一名优秀的教师在教学方面无论做什么事都有计划和准备,作为高中教师就要精心准备好合适的教案。教案可以更好的帮助学生们打好基础,帮助高中教师能够更轻松的上课教学。那么一篇好的高中教案要怎么才能写好呢?以下是小编为大家精心整理的“高考数学(理科)一轮复习椭圆学案带答案”,但愿对您的学习工作带来帮助。
学案51椭圆
导学目标:1.了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用.2.掌握椭圆的定义,几何图形、标准方程及其简单几何性质.
自主梳理
1.椭圆的概念
在平面内与两个定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做________.这两定点叫做椭圆的________,两焦点间的距离叫________.
集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a0,c0,且a,c为常数:
(1)若________,则集合P为椭圆;
(2)若________,则集合P为线段;
(3)若________,则集合P为空集.
2.椭圆的标准方程和几何性质
标准方程x2a2+y2b2=1
(ab0)y2a2+x2b2=1
(ab0)
图形
性
质范围-a≤x≤a
-b≤y≤b-b≤x≤b
-a≤y≤a
对称性对称轴:坐标轴对称中心:原点
顶点A1(-a,0),A2(a,0)
B1(0,-b),B2(0,b)A1(0,-a),A2(0,a)
B1(-b,0),B2(b,0)
轴长轴A1A2的长为2a;短轴B1B2的长为2b
焦距|F1F2|=2c
离心率e=ca∈(0,1)
a,b,c
的关系c2=a2-b2
自我检测
1.已知△ABC的顶点B、C在椭圆x23+y2=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC的周长是()
A.23B.6C.43D.12
2.(2011揭阳调研)“mn0”是方程“mx2+ny2=1表示焦点在y轴上的椭圆”的()
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件
3.已知椭圆x2sinα-y2cosα=1(0≤α2π)的焦点在y轴上,则α的取值范围是()
A.3π4,πB.π4,3π4
C.π2,πD.π2,3π4
4.椭圆x212+y23=1的焦点为F1和F2,点P在椭圆上,如果线段PF1的中点在y轴上,那么|PF1|是|PF2|的()
A.7倍B.5倍C.4倍D.3倍
5.(2011开封模拟)椭圆5x2+ky2=5的一个焦点是(0,2),那么k等于()
A.-1B.1C.5D.-5
探究点一椭圆的定义及应用
例1(教材改编)一动圆与已知圆O1:(x+3)2+y2=1外切,与圆O2:(x-3)2+y2=81内切,试求动圆圆心的轨迹方程.
变式迁移1求过点A(2,0)且与圆x2+4x+y2-32=0内切的圆的圆心的轨迹方程.
探究点二求椭圆的标准方程
例2求满足下列各条件的椭圆的标准方程:
(1)长轴是短轴的3倍且经过点A(3,0);
(2)经过两点A(0,2)和B12,3.
变式迁移2(1)已知椭圆过(3,0),离心率e=63,求椭圆的标准方程;
(2)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点P1(6,1)、P2(-3,-2),求椭圆的标准方程.
探究点三椭圆的几何性质
例3(2011安阳模拟)已知F1、F2是椭圆的两个焦点,P为椭圆上一点,∠F1PF2=60°.
(1)求椭圆离心率的范围;
(2)求证:△F1PF2的面积只与椭圆的短轴长有关.
变式迁移3已知椭圆x2a2+y2b2=1(ab0)的长、短轴端点分别为A、B,从此椭圆上一点M(在x轴上方)向x轴作垂线,恰好通过椭圆的左焦点F1,AB∥OM.
(1)求椭圆的离心率e;
(2)设Q是椭圆上任意一点,F1、F2分别是左、右焦点,求∠F1QF2的取值范围.
方程思想的应用
例(12分)(2011北京朝阳区模拟)已知中心在原点,焦点在x轴上的椭圆C的离心率为12,且经过点M(1,32),过点P(2,1)的直线l与椭圆C相交于不同的两点A,B.
(1)求椭圆C的方程;
(2)是否存在直线l,满足PA→PB→=PM→2?若存在,求出直线l的方程;若不存在,请说明理由.
【答题模板】
解(1)设椭圆C的方程为x2a2+y2b2=1(ab0),
由题意得1a2+94b2=1,ca=12,a2=b2+c2.解得a2=4,b2=3.故椭圆C的方程为x24+y23=1.[4分]
(2)若存在直线l满足条件,由题意可设直线l的方程为y=k(x-2)+1,由x24+y23=1,y=kx-2+1,
得(3+4k2)x2-8k(2k-1)x+16k2-16k-8=0.[6分]
因为直线l与椭圆C相交于不同的两点A,B,
设A,B两点的坐标分别为(x1,y1),(x2,y2),
所以Δ=[-8k(2k-1)]2-4(3+4k2)(16k2-16k-8)0.
整理得32(6k+3)0,解得k-12.[7分]
又x1+x2=8k2k-13+4k2,x1x2=16k2-16k-83+4k2,
且PA→PB→=PM→2,
即(x1-2)(x2-2)+(y1-1)(y2-1)=54,
所以(x1-2)(x2-2)(1+k2)=54,
即[x1x2-2(x1+x2)+4](1+k2)=54.[9分]
所以[16k2-16k-83+4k2-2×8k2k-13+4k2+4](1+k2)=4+4k23+4k2=54,
解得k=±12.[11分]
所以k=12.于是存在直线l满足条件,
其方程为y=12x.[12分]
【突破思维障碍】
直线与椭圆的位置关系主要是指公共点问题、相交弦问题及其他综合问题.反映在代数上,就是直线与椭圆方程联立的方程组有无实数解及实数解的个数的问题,它体现了方程思想的应用,当直线与椭圆相交时,要注意判别式大
于零这一隐含条件,它可以用来检验所求参数的值是否有意义,也可通过该不等式来求参数的范围.对直线与椭圆的位置关系的考查往往结合平面向量进行求解,与向量相结合的题目,大都与共线、垂直和夹角有关,若能转化为向量的坐标运算往往更容易实现解题功能,所以在复习过程中要格外重视.
