来表示再和第三个数相乘;它等于先把后两个手指靠在一起,再把第一个手指靠过来。

④怎样用字母表示乘法结合律?

板书:(ab)c=a(bc)

⑤巩固练习

㈠根据运算定律在下面的□里填上适当的数。

127331 =12 (□31)

(1363) 56 =13 (□□)

A6C=( ) ( )

㈡下面各个等式符合什么运算定律。请说出原因。

8050=5080

506070=50(6070)

b600=600b

6020=3040

151743=43 (1517)

乘法结合律与交换律相比,用语言完整地表述有一定难度。为了能更好的规范数学语言,教师展示记忆方法,拓展学生的思维。

简单的练习有两个目的,一是巩固,二是使知识加以应用。

5.教学试一试(用简便方法计算)。

①出示试一试上的习题。(1)23152

(2)5372

放手让学生们自己做,并能说出各用了什么运算定律?请学生上黑板演示,其余学生独立完成。

②巡视,辅导

③集体评讲.

④计算下列各题。

3954

15(417)

12395

16(75)

直接教学试一试的内容,目的是让学生自己体会乘法结合律与交换律对计算的简便之处,有利于以后计算时能快速运用。

三、巩固深化,应用拓展

①基本练习:

1、判断下面等式中哪些符合乘法结合律

(1)6(5 9)=(6 5) 9

(2)4+(11+23)=(45+11)+23

(3)(9 4)53 =9 (4 5) 3

2、选择哪种算法简便

(1)28 5 6 (2)35 12

A 先算28 5 A 变形为35 2 6

B 先算5 6 B 变形为35 3 4

(3)25 28

A 先算25 4 再乘7 B 先算25 7 再乘4

3、想想做做的第1题。

4、想想做做的第2题。 先让学生算一算,再比较每组中两道题的计算过程,交流各自的体会,进一步体会使计算简便的关键。

5、想想做做的第3题。注重培养简算的意识和能力,在思考和计算后组织交流。

发展练习:1、利用乘法的交换律和结合律,写出所有和下面算式相等的式子。

869=( )

2、你会计算吗?

25542

3、利用乘法的交换律和结合律,

写出所有和下面算式相等的

式子。

869=( )

层次鲜明的练习,有利与使学生目标明确; 促进学生构建新的知识网络。有利于培养简便运算的意识和能力

四、全课小结,布置作业

今天这节课你学到了什么?

课堂作业:

①P62页第4题。

②P63页第5题

③P63页第6题

板书设计:

乘法交换律结合律

乘法交换律: ab=ba

乘法结合律: abc=a(bc)

试一试(用简便方法计算)

(1)23152 (2)5372

=23(152) =5237

=2330 =1037

=690 =370

浙教版数学四下:《乘法结合律》教案


教学内容:

教材P11-13例2、3

教学目标:

1、 理解、掌握乘法结合律(用字母表示)

2、 学会运用乘法结合律和交换律进行简便计算。

教学过程:

(一) 定律教学

1、 感知乘法结合律。

出示:求3、25和4的积。

学生审题后口答算式,并互相补充,得到左边部分。

3254 3(254)

3425 3(425)

2543 25(43)

2534 25(34)

4253 4(253)

4325 4(325)

接着问:这几题都是从左往右计算,那么可以先算后面的乘,再与第一个数相乘吗?结果会相等吗?第一题示范列出,余下的题目由学生独立完成,然后四人小组分工计算验证,看结果是否相等。

最后总结:你发现了什么?(三个数相乘,可以从左往右计算,也可以把后两个数相乘,再与第一数相乘。)

2、 验证与巩固

(1) 验证

教学例2,学生读题后根据题意列式计算。完成后校对思路、式子与答案,把结果连成等式:(310)2=3(102)

(2) 总结。自学课本第12页(2),先计算,再看每组的两个算式有什么关系?完成后请学生用自己的话总结,然后给书本中的定律填空,齐读后再给出a、b、c三个字母,要求学生概括出定律,

(3) 巩固。

练一练第1题,应用乘法交换律和结合律,在横线上填入适当的数。

请学生填空,并口头说出依据,校对时第(3)(4)小题重点讨论:第(3)题比较5(780)、7(580)哪重填法简便?第(4)题(8125)(1416)与其它填法进行比较,说一说哪一种简便,简便在哪里?

(二) 简便计算

1、 教学例3:25134

自学书本例3,思考并回答旁注,然后补充完成。

2、 课本试一试用简便方法计算。

学生独立完成,然后校对。

(三) 巩固练习

1、 巩固定律。

练一练第2题,判断各题是否正确,把错误的改过来。

由学生独立判断,然后四人小组讨论,快的组可以订正。

最后指名学生做出判断,对的 说明理由,错的指出错误,并订正。

总结提问:运用乘法交换律和乘法结合律进行简便计算时,什么变了,什么没有变?

2、 简便计算练习。

练一练第3题,用简便方法计算。独立完成后校对讲评。

(四) 总结

今天这节课学了什么内容?学生回答后教师总结。

(五) 作业

《作业本》[10]

浙教版数学四下:《应用乘法交换律、结合律的简便计算》教案


作为大家敬仰的人民教师,要对每一堂课认真负责。老师需要提前做好准备,让学生能够快速的明白这个知识点。为学生带来更好的听课体验,从而提高听课效率。如何才能编写一份比较全面的教案呢?以下是小编为大家精心整理的“浙教版数学四下:《应用乘法交换律、结合律的简便计算》教案”,希望对您的工作和生活有所帮助。

教学内容
教材P14例4
教学目标
1、 根据算式中数的特征,灵活的运用乘法交换律和结合律进行简便计算。
2、 培养学生初步逻辑思维能力。
教学过程:
(一)复习准备
1、 填空:25( )=100 125( )=1000
2、 把下面各数改成用其中一个数是上题括号中因数表示的
数:36=12=16=32=28=24=44=
第2题中有符合要求的多种填法,要求学生均能填出。
(二)教学新知
1、 例题教学。
(1) 用25与准备题等号左边的数相乘。学生四人小讨论,师生共同总结,寻找特征。
(2) 用125与下面哪些相乘,便可以用上面的方法,使计算简便?为什么?由四人小组先组织讨论这一问题,教师巡视,选取典型的做法让学生上台板演,大部分完成后讲评。
(3) 小结:学生回答,今天我们学习的简便计算有什么特点?
2、 巩固练习
(1)练一练第1题,在下面各题的横线上填入适当的数。
学生填上合适的数后,校对并说出这样做的理由和最后结果。
(2)练一练第2题,用简便方法计算。
学生独立完成,教师巡视纠错。完成后板演、校对、讲评。
(3)变式练习
练一练第3题。学生独立完成,教师巡视,完成后校
对。如发现大部分学生后面3题错误严重时,可停下来让学生口答讨论。
(4) 应用题
练一练第4题。先请学生读题,再根据题意说出解题
思路,然后列出综合算式,并选择简便方法进行计算。
(三)总结
(四)作业
《作业本》[11]

《《加法结合律》教学设计与导学案》一文就此结束,希望能帮助您在小学教学中起到作用,如还需更多,请关注我们的“小学加法教案”专题。

文章来源:http://m.jab88.com/j/64900.html

更多

最新更新

更多