一般给学生们上课之前,老师就早早地准备好了教案课件,到写教案课件的时候了。我们制定教案课件工作计划,才能更好地安排接下来的工作!你们清楚教案课件的范文有哪些呢?下面是小编精心为您整理的“八年级上册《分式》学案冀教版”,仅供参考,欢迎大家阅读。
八年级上册《分式》学案冀教版
课题课时教学
目标(1)使学生了解分式的概念,能够求出分式有意义的条件。
(2)掌握分式的基本性质,能对分式进行恒等变换。重点
难点分式概念及基本性质的获得
分式概念的抽象过程教学内容师生随笔一:感悟新知
1.分式都是的形式,其中A,B都是,并且B中含有。要想使分式有意义,分式的分母不能是。
2.如果分式无意义,则x=。
3.下面等式成立吗?为什么?
错误!未找到引用源。=错误!未找到引用源。=错误!未找到引用源。=
二:探索新知
1、下列式子:①②③④⑤⑥其中是分式的有:(填序号)
2、当x时,分式有意义。
当x时,分式的值为零。
3、填表(后面两格中的X可任意取自己喜欢的数值)
X=1
X=2
X=3
X=4
通过观察,你认为,,这三个分式相等吗?由此,你发现分式具有怎样的性质了吗?
文字语言表述:
分式的分子分母都乘()同一个的整式,分式的值。
数学符号表示:
,(M是不等于0的整式)
4、你说分式与相等对吗?为什么?那么分式等于呢?
三、整理归纳
这节课我学到了。。。。。。
四、达标测评
1、某车间计划在x天内加工200个零件,而实际加工时比原计划少用2天完成了任务,实际每天加工多少个零件?(用含有x的代数式表示)
2、某超市为了促销,把售价为15元/千克的甲种糖果m千克和售价为20元/千克的乙种糖果n千克混合销售(混合均匀),混合后糖果的定价应定为多少?
3、请在下列整式中,任选两个作为分子和分母,构造出三个分式。
3000,k,a+b,am+bn,5x,0,(x+y),(x-y)
4、如果分式的值为零,那么x应为().
5、x取何值时,下列分式有意义?取何值分式的值为零?
(1)(2)
6、下列分式中正确的是()
A、=B、=-1
C、=0D、=
7、在分式中,字母a、b的值分别扩大为原来的2倍,则分式的值().
A、扩大为原来的2倍B、不变
C、缩小为原来的D、缩小为原来的
师生反思、总结:
课题课时教学
目标(1)学生能运用分式的基本性质进行约分。
(2)熟练进行约分,并了解最简分式的意义。重点
难点掌握分式约分方法并熟练进行分式约分。
分子、分母是多项式时分解因式。教学内容师生随笔一:感悟新知
1、把下列分数化为最简分数:=_____;=______;=______。
2、利用分式的基本性质,使下列分式的分子、分母不含公因式(提示:公因式就是分子分母都有的代数式)
(1)(2)(3)
===
===
二:探索新知
例1.约分
(1)
提示:分子和分母中的公因式是,利用分式的基本性质,可以分子分母同时除以,约分后的分子为,分母为。
(请写出规范的过程)
分子用提公因式法可化成
分母用公式法可化成
分子分母的公因式是
(请写出规范的解题过程)
例2(你试试看!)当p=2,q=5时,求分式的值。
三、整理归纳
这节课我学到了。。。。。。
四、达标测评
1、下列约分正确的是()
A、B、
C、D、
2、下列分式中是最简分式是()
A、B、
C、D、
3、约分:(1);(2);
(3)
4、化简求值:
(1)其中
师生反思、总结:
八年级上册《分式方程》学案冀教版
课题课时使用人学习
目标了解分式方程的概念,理解分式方程的增根,掌握检验分式方程的根的方法。重点
难点学习重点:解可化为一元一次方程的分式方程;
学习难点:对增根的理解学习内容师生随笔一、感悟新知(阅读课本P18-20)(我能行,我最棒!)