1.求椭圆的标准方程,除了直接根据定义外,常用待定系数法(先定性,后定型,再定参).当椭圆的焦点位置不明确而无法确定其标准方程时,可设方程为x2m+y2n=1(m0,n0且m≠n),可以避免讨论和繁杂的计算,也可以设为Ax2+By2=1(A0,B0且A≠B),这种形式在解题中更简便.
2.椭圆的几何性质分为两类:一是与坐标轴无关的椭圆本身固有的性质,如:长轴长、短轴长、焦距、离心率等;另一类是与坐标系有关的性质,如:顶点坐标,焦点坐标等.第一类性质是常数,不因坐标系的变化而变化,第二类性质是随坐标系变化而相应改变.
3.直线与椭圆的位置关系问题.它是高考的热点,通常涉及椭圆的性质、最值的求法和直线的基础知识、线段的中点、弦长、垂直问题等,分析此类问题时,要充分利用数形结合法、设而不求法、弦长公式及根与系数的关系去解决.
(满分:75分)
一、选择题(每小题5分,共25分)
1.(2011温州模拟)若△ABC的两个顶点坐标分别为A(-4,0)、B(4,0),△ABC的周长为18,则顶点C的轨迹方程为()
A.x225+y29=1(y≠0)B.y225+x29=1(y≠0)
C.x216+y29=1(y≠0)D.y216+x29=1(y≠0)
2.已知椭圆x210-m+y2m-2=1,长轴在y轴上,若焦距为4,则m等于()
A.4B.5C.7D.8
3.已知F1、F2是椭圆的两个焦点,过F1且与椭圆长轴垂直的直线交椭圆于A、B两点,若△ABF2是等腰直角三角形,则这个椭圆的离心率是()
A.32B.22C.2-1D.2
4.(2011天门期末)已知圆(x+2)2+y2=36的圆心为M,设A为圆上任一点,N(2,0),线段AN的垂直平分线交MA于点P,则动点P的轨迹是()
A.圆B.椭圆
C.双曲线D.抛物线
5.椭圆x225+y29=1上一点M到焦点F1的距离为2,N是MF1的中点,则|ON|等于()
A.2B.4C.8D.32
二、填空题(每小题4分,共12分)
6.已知椭圆G的中心在坐标原点,长轴在x轴上,离心率为32,且G上一点到G的两个焦点的距离之和为12,则椭圆G的方程为______________.
7.(2011唐山调研)椭圆x29+y22=1的焦点为F1、F2,点P在椭圆上.若|PF1|=4,则|PF2|=________;∠F1PF2的大小为________.
8.
如图,已知点P是以F1、F2为焦点的椭圆x2a2+y2b2=1(ab0)上一点,若PF1⊥PF2,tan∠PF1F2=12,则此椭圆的离心率是______.
三、解答题(共38分)
9.(12分)已知方向向量为v=(1,3)的直线l过点(0,-23)和椭圆C:x2a2+y2b2=1(ab0)的右焦点,且椭圆的离心率为63.
(1)求椭圆C的方程;
(2)若已知点D(3,0),点M,N是椭圆C上不重合的两点,且DM→=λDN→,求实数λ的取值范围.
10.(12分)(2011烟台模拟)椭圆ax2+by2=1与直线x+y-1=0相交于A,B两点,C是AB的中点,若|AB|=22,OC的斜率为22,求椭圆的方程.
11.(14分)(2010福建)已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点.
(1)求椭圆C的方程.
(2)是否存在平行于OA的直线l,使得直线l与椭圆C有公共点,且直线OA与l的距离等于4?若存在,求出直线l的方程;若不存在,说明理由.
学案51椭圆
自主梳理
1.椭圆焦点焦距(1)ac(2)a=c(3)ac
自我检测
1.C2.C3.D4.A5.B
课堂活动区
例1解如图所示,设动圆的圆心为C,半径为r.
则由圆相切的性质知,
|CO1|=1+r,|CO2|=9-r,
∴|CO1|+|CO2|=10,
而|O1O2|=6,
∴点C的轨迹是以O1、O2为焦点的椭圆,其中2a=10,2c=6,b=4.
∴动圆圆心的轨迹方程为
x225+y216=1.
变式迁移1解将圆的方程化为标准形式为:
(x+2)2+y2=62,圆心B(-2,0),r=6.
设动圆圆心M的坐标为(x,y),
动圆与已知圆的切点为C.
则|BC|-|MC|=|BM|,
而|BC|=6,
∴|BM|+|CM|=6.
又|CM|=|AM|,
∴|BM|+|AM|=6|AB|=4.
∴点M的轨迹是以点B(-2,0)、A(2,0)为焦点、线段AB中点(0,0)为中心的椭圆.
a=3,c=2,b=5.
∴所求轨迹方程为x29+y25=1.
例2解题导引确定一个椭圆的标准方程,必须要有一个定位条件(即确定焦点的位置)和两个定形条件(即确定a,b的大小).当焦点的位置不确定时,应设椭圆的标准方程为x2a2+y2b2=1(ab0)或y2a2+x2b2=1(ab0),或者不必考虑焦点位置,直接设椭圆的方程为mx2+ny2=1(m0,n0,且m≠n).
解(1)若椭圆的焦点在x轴上,
设方程为x2a2+y2b2=1(ab0).
