2.4一元二次方程根与系数的关系
课题*2.4一元二次方程根与系数的关系授课人
教
学
目
标知识技能掌握一元二次方程的根与系数的关系并会初步应用.
数学思考通过根与系数的教学,进一步培养学生分析、观察、归纳的能力和推理论证的能力.
问题解决根据根与系数的关系确定两根之和与两根之积,并能根据这一关系解决简单的数学问题.
情感态度通过情景教学过程,激发学生的求知欲,培养学生积极学习数学的态度,体验数学活动中充满着探索与创造,体验数学活动中的成功感.
教学重点
根与系数的关系及其推导过程.
教学难点
根与系数的关系的推导过程及其应用.
授课类型新授课课时
教具多媒体
教学活动
教学步骤师生活动设计意图
回顾提出问题:
(多媒体展示问题)
1.一元二次方程的一般形式是什么?
2.一元二次方程有实数根的条件是什么?
3.当Δ0,Δ=0,Δ0时,一元二次方程的根的情况如何?
4.一元二次方程的求根公式是什么?通过对一元二次方程相关知识的复习巩固旧知识,并为后面的学习做铺垫.
活动
一:
创设
情境
导入
新课【课堂引入】
(多媒体展示)
问题:解下表中的方程,并完成填空:
方程x1x2x1+x2x1·x2
x2-2x-3=0
x2-3x+2=0
x2+5x+6=0
师生活动:学生自主选择适当的方法解方程,并完成填空,然后交流答案.
问题:观察、思考方程的两根之和与两根之积与系数有何关系?你能从中发现什么规律?
学生通过计算、观察、分析,发现方程中根与系数的关系,发展学生的感性认识,体会由特殊到一般的认识过程.
活动
二:
实践
探究
交流新知1.填写上表后思考:
(1)两根之和、两根之积与系数有何关系?
(2)你能运用发现的规律解答下列问题吗?
已知方程2x2-3x-2=0的两根是x1和x2,则x1+x2=________,x1·x2=________.
(3)如何证明以上发现的规律呢?
2.教师与学生共同整理证明过程.
证明:当Δ0时,由求根公式得
x1=-b+b2-4ac2a,x2=-b-b2-4ac2a,
所以x1+x2=-b+b2-4ac2a+-b-b2-4ac2a=-2b2a=-ba;
x1x2=-b+b2-4ac2a×-b-b2-4ac2a=4ac4a2=ca.
当Δ=0时,x1=x2=-b2a,
所以x1+x2=-ba,x1x2=ca.
归纳:若方程ax2+bx+c=0(a≠0)的两个根为x1和x2,则x1+x2=-ba,x1x2=ca.
1.进一步分析、验证所发现的根与系数的关系,为从感性认识到理性认识打好基础.
2.通过设置问题(2)使学生明确利用一元二次方程根与系数的关系进行计算需要满足Δ≥0.
3.探究根与系数关系的结论,培养学生严谨的学习态度.
活动
三:
开放
训练
体现
应用【应用举例】
例1(多媒体展示)根据一元二次方程根与系数的关系,求下列方程的两个根x1和x2的和与积.
(1)x2-6x-15=0;(2)3x2+7x-9=0;(3)5x-1=4x2.
师生活动:学生自主进行解答,教师做好评价和总结.
注意:把一元二次方程整理为一般形式,确定a,b,c的值,然后利用根与系数的关系代入求值.
变式一[昆明中考]已知x1,x2是一元二次方程x2-4x+1=0的两个实数根,则x1x2等于()
A.-4B.-1C.1D.4
变式二若x1,x2为方程x2-2x-1=0的两根,求x1+x2-x1x2的值.设置问题,针对本课时的重点所学进行及时巩固,培养学生的计算能力和记忆公式的能力.
【拓展提升】
例2解答下列问题:
(1)已知方程x2-3x+c=0的一个根为2,求另一个根和c的值.
(2)关于x的方程2x2+5x+m-1=0的两根互为倒数,求m的值.
