88教案网

一名优秀负责的教师就要对每一位学生尽职尽责,作为教师就要根据教学内容制定合适的教案。教案可以让学生更好地进入课堂环境中来,帮助教师提前熟悉所教学的内容。教案的内容具体要怎样写呢?为了让您在使用时更加简单方便,下面是小编整理的“数列复习”,仅供参考,希望能为您提供参考!

课题:数列复习专题(3)
班级:姓名:学号:第学习小组
【学习目标】初步了解通过数列递推公式求通项的方法;初步了解通过数列前项和求通项以及相关内容的方法
【课前预习】
1.如果已知数列为等差(或等比)数列,可直接根据等差(或等比)数列的通项公式,求得,(或),然后直接套用公式.

2.对于形如型或形如型的数列,其中又是等差数列或等比数列,可以根据递推公式,写出取到时的所有递推关系式,然后将它们分别相加(或相乘)即可得到通项公式.

3.有些数列本身不是等差或等比数列,但可以经过适当的变形,构造出一个新的等差或等比数列,从而利用这个数列求其通相公式,这叫做构造法.
例如:在数列中,,如何求通项公式?

4.已知数列的前项和求通项时,常用公式,用此公式时应注意结论有两种可能,一种是“一分为二”,即分段式;另一种是“合二为一”,即和合为一个表达式。

【课堂研讨】
例1已知数列中,(1),求;
(2),求;
(3),求.

例2.已知数列中,,求的通项.
例3.已知数列中,,(1)求的通项公式;
(2)求的通项公式;(3)求的前项和.

例4.已知数列满足,
求的通项和前项和.

课题:数列复习(3)检测案
班级:姓名:学号:第学习小组
【课堂检测】
1.已知数列满足,求的通项.
2.根据下列条件求的通项:
(1);

(2).

【课外作业】
1.已知数列中,,求:(1)的通项;
(2)令,的通项;(3)的前项和
2.已知数列中,,
(1)求的通项;(2)当为何值时,是等比数列.
3.已知数列中,,
(1)求证是等比数列;(2)求的通项.
4.已知数列中,,
(1)求的通项;(2)求.

精选阅读

数列


数列

教学目标

1.使学生理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.

(1)理解数列是按一定顺序排成的一列数,其每一项是由其项数唯一确定的.

(2)了解数列的各种表示方法,理解通项公式是数列第项与项数的关系式,能根据通项公式写出数列的前几项,并能根据给出的一个数列的前几项写出该数列的一个通项公式.

(3)已知一个数列的递推公式及前若干项,便确定了数列,能用代入法写出数列的前几项.

2.通过对一列数的观察、归纳,写出符合条件的一个通项公式,培养学生的观察能力和抽象概括能力.

3.通过由求的过程,培养学生严谨的科学态度及良好的思维习惯.

教学建议

(1)为激发学生学习数列的兴趣,体会数列知识在实际生活中的作用,可由实际问题引入,从中抽象出数列要研究的问题,使学生对所要研究的内容心中有数,如书中所给的例子,还有物品堆放个数的计算等.

(2)数列中蕴含的函数思想是研究数列的指导思想,应及早引导学生发现数列与函数的关系.在教学中强调数列的项是按一定顺序排列的,“次序”便是函数的自变量,相同的数组成的数列,次序不同则就是不同的数列.函数表示法有列表法、图象法、解析式法,类似地,数列就有列举法、图示法、通项公式法.由于数列的自变量为正整数,于是就有可能相邻的两项(或几项)有关系,从而数列就有其特殊的表示法——递推公式法.

(3)由数列的通项公式写出数列的前几项是简单的代入法,教师应精心设计例题,使这一例题为写通项公式作一些准备,尤其是对程度差的学生,应多举几个例子,让学生观察归纳通项公式与各项的结构关系,尽量为写通项公式提供帮助.