∵椭圆过点A(3,0),∴9a2=1,
∴a=3,又2a=32b,∴b=1,∴方程为x29+y2=1.
若椭圆的焦点在y轴上,设方程为y2a2+x2b2=1(ab0).
∵椭圆过点A(3,0),∴9b2=1,
∴b=3,又2a=32b,
∴a=9,∴方程为y281+x29=1.
综上可知椭圆的方程为x29+y2=1或y281+x29=1.
(2)设经过两点A(0,2),B12,3的椭圆标准方程为mx2+ny2=1,将A,B坐标代入方程得4n=114m+3n=1m=1n=14,∴所求椭圆方程为x2+y24=1.
变式迁移2解(1)当椭圆的焦点在x轴上时,∵a=3,ca=63,∴c=6,从而b2=a2-c2=9-6=3,
∴椭圆的标准方程为x29+y23=1.
当椭圆的焦点在y轴上时,
∵b=3,ca=63,∴a2-b2a=63,∴a2=27.
∴椭圆的标准方程为x29+y227=1.
∴所求椭圆的标准方程为x29+y23=1或x29+y227=1.
(2)设椭圆方程为mx2+ny2=1(m0,n0且m≠n).
∵椭圆经过P1、P2点,∴P1、P2点坐标适合椭圆方程,
则6m+n=1,①3m+2n=1,②
①②两式联立,解得m=19,n=13.
∴所求椭圆方程为x29+y23=1.
例3解题导引(1)椭圆上一点与两焦点构成的三角形,称为椭圆的焦点三角形,与焦点三角形有关的计算或证明常利用正弦定理、余弦定理、|PF1|+|PF2|=2a,得到a、c的关系.
(2)对△F1PF2的处理方法定义式的平方余弦定理面积公式
|PF1|+|PF2|2=2a2,4c2=|PF1|2+|PF2|2-2|PF1||PF2|cosθ,S△=12|PF1||PF2|sinθ.
(1)解设椭圆方程为x2a2+y2b2=1(ab0),
|PF1|=m,|PF2|=n.
在△PF1F2中,由余弦定理可知,
4c2=m2+n2-2mncos60°.
∵m+n=2a,∴m2+n2=(m+n)2-2mn=4a2-2mn.
∴4c2=4a2-3mn,即3mn=4a2-4c2.
又mn≤m+n22=a2(当且仅当m=n时取等号),
∴4a2-4c2≤3a2.∴c2a2≥14,即e≥12.
∴e的取值范围是12,1.
(2)证明由(1)知mn=43b2,∴S△PF1F2=12mnsin60°=33b2,
即△PF1F2的面积只与短轴长有关.
变式迁移3解(1)∵F1(-c,0),则xM=-c,yM=b2a,
∴kOM=-b2ac.∵kAB=-ba,OM∥AB,
∴-b2ac=-ba,∴b=c,故e=ca=22.
(2)设|F1Q|=r1,|F2Q|=r2,∠F1QF2=θ,
∴r1+r2=2a,|F1F2|=2c,
cosθ=r21+r22-4c22r1r2=r1+r22-2r1r2-4c22r1r2
=a2r1r2-1≥a2r1+r222-1=0,
当且仅当r1=r2时,cosθ=0,∴θ∈[0,π2].
课后练习区
1.A2.D3.C4.B5.B
6.x236+y29=17.2120°8.53
9.解(1)∵直线l的方向向量为v=(1,3),
∴直线l的斜率为k=3.
又∵直线l过点(0,-23),
∴直线l的方程为y+23=3x.
∵ab,∴椭圆的焦点为直线l与x轴的交点.
∴c=2.又∵e=ca=63,∴a=6.∴b2=a2-c2=2.
∴椭圆方程为x26+y22=1.(6分)
(2)若直线MN⊥y轴,则M、N是椭圆的左、右顶点,
λ=3+63-6或λ=3-63+6,即λ=5+26或5-26.
若MN与y轴不垂直,设直线MN的方程为x=my+3(m≠0).由x26+y22=1,x=my+3得(m2+3)y2+6my+3=0.
设M、N坐标分别为(x1,y1),(x2,y2),
则y1+y2=-6mm2+3,①
y1y2=3m2+3,②
Δ=36m2-12(m2+3)=24m2-360,∴m232.
∵DM→=(x1-3,y1),DN→=(x2-3,y2),DM→=λDN→,显然λ0,且λ≠1,
∴(x1-3,y1)=λ(x2-3,y2).∴y1=λy2.
代入①②,得λ+1λ=12m2m2+3-2=10-36m2+3.
∵m232,得2λ+1λ10,即λ2-2λ+10,λ2-10λ+10,
解得5-26λ5+26且λ≠1.
综上所述,λ的取值范围是5-26≤λ≤5+26,
且λ≠1.(12分)
10.解方法一设A(x1,y1)、B(x2,y2),
代入椭圆方程并作差得
a(x1+x2)(x1-x2)+b(y1+y2)(y1-y2)=0.
而y1-y2x1-x2=-1,y1+y2x1+x2=kOC=22,
代入上式可得b=2a.(4分)
由方程组ax2+by2=1x+y-1=0,得(a+b)x2-2bx+b-1=0,
∴x1+x2=2ba+b,x1x2=b-1a+b,
再由|AB|=1+k2|x2-x1|=2|x2-x1|=22,
得2ba+b2-4b-1a+b=4,(8分)
将b=2a代入得a=13,∴b=23.
∴所求椭圆的方程是x23+2y23=1.(12分)
方法二由ax2+by2=1,x+y=1
得(a+b)x2-2bx+b-1=0.(2分)
设A(x1,y1)、B(x2,y2),
则|AB|=k2+1x1-x22=24b2-4a+bb-1a+b2.
