八年级数学重要知识点整理:平行线的判定
八年级数学重要知识点整理:平行线的判定
1、定义:在同一平面内,不相交的两条直线叫做平行线。
说明:也可以说两条射线或两条线段平行,这实际上是指它们所在的直线平行。
2、平行线的判定:
(1)同位角相等,两直线平行。
(2)内错角相等,两直线平行。
(3)同旁内角互补两直线平行。
3、平行线的性质
(1)两直线平行,同位角相等。
(2)两直线平行,内错角相等。
(3)两直线平行,同旁内角互补。
说明:要证明两条直线平行,用判定公理(或定理)在已知条件中有两条直线平行时,则应用性质定理。
4、如果一个角的两边分别平行于另一个角的两边,那么这两个角_________________.
5、如果一个角的两边分别垂直于另一个角的两边,那么这两个角_____________
1、平行线的定义:在同一平面内,永不相交的两条直线叫做平行线.
如:AB平行于CD,写作AB∥CD
2、平行公理:过直线外一点有且只有一条直线与已知直线平行.
推论(平行线的传递性):平行同一直线的两直线平行.
∵a∥c,c∥b
∴a∥b.
平行线的判定
1.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.
简单说成:同位角相等,两直线平行.
2.两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.
简单说成:内错角相等,两直线平行.
3.两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.
简单说成:同旁内角互补,两直线平行.
4.在同一平面内,垂直于同一直线的两条直线互相平行.
5、平行线间的距离,处处相等.
6、如果两个角的两边分别平行,那么这两个角相等或互补.
平行线的性质
1.两条平行被第三条直线所截,同位角相等.
简单说成:两直线平行,同位角相等.
2.两条平行线被第三条直线所截,内错角相等.
简单说成:两直线平行,内错角相等.
3.两条平行线被第三条直线所截,同旁内角互补.
简单说成:两直线平行,同旁内角互补.
梯形知识点总结,初中数学梯形知识点
相关阅读
七年级数学下册《平行线及其判定》知识点整理
每个老师在上课前需要规划好教案课件,是时候写教案课件了。只有规划好新的教案课件工作,才能更好的在接下来的工作轻装上阵!你们会写适合教案课件的范文吗?为了让您在使用时更加简单方便,下面是小编整理的“七年级数学下册《平行线及其判定》知识点整理”,仅供参考,大家一起来看看吧。
七年级数学下册《平行线及其判定》知识点整理
1、平行线的概念
在同一个平面内,不相交的两条直线叫做平行线。平行用符号“‖”表示,如“AB‖CD”,读作“AB平行于CD”。
同一平面内,两条直线的位置关系只有两种:相交或平行。
注意:
(1)平行线是无限延伸的,无论怎样延伸也不相交。
(2)当遇到线段、射线平行时,指的是线段、射线所在的直线平行。
2、平行线公理及其推论
平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行。
3、平行线的判定
平行线的判定公理:两条直线被第三条直线所截,如果同位角相等,那么两直线平行。简称:同位角相等,两直线平行。
平行线的两条判定定理:
(1)两条直线被第三条直线所截,如果内错角相等,那么两直线平行。简称:内错角相等,两直线平行。
(2)两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。简称:同旁内角互补,两直线平行。
补充平行线的判定方法:
(1)平行于同一条直线的两直线平行。
(2)垂直于同一条直线的两直线平行。
(3)平行线的定义。
4、平行线的性质
(1)两直线平行,同位角相等。
(2)两直线平行,内错角相等。
(3)两直线平行,同旁内角互补。
八年级数学下册期末知识点:平行线之间的距离
为了促进学生掌握上课知识点,老师需要提前准备教案,又到了写教案课件的时候了。只有规划好教案课件计划,就可以在接下来的工作有一个明确目标!你们了解多少教案课件范文呢?以下是小编为大家精心整理的“八年级数学下册期末知识点:平行线之间的距离”,欢迎您阅读和收藏,并分享给身边的朋友!