(4)由数列的前几项写出数列的一个通项公式使学生学习中的一个难点,要帮助学生分析各项中的结构特征(整式,分式,递增,递减,摆动等),由学生归纳一些规律性的结论,如正负相间用来调整等.如果学生一时不能写出通项公式,可让学生依据前几项的规律,猜想该数列的下一项或下几项的值,以便寻求项与项数的关系.

(5)对每个数列都有求和问题,所以在本节课应补充数列前项和的概念,用表示的问题是重点问题,可先提出一个具体问题让学生分析与的关系,再由特殊到一般,研究其一般规律,并给出严格的推理证明(强调的表达式是分段的);之后再到特殊问题的解决,举例时要兼顾结果可合并及不可合并的情况.

(6)给出一些简单数列的通项公式,可以求其最大项或最小项,又是函数思想与方法的体现,对程度好的学生应提出这一问题,学生运用函数知识是可以解决的.

教学设计示例

数列的概念

教学目标

1.通过教学使学生理解数列的概念,了解数列的表示法,能够根据通项公式写出数列的项.

2.通过数列定义的归纳概括,初步培养学生的观察、抽象概括能力;渗透函数思想.

3.通过有关数列实际应用的介绍,激发学生学习研究数列的积极性.

教学重点,难点

教学重点是数列的定义的归纳与认识;教学难点是数列与函数的联系与区别.

教学用具:电脑,课件(媒体资料),投影仪,幻灯片

教学方法:讲授法为主

教学过程

一.揭示课题

今天开始我们研究一个新课题.

先举一个生活中的例子:场地上堆放了一些圆钢,最底下的一层有100根,在其上一层(称作第二层)码放了99根,第三层码放了98根,依此类推,问:最多可放多少层?第57层有多少根?从第1层到第57层一共有多少根?我们不能满足于一层层的去数,而是要但求如何去研究,找出一般规律.实际上我们要研究的是这样的一列数

(板书)象这样排好队的数就是我们的研究对象——数列.

(板书)第三章数列

(一)数列的概念

二.讲解新课

要研究数列先要知道何为数列,即先要给数列下定义,为帮助同学概括出数列的定义,再给出几列数:

(幻灯片)①

自然数排成一列数:

3个1排成一列:

无数个1排成一列:

的不足近似值,分别近似到排列起来:

正整数的倒数排成一列数:

函数当依次取时得到一列数:

函数当依次取时得到一列数:

请学生观察8列数,说明每列数就是一个数列,数列中的每个数都有自己的特定的位置,这样数列就是按一定顺序排成的一列数.

(板书)1.数列的定义:按一定次序排成的一列数叫做数列.

为表述方便给出几个名称:项,项数,首项(以幻灯片的形式给出).以上述八个数列为例,让学生练习指出某一个数列的首项是多少,第二项是多少,指出某一个数列的一些项的项数.

由此可以看出,给定一个数列,应能够指明第一项是多少,第二项是多少,……,每一项都是确定的,即指明项数,对应的项就确定.所以数列中的每一项与其项数有着对应关系,这与我们学过的函数有密切关系.

(板书)2.数列与函数的关系

数列可以看作特殊的函数,项数是其自变量,项是项数所对应的函数值,数列的定义域是正整数集,或是正整数集的有限子集.

于是我们研究数列就可借用函数的研究方法,用函数的观点看待数列.

遇到数学概念不单要下定义,还要给其数学表示,以便研究与交流,下面探讨数列的表示法.

(板书)3.数列的表示法

数列可看作特殊的函数,其表示也应与函数的表示法有联系,首先请学生回忆函数的表示法:列表法,图象法,解析式法.相对于列表法表示一个函数,数列有这样的表示法:用表示第一项,用表示第一项,……,用表示第项,依次写出成为

(板书)(1)列举法

.(如幻灯片上的例子)简记为.

一个函数的直观形式是其图象,我们也可用图形表示一个数列,把它称作图示法.