∵|AB|=22,∴a+b-aba+b=1.①(6分)
设C(x,y),则x=x1+x22=ba+b,y=1-x=aa+b,
∵OC的斜率为22,∴ab=22.(9分)
代入①,得a=13,b=23.
∴椭圆方程为x23+2y23=1.(12分)
11.解方法一(1)依题意,可设椭圆C的方程为x2a2+y2b2=1(ab0),且可知其左焦点为F′(-2,0).
从而有c=2,2a=|AF|+|AF′|=3+5=8,
解得c=2,a=4.又a2=b2+c2,所以b2=12,
故椭圆C的方程为x216+y212=1.(5分)
(2)假设存在符合题意的直线l,设其方程为y=32x+t.
由y=32x+t,x216+y212=1,得3x2+3tx+t2-12=0.(7分)
因为直线l与椭圆C有公共点,
所以Δ=(3t)2-4×3×(t2-12)≥0,
解得-43≤t≤43.(9分)
另一方面,由直线OA与l的距离d=4,
得|t|94+1=4,解得t=±213.(12分)
由于±213[-43,43],所以符合题意的直线l不存在.(14分)
方法二(1)依题意,可设椭圆C的方程为x2a2+y2b2=1(ab0),
且有4a2+9b2=1,a2-b2=4.解得b2=12或b2=-3(舍去).
从而a2=16.(3分)
所以椭圆C的方程为x216+y212=1.(5分)
(2)同方法一.
经验告诉我们,成功是留给有准备的人。作为高中教师准备好教案是必不可少的一步。教案可以让上课时的教学氛围非常活跃,有效的提高课堂的教学效率。你知道怎么写具体的高中教案内容吗?小编经过搜集和处理,为您提供高考数学(理科)一轮复习直线、圆的位置关系学案有答案,相信能对大家有所帮助。
学案50直线、圆的位置关系
导学目标:1.能根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系.2.能用直线和圆的方程解决一些简单的问题.3.在学习过程中,体会用代数方法处理几何问题的思想.
自主梳理
1.直线与圆的位置关系
位置关系有三种:________、________、________.
判断直线与圆的位置关系常见的有两种方法:
(1)代数法:利用判别式Δ,即直线方程与圆的方程联立方程组消去x或y整理成一元二次方程后,计算判别式Δ
(2)几何法:利用圆心到直线的距离d和圆半径r的大小关系:
dr________,d=r________,dr________.
2.圆的切线方程
若圆的方程为x2+y2=r2,点P(x0,y0)在圆上,则过P点且与圆x2+y2=r2相切的切线方程为____________________________.
注:点P必须在圆x2+y2=r2上.
经过圆(x-a)2+(y-b)2=r2上点P(x0,y0)的切线方程为________________________.
3.计算直线被圆截得的弦长的常用方法
(1)几何方法
运用弦心距(即圆心到直线的距离)、弦长的一半及半径构成直角三角形计算.
(2)代数方法
运用韦达定理及弦长公式
|AB|=1+k2|xA-xB|
=1+k2[xA+xB2-4xAxB].
说明:圆的弦长、弦心距的计算常用几何方法.
4.圆与圆的位置关系
(1)圆与圆的位置关系可分为五种:________、________、________、________、________.
判断圆与圆的位置关系常用方法:
(几何法)设两圆圆心分别为O1、O2,半径为r1、r2(r1≠r2),则|O1O2|r1+r2________;|O1O2|=r1+r2______;|r1-r2||O1O2|r1+r2________;|O1O2|=|r1-r2|________;0≤|O1O2||r1-r2|??________.
(2)已知两圆x2+y2+D1x+E1y+F1=0和x2+y2+D2x+E2y+F2=0相交,则与两圆共交点的圆系方程为________________________________________________________________,其中λ为λ≠-1的任意常数,因此圆系不包括第二个圆.
当λ=-1时,为两圆公共弦所在的直线,方程为(D1-D2)x+(E1-E2)y+(F1-F2)=0.
自我检测
1.(2010江西)直线y=kx+3与圆(x-3)2+(y-2)2=4相交于M,N两点,若|MN|≥23,则k的取值范围是()
A.-34,0
B.-∞,-34∪0,+∞
C.-33,33
D.-23,0
2.圆x2+y2-4x=0在点P(1,3)处的切线方程为()
A.x+3y-2=0B.x+3y-4=0
C.x-3y+4=0D.x-3y+2=0
3.(2011宁夏调研)圆C1:x2+y2+2x+2y-2=0与圆C2:x2+y2-4x-2y+1=0的公切线有且仅有()
A.1条B.2条
C.3条D.4条
4.过点(0,1)的直线与x2+y2=4相交于A、B两点,则|AB|的最小值为()
A.2B.23C.3D.25
5.(2011聊城月考)直线y=x+1与圆x2+y2=1的位置关系是()
A.相切B.相交但直线不过圆心
C.直线过圆心D.相离
探究点一直线与圆的位置关系
例1已知圆C:x2+y2+2x-4y+3=0.
(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程;
(2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使得|PM|取得最小值时点P的坐标.
变式迁移1从圆C:(x-1)2+(y-1)2=1外一点P(2,3)向该圆引切线,求切线的方程及过两切点的直线方程.
探究点二圆的弦长、中点弦问题
例2(2011汉沽模拟)已知点P(0,5)及圆C:x2+y2+4x-12y+24=0.
(1)若直线l过点P且被圆C截得的线段长为43,求l的方程;
(2)求过P点的圆C的弦的中点的轨迹方程.
变式迁移2已知圆C:x2+y2-6x-8y+21=0和直线kx-y-4k+3=0.