八年级数学下册期末知识点:平行线之间的距离
1、定义:在同一平面内,不相交的两条直线叫做平行线。
说明:也可以说两条射线或两条线段平行,这实际上是指它们所在的直线平行。
2、平行线的判定:
(1)同位角相等,两直线平行。
(2)内错角相等,两直线平行。
(3)同旁内角互补两直线平行。
3、平行线的性质
(1)两直线平行,同位角相等。
(2)两直线平行,内错角相等。
(3)两直线平行,同旁内角互补。
说明:要证明两条直线平行,用判定公理(或定理)在已知条件中有两条直线平行时,则应用性质定理。
4、如果一个角的两边分别平行于另一个角的两边,那么这两个角_________________.
5、如果一个角的两边分别垂直于另一个角的两边,那么这两个角_____________
1、平行线的定义:在同一平面内,永不相交的两条直线叫做平行线.
如:AB平行于CD,写作AB∥CD
2、平行公理:过直线外一点有且只有一条直线与已知直线平行.
推论(平行线的传递性):平行同一直线的两直线平行.
∵a∥c,c∥b
∴a∥b.
平行线的判定
1.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.
简单说成:同位角相等,两直线平行.
2.两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.
简单说成:内错角相等,两直线平行.
3.两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.
简单说成:同旁内角互补,两直线平行.
4.在同一平面内,垂直于同一直线的两条直线互相平行.
5、平行线间的距离,处处相等.
6、如果两个角的两边分别平行,那么这两个角相等或互补.
平行线的性质
1.两条平行被第三条直线所截,同位角相等.
简单说成:两直线平行,同位角相等.
2.两条平行线被第三条直线所截,内错角相等.
简单说成:两直线平行,内错角相等.
3.两条平行线被第三条直线所截,同旁内角互补.
简单说成:两直线平行,同旁内角互补.
八年级数学重要知识点整理:全等图形
学生们有一个生动有趣的课堂,离不开老师辛苦准备的教案,是时候写教案课件了。在写好了教案课件计划后,才能够使以后的工作更有目标性!你们会写多少教案课件范文呢?小编为此仔细地整理了以下内容《八年级数学重要知识点整理:全等图形》,仅供参考,欢迎大家阅读。
八年级数学重要知识点整理:全等图形
一,全等三角形
教学目标:1.理解全等三角形及相关概念,能够从图形中寻找全等三角形,探索并掌握全等三角形的性质。
2.在图形变换以及实际操作的过程中发展学生的空间观念,培养学生的几何直觉。
3.使学生在观察、发现生活中的全等形和实际操作中获得全等三角形的体念数学的乐趣,并能够利用性质解决简单的问题。
4.三角形全等的“边边边”的条件.
5.三角形全等的“边角边”的条件.
6.三角形全等的条件:角边角、角角边.
重点难点:1.探索全等三角形的性质
2.三角形全等的表示方法与准确找出全等三角形中的对应元素。
3.寻求三角形全等的条件.
4.灵活运用三角形全等条件证明.
全等三角形的概念:在同一平面内能够完全重合(大小,形状都相等的三角形)的两个三角形称为全等三角形。
对应顶点:当两个三角形完全重合时,互相重合的顶点叫做对应顶点。
对应边:互相重合的边叫做对应边,
对应角:互相重合的角叫做对应角。
1.全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边。
2.全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。
3.有公共边的,公共边一定是对应边。
4.有公共角的,角一定是对应角。
5.有对顶角的,对顶角一定是对应角。
全等三角形的性质:
1.全等三角形的对应角相等。
2.全等三角形的对应边相等。
3.全等三角形的对应边上的高对应相等。
4.全等三角形的对应角的角平分线相等。
5.全等三角形的对应边上的中线相等。
6.全等三角形面积相等。
7.全等三角形周长相等。
判定公理:1.三边对应相等的两个三角形全等(简称SSS或“边边边”),这一条是三角形具有稳定性的原因。
2.两边和它们的夹角对应相等的两个三角形全等(简称SAS或“边角边”)。
3.两角和它们的夹边对应相等的两个三角形全等(简称ASA或“角边角”)。
4.两个角和其中一个角的对边对应相等的两个三角形全等(简称AAS或“角角边”)。
5.直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(简称HL或“斜边,直角边”)。
SSS,SAS,ASA,AAS,HL均可作为判定三角形全等的定理。
注意:在全等的判定中,没有AAA(角角角)和SSA(边边角)(特例:直角三角形为HL,因为勾股定理,只要确定了斜边和一条直角边,另一直角边也确定,属于SSS),因为这两种情况都不能唯一确定三角形的形状。
另外三条中线(或高、角平分线)分别对应相等的两个三角形也全等。
找对应元素的常用方法有三种:
(一)从运动角度看
1.平移法:沿某一方向推移使两三角形重合来找对应元素.