(板书)(2)图示法

启发学生仿照函数图象的画法画数列的图形.具体方法是以项数为横坐标,相应的项为纵坐标,即以为坐标在平面直角坐标系中做出点(以前面提到的数列为例,做出一个数列的图象),所得的数列的图形是一群孤立的点,因为横坐标为正整数,所以这些点都在轴的右侧,而点的个数取决于数列的项数.从图象中可以直观地看到数列的项随项数由小到大变化而变化的趋势.

有些函数可以用解析式来表示,解析式反映了一个函数的函数值与自变量之间的数量关系,类似地有一些数列的项能用其项数的函数式表示出来,即,这个函数式叫做数列的通项公式.

(板书)(3)通项公式法

如数列的通项公式为;

的通项公式为;

的通项公式为;

数列的通项公式具有双重身份,它表示了数列的第项,又是这个数列中所有各项的一般表示.通项公式反映了一个数列项与项数的函数关系,给了数列的通项公式,这个数列便确定了,代入项数就可求出数列的每一项.

例如,数列的通项公式,则.

值得注意的是,正如一个函数未必能用解析式表示一样,不是所有的数列都有通项公式,即便有通项公式,通项公式也未必唯一.

除了以上三种表示法,某些数列相邻的两项(或几项)有关系,这个关系用一个公式来表示,叫做递推公式.

(板书)(4)递推公式法

如前面所举的钢管的例子,第层钢管数与第层钢管数的关系是,再给定,便可依次求出各项.再如数列中,,这个数列就是.

像这样,如果已知数列的第1项(或前几项),且任一项与它的前一项(或前几项)间的关系用一个公式来表示,这个公式叫做这个数列的递推公式.递推公式是数列所特有的表示法,它包含两个部分,一是递推关系,一是初始条件,二者缺一不可.

可由学生举例,以检验学生是否理解.

三.小结

1.数列的概念

2.数列的四种表示

四.作业略

五.板书设计

数列

(一)数列的概念涉及的数列及表示

1.数列的定义

2.数列与函数的关系

3.数列的表示法

(1)列举法

(2)图示法

(3)通项公式法

(4)递推公式法

探究活动

将边长为厘米的正方形分成个边长为1厘米的正方形,数出其中所有正方形的个数.

解:当时,共有正方形个;当时,共有正方形个;当时,共有正方形个;当时,共有正方形个;当时,共有正方形个;归纳猜想边长为厘米的正方形中的正方形共有个.

2013届高考数学数列复习教案


经验告诉我们,成功是留给有准备的人。高中教师要准备好教案为之后的教学做准备。教案可以让学生能够在课堂积极的参与互动,帮助授课经验少的高中教师教学。所以你在写高中教案时要注意些什么呢?小编特地为大家精心收集和整理了“2013届高考数学数列复习教案”,希望对您的工作和生活有所帮助。

2013高中数学精讲精练第五章数列

【知识图解】
【方法点拨】
1.学会从特殊到一般的观察、分析、思考,学会归纳、猜想、验证.
2.强化基本量思想,并在确定基本量时注重设变量的技巧与解方程组的技巧.
3.在重点掌握等差、等比数列的通项公式、求和公式、中项等基础知识的同时,会针对可化为等差(比)数列的比较简单的数列进行化归与转化.
4.一些简单特殊数列的求通项与求和问题,应注重通性通法的复习.如错位相减法、迭加法、迭乘法等.
5.增强用数学的意识,会针对有关应用问题,建立数学模型,并求出其解.