(1)证明:不论k取何值,直线和圆总有两个不同交点;
(2)求当k取什么值时,直线被圆截得的弦最短,并求这条最短弦的长.
探究点三圆与圆的位置关系
例3已知圆C1:x2+y2-2mx+4y+m2-5=0,圆C2:x2+y2+2x-2my+m2-3=0,m为何值时,
(1)圆C1与圆C2相外切;(2)圆C1与圆C2内含.
变式迁移3已知⊙A:x2+y2+2x+2y-2=0,⊙B:x2+y2-2ax-2by+a2-1=0.当a,b变化时,若⊙B始终平分⊙A的周长,求:
(1)⊙B的圆心B的轨迹方程;
(2)⊙B的半径最小时圆的方程.
探究点四综合应用
例4已知圆C:x2+y2-2x+4y-4=0.问在圆C上是否存在两点A、B关于直线y=kx-1对称,且以AB为直径的圆经过原点?若存在,写出直线AB的方程;若不存在,说明理由.
变式迁移4已知过点A(0,1)且斜率为k的直线l与圆C:(x-2)2+(y-3)2=1相交于M、N两点.
(1)求实数k的取值范围;
(2)若O为坐标原点,且OM→ON→=12,求k的值.
1.求切线方程时,若知道切点,可直接利用公式;若过圆外一点求切线,一般运用圆心到直线的距离等于半径来求,但注意有两条.
2.解决与弦长有关的问题时,注意运用由半径、弦心距、弦长的一半构成的直角三角形,也可以运用弦长公式.这就是通常所说的“几何法”和“代数法”.
3.判断两圆的位置关系,从圆心距和两圆半径的关系入手.
(满分:75分)
一、选择题(每小题5分,共25分)
1.直线l:y-1=k(x-1)和圆x2+y2-2y=0的位置关系是()
A.相离B.相切或相交
C.相交D.相切
2.(2011珠海模拟)直线3x-y+m=0与圆x2+y2-2x-2=0相切,则实数m等于()
A.3或-3B.-3或33
C.-33或3D.-33或33
3.过原点且倾斜角为60°的直线被圆x2+y2-4y=0所截得的弦长为()
A.3B.2
C.6D.23
4.若圆(x-3)2+(y+5)2=r2上有且仅有两个点到直线4x-3y-2=0的距离为1,则半径r的取值范围是()
A.(4,6)B.[4,6)
C.(4,6]D.[4,6]
5.(2010全国Ⅰ)已知圆O的半径为1,PA、PB为该圆的两条切线,A、B为两切点,那么PA→PB→的最小值为()
A.-4+2B.-3+2
C.-4+22D.-3+22
二、填空题(每小题4分,共12分)
6.若圆x2+y2=4与圆x2+y2+2ay-6=0(a0)的公共弦的长为23,则a=________.
7.(2011三明模拟)已知点A是圆C:x2+y2+ax+4y-5=0上任意一点,A点关于直线x+2y-1=0的对称点也在圆C上,则实数a=________.
8.(2011杭州高三调研)设直线3x+4y-5=0与圆C1:x2+y2=4交于A,B两点,若圆C2的圆心在线段AB上,且圆C2与圆C1相切,切点在圆C1的劣弧上,则圆C2的半径的最大值是________.
三、解答题(共38分)
9.(12分)圆x2+y2=8内一点P(-1,2),过点P的直线l的倾斜角为α,直线l交圆于A、B两点.
(1)当α=3π4时,求AB的长;
(2)当弦AB被点P平分时,求直线l的方程.
10.(12分)(2011湛江模拟)自点A(-3,3)发出的光线l射到x轴上,被x轴反射,其反射光线所在直线与圆x2+y2-4x-4y+7=0相切,求光线l所在直线的方程.
11.(14分)已知两圆x2+y2-2x-6y-1=0和x2+y2-10x-12y+m=0.求:
(1)m取何值时两圆外切?
(2)m取何值时两圆内切?
(3)m=45时两圆的公共弦所在直线的方程和公共弦的长.
学案50直线、圆的位置关系
自主梳理
1.相切相交相离(1)相交相切相离(2)相交相切相离2.x0x+y0y=r2(x0-a)(x-a)+(y0-b)(y-b)=r24.(1)相离外切相交内切内含相离外切相交内切内含(2)(x2+y2+D1x+E1y+F1)+λ(x2+y2+D2x+E2y+F2)=0
自我检测
1.A2.D3.B4.B5.B
课堂活动区
例1解题导引(1)过点P作圆的切线有三种类型:
当P在圆外时,有2条切线;
当P在圆上时,有1条切线;
当P在圆内时,不存在.
(2)利用待定系数法设圆的切线方程时,一定要注意直线方程的存在性,有时要进行恰当分类.
(3)切线长的求法:
过圆C外一点P作圆C的切线,切点为M,半径为R,
则|PM|=|PC|2-R2.
解(1)将圆C配方得(x+1)2+(y-2)2=2.
①当直线在两坐标轴上的截距为零时,设直线方程为y=kx,
由|k+2|1+k2=2,解得k=2±6,得y=(2±6)x.
②当直线在两坐标轴上的截距不为零时,
设直线方程为x+y-a=0,
由|-1+2-a|2=2,
得|a-1|=2,即a=-1,或a=3.
∴直线方程为x+y+1=0,或x+y-3=0.
综上,圆的切线方程为y=(2+6)x,或y=(2-6)x,
或x+y+1=0,或x+y-3=0.
(2)由|PO|=|PM|,
得x21+y21=(x1+1)2+(y1-2)2-2,
整理得2x1-4y1+3=0.
即点P在直线l:2x-4y+3=0上.
