学生们有一个生动有趣的课堂,离不开老师辛苦准备的教案,是时候写教案课件了。在写好了教案课件计划后,才能够使以后的工作更有目标性!你们会写多少教案课件范文呢?小编为此仔细地整理了以下内容《空间几何体的表面积》,仅供参考,欢迎大家阅读。
总课题空间几何体的表面积和体积总课时第15课时
分课题空间几何体的表面积分课时第1课时
教学目标了解柱、锥、台、球的表面积的计算公式.
重点难点柱、锥、台、球的表面积计算公式的运用.
引入新课
1.简单几何体的相关概念:
直棱柱:.
正棱柱:.
正棱锥:.
正棱台:.
正棱锥、正棱台的形状特点:(1)底面是正多边形;(2)顶点在底面的正投影是底面的中心,即顶点和底面中心连线垂直于底面(棱锥的高);(3)当且仅当它是正棱锥、正棱台时,才有斜高.
平行六面体:.
直平行六面体:.
长方体:.
正方体:.
2.直棱柱、正棱锥和正棱台的侧面积公式:
,其中指的是.
,其中指的是.
.
3.圆柱、圆锥和圆台的侧面积公式:
.
.
.
例题剖析
例1设计一个正四棱锥形冷水塔塔顶,高是,底面的边长是,制造这种塔顶需要多少平方米铁板?(结果保留两位有效数字).
例2一个直角梯形上底、下底和高之比为.将此直角梯形以垂直于底的腰为轴旋转一周形成一个圆台,求这个圆台上底面积、下底面积和侧面积之比.
巩固练习
1.已知正四棱柱的底面边长是,侧面的对角线长是,
则这个正四棱柱的侧面积为.
2.求底面边长为,高为的正三棱锥的全面积.
3.如果用半径为的半圆形铁皮卷成一个圆锥筒,那么这个圆锥筒的高是多少?
课堂小结
柱、锥、台、球的表面积计算公式的运用.
课后训练
一基础题
1.棱长都为的正三棱锥的全面积等于________________________.
2.正方体的一条对角线长为,则其全面积为_________________.
3.在正三棱柱中,,且,
则正三棱柱的全面积为_____________________.
4.一张长、宽分别为、的矩形硬纸板,以这硬纸板为侧面,将它折成正四棱柱,
则此四棱柱的对角线长为___________________.
5.已知四棱锥底面边长为,侧棱长为,则棱锥的侧面积为____________________.
6.已知圆台的上、下底面半径为、,圆台的高为,则圆台的侧面积为_______.
二提高题
7.一个正三棱台的上、下底面边长分别为和,高是,求三棱台的侧面积.
8.已知一个正三棱台的两个底面的边长分别为和,侧棱长为,
求它的侧面积.
三能力题
9.已知六棱锥,其中底面是正六边形,点在底面的投影是
正六边形的中心点,底面边长为,侧棱长为,求六棱锥
的表面积.
古人云,工欲善其事,必先利其器。高中教师要准备好教案为之后的教学做准备。教案可以让学生更好的消化课堂内容,帮助高中教师提高自己的教学质量。那么如何写好我们的高中教案呢?下面是小编帮大家编辑的《2017高考数学知识点:空间几何体的表面积和体积》,仅供您在工作和学习中参考。
2017高考数学知识点:空间几何体的表面积和体积
1、圆柱体:
表面积:2πRr+2πRh体积:πRh(R为圆柱体上下底圆半径,h为圆柱体高)
2、圆锥体:
表面积:πR+πR[(h+R)的平方根]体积:πRh/3(r为圆锥体低圆半径,h为其高,
3、正方体
a-边长,S=6a,V=a
4、长方体
a-长,b-宽,c-高S=2(ab+ac+bc)V=abc
5、棱柱
S-底面积h-高V=Sh
6、棱锥
S-底面积h-高V=Sh/3
7、棱台
S1和S2-上、下底面积h-高V=h[S1+S2+(S1S2)^1/2]/3
8、拟柱体
S1-上底面积,S2-下底面积,S0-中截面积
h-高,V=h(S1+S2+4S0)/6
9、圆柱
r-底半径,h-高,C—底面周长
S底—底面积,S侧—侧面积,S表—表面积C=2πr
S底=πr,S侧=Ch,S表=Ch+2S底,V=S底h=πrh
10、空心圆柱
R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)
11、直圆锥
r-底半径h-高V=πr^2h/3
12、圆台
r-上底半径,R-下底半径,h-高V=πh(R+Rr+r)/3
13、球
r-半径d-直径V=4/3πr^3=πd^3/6
14、球缺
h-球缺高,r-球半径,a-球缺底半径V=πh(3a+h)/6=πh(3r-h)/3
15、球台
r1和r2-球台上、下底半径h-高V=πh[3(r1+r2)+h]/6
16、圆环体
R-环体半径D-环体直径r-环体截面半径d-环体截面直径
V=2π2Rr=π2Dd/4
17、桶状体
D-桶腹直径d-桶底直径h-桶高
V=πh(2D+d)/12,(母线是圆弧形,圆心是桶的中心)
V=πh(2D+Dd+3d/4)/15(母线是抛物线形)