第1课数列的概念
【考点导读】
1.了解数列(含等差数列、等比数列)的概念和几种简单的表示方法(列表、图象、通项公式),了解数列是一种特殊的函数;
2.理解数列的通项公式的意义和一些基本量之间的关系;
3.能通过一些基本的转化解决数列的通项公式和前项和的问题。
【基础练习】
1.已知数列满足,则=。
分析:由a1=0,得由此可知:数列是周期变化的,且三个一循环,所以可得:
2.在数列中,若,,则该数列的通项2n-1。
3.设数列的前n项和为,,且,则____2__.
4.已知数列的前项和,则其通项.
【范例导析】
例1.设数列的通项公式是,则
(1)70是这个数列中的项吗?如果是,是第几项?
(2)写出这个数列的前5项,并作出前5项的图象;
(3)这个数列所有项中有没有最小的项?如果有,是第几项?
分析:70是否是数列的项,只要通过解方程就可以知道;而作图时则要注意数列与函数的区别,数列的图象是一系列孤立的点;判断有无最小项的问题可以用函数的观点来解决,一样的是要注意定义域问题。
解:(1)由得:或
所以70是这个数列中的项,是第13项。
(2)这个数列的前5项是;(图象略)
(3)由函数的单调性:是减区间,是增区间,
所以当时,最小,即最小。
点评:该题考察数列通项的定义,会判断数列项的归属,要注重函数与数列之间的联系,用函数的观点解决数列的问题有时非常方便。
例2.设数列的前n项和为,点均在函数y=3x-2的图像上,求数列的通项公式。
分析:根据题目的条件利用与的关系:,(要特别注意讨论n=1的情况)求出数列的通项。
解:依题意得,即。
当n≥2时,;
当n=1时,所以。
例3.已知数列{a}满足,
(Ⅰ)求数列的通项公式;
(Ⅱ)若数列满足,证明:是等差数列;
分析:本题第1问采用构造等比数列来求通项问题,第2问依然是构造问题。
解:(I)
是以为首项,2为公比的等比数列。

(II)

②;
②-①,得即③
∴④
③-④,得即是等差数列。
点评:本小题主要考查数列、不等式等基本知识,考查化归的数学思想方法,考查综合解题能力。

【反馈演练】
1.若数列前8项的值各异,且对任意n∈N*都成立,则下列数列中可取遍前8项值的数列为(2)。
(1)(2)(3)(4)
2.设Sn是数列的前n项和,且Sn=n2,则是等差数列,但不是等比数列。
3.设f(n)=(n∈N),那么f(n+1)-f(n)等于。
4.根据市场调查结果,预测某种家用商品从年初开始的n个月内累积的需求量Sn(万件)近似地满足Sn=(21n-n2-5)(n=1,2,……,12).按此预测,在本年度内,需求量超过1.5万件的月份是7月、8月。
5.在数列中,则505。
6.数列中,已知,
(1)写出,,;(2)是否是数列中的项?若是,是第几项?
解:(1)∵,∴,
,;
(2)令,解方程得,
∵,∴,即为该数列的第15项。

第2课等差、等比数列
【考点导读】
1.掌握等差、等比数列的通项公式、前项和公式,能运用公式解决一些简单的问题;
2.理解等差、等比数列的性质,了解等差、等比数列与函数之间的关系;
3.注意函数与方程思想方法的运用。
【基础练习】
1.在等差数列{an}中,已知a5=10,a12=31,首项a1=-2,公差d=3。
2.一个等比数列的第3项与第4项分别是12与18,则它的第1项是,第2项是8。
3.设是公差为正数的等差数列,若,,则。
4.公差不为0的等差数列{an}中,a2,a3,a6依次成等比数列,则公比等于3。
【范例导析】
例1.(1)若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有
13项。
(2)设数列{an}是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是2。
解:(1)答案:13
法1:设这个数列有n项
∵∴
∴n=13
法2:设这个数列有n项