当|PM|取最小值时,即OP取得最小值,直线OP⊥l,
∴直线OP的方程为2x+y=0.
解方程组2x+y=0,2x-4y+3=0,得点P的坐标为-310,35.
变式迁移1解设圆切线方程为y-3=k(x-2),
即kx-y+3-2k=0,∴1=|k+2-2k|k2+1,
∴k=34,另一条斜率不存在,方程为x=2.
∴切线方程为x=2和3x-4y+6=0.
圆心C为(1,1),∴kPC=3-12-1=2,
∴过两切点的直线斜率为-12,又x=2与圆交于(2,1),
∴过切点的直线为x+2y-4=0.
例2解题导引(1)有关圆的弦长的求法:
已知直线的斜率为k,直线与圆C相交于A(x1,y1),B(x2,y2)两点,点C到l的距离为d,圆的半径为r.
方法一代数法:弦长|AB|=1+k2|x2-x1|
=1+k2x1+x22-4x1x2;
方法二几何法:弦长|AB|=2r2-d2.
(2)有关弦的中点问题:
圆心与弦的中点连线和已知直线垂直,利用这条性质可确定某些等量关系.
解(1)方法一
如图所示,|AB|=43,取AB的中点D,连接CD,则CD⊥AB,连接AC、BC,
则|AD|=23,|AC|=4,
在Rt△ACD中,可得|CD|=2.
当直线l的斜率存在时,设所求直线的斜率为k,则直线的方程为y-5=kx,即kx-y+5=0.
由点C到直线AB的距离公式,得|-2k-6+5|k2+-12=2,
解得k=34.
当k=34时,直线l的方程为3x-4y+20=0.
又直线l的斜率不存在时,也满足题意,此时方程为x=0.
∴所求直线的方程为3x-4y+20=0或x=0.
方法二当直线l的斜率存在时,
设所求直线的斜率为k,
则直线的方程为y-5=kx,即y=kx+5.
联立直线与圆的方程y=kx+5,x2+y2+4x-12y+24=0,
消去y,得(1+k2)x2+(4-2k)x-11=0.①
设方程①的两根为x1,x2,
由根与系数的关系,得x1+x2=2k-41+k2,x1x2=-111+k2.②
由弦长公式,得1+k2|x1-x2|
=1+k2[x1+x22-4x1x2]=43.
将②式代入,解得k=34,
此时直线方程为3x-4y+20=0.
又k不存在时也满足题意,此时直线方程为x=0.
∴所求直线的方程为x=0或3x-4y+20=0.
(2)设过P点的圆C的弦的中点为D(x,y),
则CD⊥PD,即CD→PD→=0,
(x+2,y-6)(x,y-5)=0,
化简得所求轨迹方程为x2+y2+2x-11y+30=0.
变式迁移2(1)证明由kx-y-4k+3=0,
得(x-4)k-y+3=0.
∴直线kx-y-4k+3=0过定点P(4,3).
由x2+y2-6x-8y+21=0,
即(x-3)2+(y-4)2=4,
又(4-3)2+(3-4)2=24.
∴直线和圆总有两个不同的交点.
(2)解kPC=3-44-3=-1.
可以证明与PC垂直的直线被圆所截得的弦AB最短,因此过P点斜率为1的直线即为所求,其方程为y-3=x-4,即x-y-1=0.|PC|=|3-4-1|2=2,
∴|AB|=2|AC|2-|PC|2=22.
例3解题导引圆和圆的位置关系,从交点个数也就是方程组解的个数来判断,有时得不到确切的结论,通常还是从圆心距d与两圆半径和、差的关系入手.
解对于圆C1与圆C2的方程,经配方后
C1:(x-m)2+(y+2)2=9;
C2:(x+1)2+(y-m)2=4.
(1)如果C1与C2外切,
则有m+12+-2-m2=3+2.
(m+1)2+(m+2)2=25.
m2+3m-10=0,解得m=-5或m=2.
(2)如果C1与C2内含,
则有m+12+m+223-2.
(m+1)2+(m+2)21,m2+3m+20,
得-2m-1,
∴当m=-5或m=2时,圆C1与圆C2外切;
当-2m-1时,圆C1与圆C2内含.
变式迁移3解(1)两圆方程相减得公共弦方程
2(a+1)x+2(b+1)y-a2-1=0.①
依题意,公共弦应为⊙A的直径,
将(-1,-1)代入①得a2+2a+2b+5=0.②
设圆B的圆心为(x,y),∵x=ay=b,
∴其轨迹方程为x2+2x+2y+5=0.
(2)⊙B方程可化为(x-a)2+(y-b)2=1+b2.
由②得b=-12[(a+1)2+4]≤-2,
∴b2≥4,b2+1≥5.当a=-1,b=-2时,⊙B半径最小,
∴⊙B方程为(x+1)2+(y+2)2=5.
例4解题导引这是一道探索存在性问题,应先假设存在圆上两点关于直线对称,由垂径定理可知圆心应在直线上,以AB为直径的圆经过原点O,应联想直径所对的圆周角为直角利用斜率或向量来解决.因此能否将问题合理地转换是解题的关键.
解圆C的方程可化为(x-1)2+(y+2)2=9,
圆心为C(1,-2).
假设在圆C上存在两点A、B,则圆心C(1,-2)在直线y=kx-1上,即k=-1.
于是可知,kAB=1.
设lAB:y=x+b,代入圆C的方程,
整理得2x2+2(b+1)x+b2+4b-4=0,
Δ=4(b+1)2-8(b2+4b-4)0,b2+6b-90,
解得-3-32b-3+32.
设A(x1,y1),B(x2,y2),
则x1+x2=-b-1,x1x2=12b2+2b-2.