分式方程的概念:
叫做分式方程
分式方程的解法步骤
(1)
(2)
(3)
对增根的理解:
二、探究新知
1.可以采取不同的方式,探寻各个实际问题中的数量关系。(如列表、画线段示意图等)
(1)甲、乙两人加工同一种服装,乙每天比甲多加工1件,已知乙加工24件服装所用时间与甲加工20件服装所用时间相同.甲每天加工多少服装?
如果设甲每天加工件服装,那么乙每天加工________件服装,根据题意,可列出方程:___________________
(2)某校学生到距离学校15km的山坡上植树,一部分学生骑自行车出发40min后,另一部分学生乘汽车出发,结果全体学生同时到达。已知汽车的速度是自行车的速度的3倍,求自行车速度。
如果设自行车的速度是km/h,那么可列出方程:
2.上面所得到的方程的共同特点是
1.根据提示试解分式方程
(1)=(2)
解:两边同时乘以得:解:两边同时乘以得:
解这个整式方程得:解这个整式方程得:
2.思考:怎样才能去掉分母?去分母时需注意什么?去分母的目的是什么?
3.在这里,x=2不是原方程(2)的根,因为它使得原分式方程的为零,我们称它为原方程的增根.
4.产生增根的原因是什么?
5.因为解分式方程可能产生增根,所以解分式方程必须。
6.怎样检验比较简便?
7.解分式方程一般需要经过哪几个步骤?
三、整理归纳
这节课我学到了:
四、达标测评
1.2.
3.如果分式方程=+出现增根,那么增根一定是。
4.在解分式方程,=-2时小丽的解法如下:
解:方程两边都乘以x-3,得:2-x=-1-2①
移项,得:-x=-1-2-2②
解得:x=5③
(1)你认为小丽在哪一步上出现了错误(只填序号),错误得原因是;
(2)请你写出这个方程正确的解答过程:
知识拓展:
若方程会产生增根,求k的值
师生反思、总结:
八年级上册《实数》学案2冀教版
一、课题名称17.3实数(二)课型新授课二、教学目标熟练运用实数的运算法则和运算律对被开放数含有分母和开的尽的因数的实数进行化简.三、教学重点、难点对被开放数含有分母和开的尽的因数的实数进行化简.
对被开放数含有分母实数进行化简.四、教学手段现代课堂教学手段五、教学方法探究讨论、讲练结合六、教学过程教学内容教学活动教学建议教学评价一、复习提问:
实数乘、除法的运算公式是什么?
二、
如:
有一些数如,等,需要对他们进行化简,使得被开放数不含分母和开的尽方的因数.
再如:
例1化简:
(1)(2)
(2)
(3)
(4)√2/27
引导学生回忆所学内容,教师板书,并引出其反向运用.由学生说明a、b的取值.
教师举例说明.让学生寻找解决这种问题的方法,并进行交流、总结.
教师强调说明
让学生讨论,寻找解决这种问题的方法,并进行交流、总结.
要求学生模仿例子按步骤完成.
对于有困难的学生教师可给与必要的指导.一个直观的几何解释,加深理解.
学生讨论、交流、总结.教师给与必要的指导.
学生先口头分析交流,在独立完成题目.
关注学生对知识的巩固情况.
关注学生的理解能力.
关注学生的理解能力、探究意识、归纳总结能力.
关注学生的运算能力和理解能力.
七、练习设计例2化简:
(1)
(2)
(3)
学生讨论完成
教师进行指导
学生独立完成,教师进行指导.
学生小结谈收获教师加以总结.
学生自己摸索做题再交流,同时发挥四人小组的作用.
可引导学生从以下几方面总结:
本节课有哪些新收获?
2、还有哪些疑问与困惑?
关注学生灵活运用知识的能力,交流的积极性.
关注学生的理解能力和应用能力.
根据学生自身情况,总结出任意的一点,教师都应加以表扬与鼓励.
八、板书设计课题
复习提问例1例2练一练九、教学反思
文章来源:http://m.jab88.com/j/60259.html
更多