∴∴
又∴n=13
(2)答案:2因为前三项和为12,∴a1+a2+a3=12,∴a2==4
又a1a2a3=48,∵a2=4,∴a1a3=12,a1+a3=8,
把a1,a3作为方程的两根且a1<a3,
∴x2-8x+12=0,x1=6,x2=2,∴a1=2,a3=6,∴选B.
点评:本题考查了等差数列的通项公式及前n项和公式的运用和学生分析问题、解决问题的能力。
例2.(1)已知数列为等差数列,且
(Ⅰ)求数列的通项公式;(Ⅱ)证明
分析:(1)借助通过等差数列的定义求出数列的公差,再求出数列的通项公式,(2)求和还是要先求出数列的通项公式,再利用通项公式进行求和。
解:(1)设等差数列的公差为d,
由即d=1。
所以即
(II)证明:因为,
所以
点评:该题通过求通项公式,最终通过通项公式解释复杂的不等问题,属于综合性的题目,解题过程中注意观察规律。
例3.已知数列的首项(是常数,且),(),数列的首项,()。
(1)证明:从第2项起是以2为公比的等比数列;
(2)设为数列的前n项和,且是等比数列,求实数的值。
分析:第(1)问用定义证明,进一步第(2)问也可以求出。
解:(1)∵∴
(n≥2)
由得,,∵,∴,
即从第2项起是以2为公比的等比数列。
(2)
当n≥2时,
∵是等比数列,∴(n≥2)是常数,∴3a+4=0,即。
点评:本题考查了用定义证明等比数列,分类讨论的数学思想,有一定的综合性。
【反馈演练】
1.已知等差数列中,,则前10项的和=210。
2.在等差数列中,已知则=42。
3.已知等差数列共有10项,其中奇数项之和15,偶数项之和为30,则其公差是3。
4.如果成等比数列,则3,-9。
5.设等差数列{an}的前n项和为Sn,已知a3=12,S120,S130.
(1)求公差d的取值范围;
(2)指出S1、S2、…、S12中哪一个值最大,并说明理由.
解:(1)依题意有:
解之得公差d的取值范围为-<d<-3.
(2)解法一:由d<0可知a1a2a3…a12a13,因此,在S1,S2,…,S12中Sk为最大值的条件为:ak≥0且ak+1<0,即
∵a3=12,∴,∵d<0,∴2-<k≤3-
∵-<d<-3,∴<-<4,得5.5<k<7.
因为k是正整数,所以k=6,即在S1,S2,…,S12中,S6最大.
解法二:由d<0得a1a2…a12a13,
因此若在1≤k≤12中有自然数k,使得ak≥0,且ak+1<0,则Sk是S1,S2,…,S12中的最大值。又2a7=a1+a13=S13<0,∴a7<0,a7+a6=a1+a12=S120,∴a6≥-a70
故在S1,S2,…,S12中S6最大.
解法三:依题意得:
最小时,Sn最大;
∵-<d<-3,∴6<(5-)<6.5.
从而,在正整数中,当n=6时,[n-(5-)]2最小,所以S6最大.
点评:该题的第(1)问通过建立不等式组求解属基本要求,难度不高,入手容易.
第(2)问难度较高,为求{Sn}中的最大值Sk(1≤k≤12):思路之一是知道Sk为最大值的充要条件是ak≥0且ak+1<0;而思路之二则是通过等差数列的性质等和性探寻数列的分布规律,找出“分水岭”,从而得解;思路之三是可视Sn为n的二次函数,借助配方法可求解,它考查了等价转化的数学思想、逻辑思维能力和计算能力,较好地体现了高考试题注重能力考查的特点.