由OA⊥OB,知x1x2+y1y2=0,
也就是x1x2+(x1+b)(x2+b)=0,
∴2x1x2+b(x1+x2)+b2=0,
∴b2+4b-4-b2-b+b2=0,化简得b2+3b-4=0,
解得b=-4或b=1,均满足Δ0.
即直线AB的方程为x-y-4=0,或x-y+1=0.
变式迁移4解(1)方法一∵直线l过点A(0,1)且斜率为k,
∴直线l的方程为y=kx+1.
将其代入圆C:(x-2)2+(y-3)2=1,
得(1+k2)x2-4(1+k)x+7=0.①
由题意:Δ=[-4(1+k)]2-4×(1+k2)×70,
得4-73k4+73.
方法二同方法一得直线方程为y=kx+1,
即kx-y+1=0.
又圆心到直线距离d=|2k-3+1|k2+1=|2k-2|k2+1,
∴d=|2k-2|k2+11,解得4-73k4+73.
(2)设M(x1,y1),N(x2,y2),则由①得x1+x2=4+4k1+k2x1x2=71+k2,
∴OM→ON→=x1x2+y1y2=(1+k2)x1x2+k(x1+x2)+1
=4k1+k1+k2+8=12k=1(经检验符合题意),∴k=1.
课后练习区
1.C2.C3.D4.A5.D
6.17.-108.1
9.解(1)当α=3π4时,kAB=-1,
直线AB的方程为y-2=-(x+1),即x+y-1=0.(3分)
故圆心(0,0)到AB的距离d=|0+0-1|2=22,
从而弦长|AB|=28-12=30.(6分)
(2)设A(x1,y1),B(x2,y2),
则x1+x2=-2,y1+y2=4.由x21+y21=8,x22+y22=8,
两式相减得(x1+x2)(x1-x2)+(y1+y2)(y1-y2)=0,
即-2(x1-x2)+4(y1-y2)=0,
∴kAB=y1-y2x1-x2=12.(10分)
∴直线l的方程为y-2=12(x+1),
即x-2y+5=0.(12分)
10.
解已知圆C:x2+y2-4x-4y+7=0关于x轴对称的圆为C1:(x-2)2+(y+2)2=1,其圆心C1的坐标为(2,-2),半径为1,由光的反射定律知,入射光线所在直线方程与圆C1相切.(4分)
设l的方程为y-3=k(x+3),则
|5k+2+3|12+k2=1,(8分)
即12k2+25k+12=0.∴k1=-43,k2=-34.
则l的方程为4x+3y+3=0或3x+4y-3=0.
(12分)
11.解两圆的标准方程分别为
(x-1)2+(y-3)2=11,(x-5)2+(y-6)2=61-m,
圆心分别为M(1,3),N(5,6),
半径分别为11和61-m.
(1)当两圆外切时,5-12+6-32=11+61-m.
解得m=25+1011.(4分)
(2)当两圆内切时,因定圆的半径11小于两圆圆心间距离,故只有61-m-11=5.
解得m=25-1011.(8分)
(3)两圆的公共弦所在直线的方程为
(x2+y2-2x-6y-1)-(x2+y2-10x-12y+45)=0,
即4x+3y-23=0.(12分)
由圆的半径、弦长、弦心距间的关系,不难求得公共弦的长为
2×112-|4+3×3-23|42+322=27.(14分)
学案42空间点、线、面之间的位置关系
导学目标:1.理解空间直线、平面位置关系的含义.2.了解可以作为推理依据的公理和定理.3.能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题.
自主梳理
1.平面的基本性质
公理1:如果一条直线上的________在一个平面内,那么这条直线在此平面内.
公理2:过______________的三点,有且只有一个平面.
公理3:如果两个不重合的平面有一个公共点,那么它们有且只有________过该点的公共直线.
2.直线与直线的位置关系
(1)位置关系的分类
共面直线异面直线:不同在任何一个平面内
(2)异面直线所成的角
①定义:设a,b是两条异面直线,经过空间中任一点O作直线a′∥a,b′∥b,把a′与b′所成的____________叫做异面直线a,b所成的角(或夹角).
②范围:______________.
3.直线与平面的位置关系有________、______、________三种情况.
4.平面与平面的位置关系有______、______两种情况.
5.平行公理
平行于______________的两条直线互相平行.
6.定理
空间中如果两个角的两边分别对应平行,那么这两个角____________.
自我检测
1.(2011•泉州月考)若直线a与b是异面直线,直线b与c是异面直线,则直线a与c的位置关系是()
A.相交B.相交或异面
C.平行或异面D.平行、相交或异面
2.已知a,b是异面直线,直线c∥直线a,则c与b()
A.一定是异面直线B.一定是相交直线
C.不可能是平行直线D.不可能是相交直线
3.如图所示,点P,Q,R,S分别在正方体的四条棱上,且是所在棱的中点,则直线PQ与RS是异面直线的一个图是()
4.(2010•全国Ⅰ)直三棱柱ABC—A1B1C1中,若∠BAC=90°,AB=AC=AA1,则异面直线BA1与AC1所成的角等于()
A.30°B.45°
C.60°D.90°
5.下列命题:
①空间不同三点确定一个平面;
②有三个公共点的两个平面必重合;
③空间两两相交的三条直线确定一个平面;
④三角形是平面图形;
⑤平行四边形、梯形、四边形都是平面图形;
⑥垂直于同一直线的两直线平行;
⑦一条直线和两平行线中的一条相交,也必和另一条相交;
⑧两组对边相等的四边形是平行四边形.