2.翻转法:找到中心线,沿中心线翻折后能相互重合,从而发现对应元素.
3.旋转法:三角形绕某一点旋转一定角度能与另一三角形重合,从而发现对应元素.
(二)根据位置元素来推理
1.全等三角形对应角所对的边是对应边;两个对应角所夹的边是对应边.
2.全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角.
(三)根据经验来判断
1.大边对应大边,大角对应大角
2.公共边是对应边,公共角是对应角
做题技巧:一般来说考试中线段和角相等需要证明全等。因此我们可以来采取逆思维的方式。
1.想要证全等,则需要什么条件
2.要证某某边等于某某边,那么首先要证明含有那两个边的三角形全等。
3.然后把所得的等式运用(AAS/ASA/SAS/SSS/HL)证明三角形全等。
4.有时还需要画辅助线帮助解题。常用的辅助线有:倍长中线,截长补短等。
一、三角形全等的条件
首先我们看只给一个条件(一条边或一个角)画三角形时,画出的三角形一定全等吗?只给定一条边时(如图中的实线
)
由图可知:这三个三角形不全等.只给定一个角时夹角(如图中的实线).
由画图可知:这三个三角形也不全等.因此,只给出一个条件时,不能保证所画出的三角形一定全等.
接下来我们探索:给出两个条件时,所画的三角形一定全等吗?(1)三角形的一个内角为30°,一条边为3厘米(如图)
.
这三个三角形不全等.(2)三角形的两个内角分别为30°和50°(如图).它们看起来的形状一样,但大小不一样.
这两个三角形不能重合,所以也不全等.(3)三角形的两条边分别为4cm、6cm(如图).
它们也不全等.我们通过画图、观察、比较知道,只给出一个条件或两个条件时,都不能保证所画出的三角形一定全等.那么给出三个条件时,又怎样呢?如果给出三个条件画三角形,有四种可能.即:三条边,三个角,两边一角和两角一边.下面我们来逐一探索.
1.已知三角形的三个内角如果已知一个三角形的三个内角分别为40°、60°、80°.能画出这个三角形,但有的能完全重合,有的不重合,所以它们不一定重合(如图).
通过比较得知:给出三角形的三个内角,得到的三角形不一定全等.
2.已知三角形的三条边如果已知一个三角形的三条边分别是4cm,5cm和7cm.画出这个三角形如图.
比较可知:这样的所有三角形都是全等的.由此可知:已知三角形的三边,则画出的所有三角形都全等.这样就得到了三角形全等的条件:三边对应相等的两个三角形全等.简写为:“边边边”或“SSS”.
如下图.
这是用符号语言来表示该三角形全等的条件.
注意:三边对应相等是前提条件,三角形全等是结论.3.已知三角形的“两角一边”
如果“两角一边”条件中的边是两角所夹的边.
如:三角形的两个内角分别是60°和80°,它们所夹的边为2cm,我们来画出这个三角形(如图).
经过比较,它们全等.也就是说已知一个三角形的两个内角及其夹边,那么由此得到的三角形都是全等的.由此我们得到了判定三角形全等的另一条件:两角和它们的夹边对应相等的两个三角形全等.
简写为:“角边角”或“ASA”.如图,在△ABC和△DEF中.
在“两角一边”中,除“两角及其夹边”外,还有两角及一角的对边.