第3课数列的求和
【考点导读】
对于一般数列求和是很困难的,在推导等差、等比数列的和时出现了一些方法可以迁移到一般数列的求和上,掌握数列求和的常见方法有:
(1)公式法:⑴等差数列的求和公式,⑵等比数列的求和公式
(2)分组求和法:在直接运用公式求和有困难时常,将“和式”中的“同类项”先合并在一起,再运用公式法求和(如:通项中含因式,周期数列等等)
(3)倒序相加法:如果一个数列{a},与首末两项等距的两项之和等于首末两项之和,则可用把正着写和与倒着写和的两个和式相加,就得到了一个常数列的和,这一求和方法称为倒序相加法。特征:an+a1=an-1+a2
(4)错项相减法:如果一个数列的各项是由一个等差数列与一个等比数列的对应项相乘所组成,此时求和可采用错位相减法。
(5)裂项相消法:把一个数列的各项拆成两项之差,在求和时一些正负项相互抵消,于是前n项之和变成首尾若干少数项之和。
【基础练习】
1.已知公差不为0的正项等差数列{an}中,Sn为前n项之和,lga1、lga2、lga4成等差数列,若a5=10,
则S5=30。
2.已知数列{an}是等差数列,且a2=8,a8=26,从{an}中依次取出第3项,第9项,第27项…,第3n项,按原来的顺序构成一个新的数列{bn},则bn=__3n+1+2___
3.若数列满足:,2,3….则.
【范例导析】
例1.已知等比数列分别是某等差数列的第5项、第3项、第2项,且
(Ⅰ)求;
(Ⅱ)设,求数列
解:(I)依题意
点评:本题考查了等比数列的基本性质和等差数列的求和,本题还考查了转化的思想。
例2.数列前项之和满足:
(1)求证:数列是等比数列;
(2)若数列的公比为,数列满足:,求数列的通项公式;
(3)定义数列为,,求数列的前项之和。
解:(1)由得:
两式相减得:即,
∴数列是等比数列。
(2),则有∴。
(3),

点评:本题考查了与之间的转化问题,考查了基本等差数列的定义,还有裂项相消法求和问题。
例3.已知数列满足,.
(Ⅰ)求数列的通项公式;(Ⅱ)设,求数列的前项和;
(Ⅲ)设,数列的前项和为.求证:对任意的,.
分析:本题所给的递推关系式是要分别“取倒”再转化成等比型的数列,对数列中不等式的证明通常是放缩通项以利于求和。
解:(Ⅰ),,
又,数列是首项为,公比为的等比数列.
,即.
(Ⅱ).

(Ⅲ),.
当时,则

,对任意的,.
点评:本题利用转化思想将递推关系式转化成我们熟悉的结构求得数列的通项,第二问分组求和法是非常常见的方法,第三问不等式的证明要用到放缩的办法,放缩的目的是利于求和,所以通常会放成等差、等比数列求和,或者放缩之后可以裂项相消求和。

【反馈演练】
1.已知数列的通项公式,其前项和为,则数列的前10项的和为75。
2.已知数列的通项公式,其前项和为,则377。
3.已知数列的前项和为,且,则数列的通项公式为。
4.已知数列中,且有,则数列的通项公式为
,前项和为。
5.数列{an}满足a1=2,对于任意的n∈N*都有an>0,且(n+1)an2+anan+1-nan+12=0,
又知数列{bn}的通项为bn=2n-1+1.
(1)求数列{an}的通项an及它的前n项和Sn;
(2)求数列{bn}的前n项和Tn;
解:(1)可解得,从而an=2n,有Sn=n2+n,
(2)Tn=2n+n-1.
6.数列{an}中,a1=8,a4=2且满足an+2=2an+1-an,(n∈N*).
(1)求数列{an}的通项公式;
(2)设Sn=|a1|+|a2|+…+|an|,求Sn;
(3)设bn=(n∈N*),Tn=b1+b2+……+bn(n∈N*),是否存在最大的整数m,使得对任意n∈N*均有Tn>成立?若存在,求出m的值;若不存在,说明理由.
解:(1)由an+2=2an+1-anan+2-an+1=an+1-an可知{an}成等差数列,?
d==-2,∴an=10-2n.
(2)由an=10-2n≥0可得n≤5,当n≤5时,Sn=-n2+9n,当n>5时,Sn=n2-9n+40,
故Sn=
(3)bn=
;要使Tn>总成立,需<T1=成立,即m<8且m∈Z,故适合条件的m的最大值为7.
第4课数列的应用
【考点导读】
1.能在具体的问题情景中发现数列的等差、等比关系,并能用有关知识解决相应的问题。
2.注意基本数学思想方法的运用,构造思想:已知数列构造新数列,转化思想:将非等差、等比数列转化为等差、等比数列。
【基础练习】
1.若数列中,,且对任意的正整数、都有,则.
2.设等比数列的公比为,前项和为,若成等差数列,则的值为。
3.已知等差数列的公差为2,若成等比数列,则。
【范例导析】
例1.已知正数组成的两个数列,若是关于的方程的两根
(1)求证:为等差数列;
(2)已知分别求数列的通项公式;
(3)求数。
(1)证明:由的两根得:
是等差数列
(2)由(1)知
∴又也符合该式,
(3)①