每个老师不可缺少的课件是教案课件,规划教案课件的时刻悄悄来临了。需要我们认真规划教案课件工作计划,这样我们接下来的工作才会更加好!你们会写适合教案课件的范文吗?请您阅读小编辑为您编辑整理的《高一数学下册《空间几何体的表面积与体积》知识点人教版》,欢迎大家阅读,希望对大家有所帮助。
高一数学下册《空间几何体的表面积与体积》知识点人教版
空间几何体表面积体积公式:
1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)
2、圆锥体:表面积:πR2+πR[(h2+R2)的]体积:πR2h/3(r为圆锥体低圆半径,h为其高,
3、a-边长,S=6a2,V=a3
4、长方体a-长,b-宽,c-高S=2(ab+ac+bc)V=abc
5、棱柱S-h-高V=Sh
6、棱锥S-h-高V=Sh/3
7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/3
8、S1-上底面积,S2-下底面积,S0-中h-高,V=h(S1+S2+4S0)/6
9、圆柱r-底半径,h-高,C—底面周长S底—底面积,S侧—,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h
10、空心圆柱R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)
11、r-底半径h-高V=πr^2h/3
12、r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/313、球r-半径d-直径V=4/3πr^3=πd^3/6
14、球缺h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/3
15、球台r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/6
16、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/4
17、桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)
练习题:
1.正四棱锥P—ABCD的侧棱长和底面边长都等于,有两个正四面体的棱长也都等于.当这两个正四面体各有一个面与正四棱锥的侧面PAD,侧面PBC完全重合时,得到一个新的多面体,该多面体是()
(A)五面体
(B)七面体
(C)九面体
(D)十一面体
2.正四面体的四个顶点都在一个球面上,且正四面体的高为4,则球的表面积为()
(A)9
(B)18
(C)36
(D)64
3.下列说法正确的是()
A.棱柱的侧面可以是三角形
B.正方体和长方体都是特殊的四棱柱
C.所有的几何体的表面都能展成平面图形
D.棱柱的各条棱都相等
总课题空间几何体的表面积和体积总课时第17课时
分课题空间几何体的体积(二)分课时第2课时
教学目标初步掌握求体积的常规方法,例如割补法,等积转换等.
重点难点割补法,等积转换等方法的运用.
引入新课
1.如图,在三棱锥中,已知,,,
,且.求证:三棱锥的体积为.
2.一个圆锥形的空杯子上面放着一个半球形的冰淇淋,如果将冰淇淋全部放入杯中,
能放下吗?
例题剖析
例1将半径分别为、、的三个锡球熔成一个大锡球,
求这个大锡球的表面积.
巩固练习
1.两个球的体积之比为,则这两个球的表面积之比是_____________________.
2.若两个球的表面积之差为,两球面上两个大圆周长之和为,则这两球
的半径之差为_____________________________.
3.如果一个圆柱和一个圆锥的底面直径和高都与球的直径相等.
求证:圆柱、球、圆锥体积的比是.
课堂小结
割补法,等积转换等方法的运用.
课后训练
一基础题
1.一个圆锥的底面半径和一个球的半径相等,体积也相等,则它们的高度之比为______.
2.球面面积膨胀为原来的两倍,其体积变为原来的______________________倍.
3.正方体的全面积为,一个球内切于该正方体,那么球的体积是________.
4.一个正方体的顶点都在球面上,它的棱长为,则这个球的表面积为_______.
5.已知:是棱长为的正方体,,分别为棱与的中
点,求四棱锥的体积.
二提高题
6.一个长、宽、高分别为、、的水槽中有水.现放入
一个直径为的木球,如果木球的三分之二在水中,三分之一在水上,那么水是
否会从水槽中流出?
三能力题
7.设,,,分别为四面体中,,,的中点.
求证:四面体被平面分成等积的两部分.
文章来源:http://m.jab88.com/j/56875.html
更多