如果“两角及一边”条件中的边是其中一角的对边,如:三角形的两个角分别为60°和45°,一边长为3cm(如图).
已知两角及一角的对边画三角形时,不容易画,但如果把“两角及一角的对边”转化为“两角及其夹边”时,就可以了.因为三角形的内角和为180°,已知两个内角,那么第三个内角就可求出,这样就把“两角及一角的对边”转化为“两角及其夹边”.
(1)如果60°角所对的边为3cm时,画出的图形如下:
经比较:这样得到的三角形都全等.(2)如果45°角所对的边为3cm时,画出的图形如下.
经比较:这样条件的所有三角形都全等.由此我们又得到了判定三角形全等的另一条件:两角和其中一角的对边对应相等的两个三角形全等.简称“角角边”或“AAS”.如图.在△ABC和△DEF中.
4.已知三角形的两边及一角
如果已知一个三角形的两边及一角,有两种情况:两边及这两边的夹角,两边及一边的对角.
先看第一种情况下,两个三角形是否全等.
如果“两边及一角”条件中的角是两边的夹角.如:三角形的两条边分别为2.5cm、3.5cm.它们的夹角为40°(如图).
经过比较,如果已知三角形的两边及其夹角,那么所得的三角形都全等.
由此我们得到了三角形全等的条件:
两边和它们的夹角对应相等的两个三角形全等.
简称“边角边”或“SAS”.
如图,在△ABC和△DEF中.
接下来我们研究第二种情况.
如果“两边及一角”条件中的角是其中一边的对角.如:两条边分别为2.5cm、3.5cm.长度为2.5cm
的边所对的角为
40°(如图).
按上述条件画的三角形不唯一,存在不同的三角形满足上述条件,如图.
由图可知:这两个三角形不全等.
所以,两边及其中一边的对角对应相等,两个三角形不一定全等.因此可知:“两边及一角”中的两种情况中只有一种能判定三角形全等.即:两边及其夹角对应相等的两个三角形全等.
二、三角形的稳定性
如果我们取三根长度适当的木条,用钉子钉成一个三角形的框架,所得到的框架的形状固定吗?用四根木条钉成的框架的形状固定吗?
图(1)是用三根木条钉成的三角形框架,它的大小和形状是固定不变的,三角形的这个性质叫做三角形的稳定性.三角形的稳定性在生产和生活中是很有用的.如:房屋的人字梁具有三角形的结构,它就坚固和稳定.
图(2)的形状是可以改变的,它不具有稳定性.
那么要使图(2)的框架不能活动,在相对的顶点上钉一根木条,使它变为两个三角形框架即可.
在生活中经常会看到采用三角形的结构去建筑.就是用到了它的稳定性.
小结:
通过上表可以看出,两个三角形全等至少要有三个条件对应相等;我们常用主要是“SSS”、“ASA”、“AAS”、“SAS”.