①—②得
.
点评:本题考查了等差、等比数列的性质,数列的构造,数列的转化思想,乘公比错项相减法求和等。
例2.设数列满足,且数列是等差数列,数列是等比数列。
(I)求数列和的通项公式;
(II)是否存在,使,若存在,求出,若不存在,说明理由。
解:由题意得:
=;
由已知得公比
(2)
,所以当时,是增函数。
又,所以当时,
又,所以不存在,使。

【反馈演练】
1.制造某种产品,计划经过两年要使成本降低,则平均每年应降低成本。
2.等比数列的前项和为,,则54。
3.设为等差数列,为数列的前项和,已知,为数列{}的前项和,则.
4.已知数列
(1)求数列的通项公式;(2)求证数列是等比数列;
(3)求使得的集合.
解:(1)设数列,由题意得:
解得:
(2)由题意知:,
为首项为2,公比为4的等比数列
(3)由
5.已知数列的各项均为正数,为其前项和,对于任意,满足关系.
证明:是等比数列;
证明:∵①∴②
②-①,得

故:数列{an}是等比数列

等差数列与等比数列


等差数列与等比数列

【复习目标】
掌握等差、等比数列的定义及通项公式,前n项和公式以及等差、等比数列的性质,在解决有关等差,等比数列问题时,要注意运用方程的思想和函数思想以及整体的观点,培养分析问题与解决问题的能力。
【课前热身】
1.如果,,…,为各项都大于零的等差数列,公差,则()
A.B.C.++D.=
2.已知–9,a1,a2,–1这四个数成等差数列,–9,b1,b2,b3,–1这5个数成等比数列,则等于()
A.-8B.8C.8或-8D.
3.设Sn是等差数列的前n项和,若()(福建文)
A.1B.-1C.2D.
4.已知等差数列的公差为2,若成等比数列,则=()(浙江文理)
A–4B–6C–8D–10
5.(2005年杭州二模题)已知成等差数列,成等比数列,则椭圆的准线方程为________.
【例题探究】
1、已知数列为等差数列,且(05湖南)
(Ⅰ)求数列的通项公式;(Ⅱ)证明

2、设数列

(Ⅰ)求a2,a3;
(Ⅱ)判断数列是否为等比数列,并证明你的结论;

3、某企业进行技术改造,有两种方案,甲方案:一次性贷款10万元,第一年便可获利1万元,以后每年比前一年增加30%的利润;乙方案:每年贷款1万元,第一年可获利1万元,以后每年比前一年增加5千元;两种方案的使用期都是10年,到期一次性归还本息.若银行两种形式的贷款都按年息5%的复利计算,试比较两种方案中,哪种获利更多?
(取)
【方法点拨】
1.本题的关键在于指数式和对数式的互化在数列中的应用。
2.数列通项公式和递推公式经常在已知条件中给出,利用列举、叠加、叠乘等方法求之.求通项公式的方法应掌握.
3.例3是比较简单的数列应用问题,由于问题所涉及的数列是熟悉的等比数列与等差数列,因此只建立通项公式并运用所学过的公式求解.
冲刺强化训练(12)
1.已知等差数列满足则有()
A.B.C.D.
2在正数等比数列中已知则()
A.11B.10C.8D.4
3.设数列是等差数列,且,是数列的前项和,则()
A.B.C.D.
4.在各项都为正数的等比数列中首项,前三项和为21,则()
A.33B.72C.84D.189
5.设数列的前项和为().关于数列有下列三个命题:
(1)若既是等差数列又是等比数列,则;
(2)若,则是等差数列;
(3)若,则是等比数列.
这些命题中,真命题的序号是.