例3若一元二次方程x2-x-1=0的两根分别为x1,x2,求1x1+1x2的值.
师生活动:教师引导学生进行交流、讨论,确定解决问题的方法,并适时点拨,提示能否用多种方法进行解答.
拓展提升是根与系数关系的综合应用,利于提高学生思考的广度和深度,能够给予学生必要的知识补充.
活动
四:
课堂
总结
反思【达标测评】
1.两根均为负数的一元二次方程是()
A.7x2-12x+5=0B.6x2-13x-5=0
C.4x2+21x+5=0D.x2+15x-8=0
2.已知方程x2+ax+b=0的两个根分别为2和3,则a=________,b=________.
3.已知方程x2-2x-c=0的一个根是3,求方程的另一根及c的值.
4.已知方程2x2-4x-5=0的两个根分别为x1和x2,求下列式子的值.
(1)(x1+2)(x2+2);(2)x21x2+x1x22.
学生进行当堂检测,完成后,教师进行批阅、点评、讲解.
通过设置达标测评,进一步巩固所学新知识,同时检测学习效果,做到“堂堂清”.
【当堂训练】
1.(1)本节课主要学习了哪些知识?学习了哪些数学思想和方法?
(2)本节课还有哪些疑惑?说一说!
2.布置作业:
教材P48习题2.4中的T1,T2,T3.指导学生养成系统整理知识的好习惯,加强教学反思,进一步提高教学效果.
【知识网络】
提纲挈领,重点突出.
【教学反思】
①[授课流程反思]
在新知探究环节中,关于两根之和与两根之积的计算看似复杂,教师进行板演后,能够使学生清晰认识到结论的来由,能够顺利地进行应用.课堂训练中,学生运用新知识解答问题不甚灵活,教师的必要引导起了关键作用.
②[讲授效果反思]
重点应用过程中,注意到:(1)运用根与系数的关系前首先要保证方程有实数根;(2)运用根与系数的关系解答问题能方便运算.
③[师生互动反思]
从教学过程来看,学生能够在教师的引导下进行探索和交流,并能够运用知识解答问题,应增加其兴趣和思维敏捷性的训练.
④[习题反思]
好题题号_______________________________________
错题题号_______________________________________反思,更进一步提升.
19.4一元二次方程的根与系数的关系
1.设是方程的两根,不解方程,求下列各式的值:
①;②;③;④.
2.求作一个一元二次方程,使它的两根分别是方程的两根的平方.
3.已知一元二次方程的两根分别是,求的值.
4.已知方程的两根之比为,求的值。
5.已知关于x的方程,根据下列条件,分别求出m的值:①两根互为相反数;②两根互为倒数;③有一根为零;④有一根为1.
6.已知是关于x的方程的两个实根,且,求m的值.
7.已知是关于x的方程的两个实根,k取什么值时,.
8.当k为何值时,一元二次方程的两实根的绝对值相等,求出与k值相应的实数根.
9.已知关于x的方程有两个正实根,求k的取值范围.
10.若矩形的长和宽是方程的两根,求矩形的周长和面积。
11.若方程的两根的绝对值相等,求的值及这个方程的根。
12.已知方程
(1)求证方程必有相异实根
(2)取何值时,方程有两个正根
(3)取何值时,两根相异,并且负根的绝对值较大?
(4)取何值时,方程有一根为零?
参考答案
1.①;②;③;④;
2.;
3.或;
4.;
5.①;②;③;④1或3;
6.;
7.-3;
8.时,时,时,;
9.(提示:需,两根和大于0,两根积也大于0).
10.周长,面积6.
11.,
12.(1)(2)(3)(4)
做好教案课件是老师上好课的前提,大家在认真准备自己的教案课件了吧。写好教案课件工作计划,才能规范的完成工作!你们会写多少教案课件范文呢?下面是小编精心收集整理,为您带来的《九年级数学上册2.4一元二次方程根与系数的关系(湘教版)》,希望对您的工作和生活有所帮助。
*2.4一元二次方程根与系数的关系文章来源://m.jab88.com/j/56973.html
更多