文章来源://m.jab88.com/j/57080.html
更多猜你喜欢
更多-
七年级数学下册《平行线及其判定》知识点整理 每个老师在上课前需要规划好教案课件,是时候写教案课件了。只有规划好新的教案课件工作,才能更好的在接下来的工作轻装上阵!你们会写适合教案课件的范文吗?为了让您在使用时更加简单方便,下面是小编整理的“七年级数学下册《平行线及其判定》知识点整理”,仅供参考,大家一起来看看吧。七年级数学下册《平行线及其判定... - 八年级数学下册期末知识点:平行线之间的距离 为了促进学生掌握上课知识点,老师需要提前准备教案,又到了写教案课件的时候了。只有规划好教案课件计划,就可以在接下来的工作有一个明确目标!你们了解多少教案课件范文呢?以下是小编为大家精心整理的“八年级数学下册期末知识点:平行线之间的距离”,欢迎您阅读和收藏,并分享给身边的朋友!八年级数学下册期末知识点... 小学一年级数学的教案 12-08
- 八年级数学重要知识点整理:全等图形 学生们有一个生动有趣的课堂,离不开老师辛苦准备的教案,是时候写教案课件了。在写好了教案课件计划后,才能够使以后的工作更有目标性!你们会写多少教案课件范文呢?小编为此仔细地整理了以下内容《八年级数学重要知识点整理:全等图形》,仅供参考,欢迎大家阅读。八年级数学重要知识点整理:全等图形一,全等三角形教学... 小学三年级数学教案 12-08
- 八年级数学重要知识点整理:方程的定义 八年级数学重要知识点整理:方程的定义 知识点1: 一元一次方程 只含有一个未知数,并且未知数的次数是1,系数不等于0的整式方程,叫做一元一次方程. 一元一次方程的标准形式是:ax+b=0(其中x是未知... 小学一年级数学的教案 12-01
最新更新
更多-
浙教版八年级数学下册《一元二次方程的应用》教学设计 浙教版八年级数学下册《一元二次方程的应用》教学设计 一、教材分析 1、教材地位和作用 本节课是浙教版八年级数学下册第2章《一元二次方程》的内容,这是一个理论联系实际的好教材,充分体现了数学的应用价值.... - 小学六年级上学期语文同步检测题:《小草和大树》 大部分同学在学过新知识之后,都觉得自己对这部分知识没有问题了,但是一做题就遇到很多问题,为了避免这种现象,编辑老师整理了这篇六年级上学期语文同步检测题,希望大家练习! 一、形近字组词。 堪()撇()辈... 小学数学六年级教案 12-01
- 八年级英语下册Feelingsandimpressions知识点整理
- 湘教版(新)八年级数学下册4.1《函数的表示法》(共2课时)教案 课题4.1.2函数的表示法共2课时 第1课时课型新授 教学目标1.知识与技能:运用丰富的实例,帮助学生全面理解函数的三种表示方法; 2.过程与方法:通过观察、作图、交流归纳等数学实践活动,使学生加深对... 小学一年级数学的教案 12-01
- 《有些人》教学设计 教材分析 本文是一篇回忆性散文。作者回忆了几个普通人给自己留下人生感悟的事,描述了它们对自己的触动,表达了自己对人生的深刻认识。 教学中运用录音、录像、图片等素材突出重点,突破难点,通过读读、画画、自... 小学教学教案 12-01
- 19卖火柴的小女孩 教学目标: 1、能正确读生字、新词。 2、正确、流利、有感情地朗读课文。 3、理解课文内容,初步感受卖火柴的小女孩命运的悲惨。 教学重点:正确、流利、有感情地朗读课文。 教学难点:理解课文内容,初步感... 小学健康的教案 12-01
- 《麋鹿》课堂简录 《麋鹿》课堂简录师:同学们,我觉得这篇课文的生字挺多,而且很难认。所以这节课,我先要检查检查你们,这篇课文的生字是不是认识了,会读了,你们有信心通过检查吗? 生:有。 师:我把生字结合到这段文字里了(... 小学语文微课教案 12-01
- 平行线的判定
- 八年级上册《平面图形的镶嵌》教案苏教版 八年级上册《平面图形的镶嵌》教案苏教版 一、教学课题《平面图形的镶嵌》 二、教案背景 《平面图形的镶嵌》是在苏科版八上教材中以数学活动的形式呈现的。课标中已将综合实践活动作为数学学习的一个重要组成部分... 小学三年级的美术教案 12-01
- 初二数学知识点梳理:一元一次不等式的定义 初二数学知识点梳理:一元一次不等式的定义 一元一次不等式的解集: 一个有未知数的不等式的所有解,组成这个不等式的解集。例如﹕ 不等式x-5≤-1的解集为x≤4; 不等式x﹥0的解集是所有正实数。 求不... 一元二次方程高中教案 12-01
- 八年级数学上13.4课题学习最短路径问题学案新版新人教版 课题:13.4课题学习:最短路径问题 【学习目标】 1、了解解决最短路径问题的基本策略和基本原理。 2、能将实际问题中的“地点”“河”“桥”等抽象为数学中的“点”“线”,使实际问题数学化。 3、能运用... 小学三年级数学教案 12-01