6、在等差数列中,,等比数列中,
,,则

7.设F是椭圆的右焦点,且椭圆上至少有21个不同的点Pi(i=1,2,3,…),使|FP1|,|FP2|,|FP3|,…组成公差为d的等差数列,则d的取值范围为(湖南理)

8.已知,都是各项为正数的数列,对任意的正整n,都有成等差数列,
等比数列。
(1)求证:是等差数列;
(2)如果,,。

9.设⊙C1,⊙C2,……,⊙Cn是圆心在抛物线上的一系列圆,它们的圆心的横坐标分别记为。已知,。若⊙Ck(k=1,2,3,……,n)都与x轴相切,且顺次两圆外切。
(1)求证:是等差数列(2)求的表达式;
(3)求证:
参考答案
【课前热身】
1.B2,A3,A4,B
5、y=±22.解析:由条件易知m=2,n=4.但要注意椭圆焦点所在的坐标轴是y轴.因此准线方程为y=±a2c=±22.
【例题探究】
1,(I)解:设等差数列的公差为d.
由即d=1.
所以即
(II)证明因为,
所以
2,解:(I)
(II)因为,所以
所以
猜想:是公比为的等比数列.
证明如下:因为
所以是首项为,公比为的等比数列.
3,解:甲方案是等比数列,乙方案是等差数列,
①甲方案获利:(万元)
银行贷款本息:(万元)
故甲方案纯利:(万元)
②乙方案获利:
(万元);
银行本息和:
(万元)
故乙方案纯利:(万元);综上,甲方案更好.

冲刺强化训练(12)
1.C2.A3.B4.C5.(1)、(2)、(3)
6.解:
点评:此题也可以把和d看成两个未知数,通过列方程,联立解之d=。再求出但计算较繁,运用计算较为方便。
7.
8.解:(1)证明:成等差数列,。
成等比数列,,即,
,,成等差数列。
(2)解:而,


9.解:(1)由题意知:⊙:,⊙:
,,
,两边平方,整理得
是以为首项,公差为2的等差数列
(2)由(1)知,
(3)
),

数列求和


一名优秀的教师在每次教学前有自己的事先计划,教师要准备好教案,这是教师需要精心准备的。教案可以让学生能够听懂教师所讲的内容,帮助授课经验少的教师教学。写好一份优质的教案要怎么做呢?小编经过搜集和处理,为您提供数列求和,供大家借鉴和使用,希望大家分享!

数列的求和
教学目的:小结数列求和的常用方法,尤其是要求学生初步掌握用拆项法、裂项法和错位法求一些特殊的数列。
教学过程:
基本公式:
1.等差数列的前项和公式:

2.等比数列的前n项和公式:
当时,①或②
当q=1时,
一、特殊数列求和--常用数列的前n项和及其应用:
例1设等差数列{an}的前n项和为Sn,且,
求数列{an}的前n项和
——由题和等差数列的前n项和公式先求通项公式an,再sn
例3求和S=1×2×3+2×3×4+…+n(n+1)(n+2).
——关键是处理好通项:n(n+1)(n+2)=n+3n+2n,
应用特殊公式和分组求解的方法。
二、拆项法(分组求和法):
例4求数列
的前n项和。
——拆成等比数和列等差数列{3n-2},应用公式求和,注意分a=1和两类讨论.
三、裂项(相消)法:
例5求数列前n项和
——关键是处理好通项(裂项).设数列的通项为bn,则
例6求数列前n项和
解:
四、错位法:
例7求数列前n项和
解:①

两式相减:
五、作业:
1.求数列前n项和
2.求数列前n项和
3.求和:(5050)
4.求和:1×4+2×5+3×6+……+n×(n+1)
5.求数列1,(1+a),(1+a+a2),……,(1+a+a2+……+an1),……前n项和

文章来源:http://m.jab88.com/j/5755.html

更多

最新更新

更多