其中正确的命题是________.(填序号)
探究点一平面的基本性质
例1
如图所示,空间四边形ABCD中,E、F、G分别在AB、BC、CD上,且满足AE∶EB=CF∶FB=2∶1,CG∶GD=3∶1,过E、F、G的平面交AD于H,连接EH.
(1)求AH∶HD;
(2)求证:EH、FG、BD三线共点.
变式迁移1
如图,E、F、G、H分别是空间四边形AB、BC、CD、DA上的点,且EH与FG相交于点O.
求证:B、D、O三点共线.
探究点二异面直线所成的角
例2(2009•全国Ⅰ)已知三棱柱ABC—A1B1C1的侧棱与底面边长都相等,A1在底面ABC上的射影为BC的中点,则异面直线AB与CC1所成的角的余弦值为()
A.34B.54C.74D.34
变式迁移2(2011•淮南月考)在空间四边形ABCD中,已知AD=1,BC=3,且AD⊥BC,对角线BD=132,AC=32,求AC和BD所成的角.
转化与化归思想的应用
例
(12分)如图所示,在四棱锥P—ABCD中,底面是边长为2的菱形,∠DAB=60°,对角线AC与BD交于点O,PO⊥平面ABCD,PB与平面ABCD所成角为60°.
(1)求四棱锥的体积;
(2)若E是PB的中点,求异面直线DE与PA所成角的余弦值.
多角度审题对(1)只需求出高PO,易得体积;对(2)可利用定义,过E点作PA的平行线,构造三角形再求解.
【答题模板】
解(1)在四棱锥P—ABCD中,∵PO⊥平面ABCD,
∴∠PBO是PB与平面ABCD所成的角,即∠PBO=60°,[2分]
在Rt△AOB中,∵BO=AB•sin30°=1,又PO⊥OB,∴PO=BO•tan60°=3,
∵底面菱形的面积S=2×12×2×2×32=23,
∴四棱锥P—ABCD的体积VP—ABCD=13×23×3=2.[6分]
(2)
取AB的中点F,连接EF,DF,
∵E为PB中点,∴EF∥PA,
∴∠DEF为异面直线DE与PA所成角(或其补角).[8分]
在Rt△AOB中,
AO=AB•cos30°=3,
∴在Rt△POA中,PA=6,∴EF=62.
在正三角形ABD和正三角形PDB中,DF=DE=3,
由余弦定理得cos∠DEF=DE2+EF2-DF22DE•EF[10分]
=32+622-322×3×62=6432=24.
所以异面直线DE与PA所成角的余弦值为24.[12分]
【突破思维障碍】
求两条异面直线所成角的大小,一般方法是通过平行移动直线,把异面问题转化为共面问题来解决.根据空间等角定理及推论可知,异面直线所成角的大小与顶点位置无关,往往将角的顶点取在其中的一条直线上,特别地,可以取其中一条直线与另一条直线所在平面的交点或异面线段的端点.总之,顶点的选择要与已知量有关,以便于计算,具体步骤如下:
(1)利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上;(2)证明作出的角即为所求角;(3)利用三角形来求解,异面直线所成角的范围是(0°,90°].
【易错点剖析】
1.求异面直线所成的角时,仅指明哪个角,而不进行证明.
2.忘记异面直线所成角的范围,余弦值回答为负值.
1.利用平面基本性质证明“线共点”或“点共线”问题:
(1)证明共点问题,常用的方法是:先证其中两条直线交于一点,再证交点在第三条直线上,有时也可将问题转化为证明三点共线.
(2)要证明“点共线”可将线看作两个平面的交线,只要证明这些点都是这两个平面的公共点,根据公理3可知这些点在交线上,因此共线.
2.异面直线的判定方法:
(1)定义法:由定义判断两直线不可能在同一平面内.
(2)反证法:用此方法可以证明两直线是异面直线.
3.求异面直线所成的角的步骤:
(1)一般是用平移法(可以借助三角形的中位线、平行四边形等)作出异面直线的夹角;
(2)证明作出的角就是所求的角;
(3)利用条件求出这个角;
(4)如果求出的角是锐角或直角,则它就是要求的角,如果求出的角是钝角,则它的补角才是要求的角.
(满分:75分)
一、选择题(每小题5分,共25分)
1.和两条异面直线都相交的两条直线的位置关系是()
A.异面B.相交
C.平行D.异面或相交
2.给出下列命题:
①若平面α上的直线a与平面β上的直线b为异面直线,直线c是α与β的交线,那么c至多与a、b中的一条相交;②若直线a与b异面,直线b与c异面,则直线a与c异面;③一定存在平面α同时和异面直线a、b都平行.其中正确的命题为()
A.①B.②C.③D.①③
3.(2011•宁德月考)
如图所示,在正三角形ABC中,D、E、F分别为各边的中点,G、H、I、J分别为AF、AD、BE、DE的中点,将△ABC沿DE、EF、DF折成三棱锥以后,GH与IJ所成角的度数为()
A.90°B.60°C.45°D.0°
4.(2009•全国Ⅱ)已知正四棱柱ABCD—A1B1C1D1中,AA1=2AB,E为AA1的中点,则异面直线BE与CD1所成角的余弦值为()
A.1010B.15C.31010D.35
5.(2011•三明模拟)正四棱锥S—ABCD的侧棱长为2,底面边长为3,E为SA的中点,则异面直线BE和SC所成的角为()
A.30°B.45°C.60°D.90°
二、填空题(每小题4分,共12分)
6.一个正方体纸盒展开后如图所示,在原正方体纸盒中有如下结论:
①AB⊥EF;②AB与CM所成的角为60°;③EF与MN是异面直线;④MN∥CD.则正确结论的序号是______.
7.(2009•四川)如图所示,已知正三棱柱ABC—A1B1C1的各条棱长都相等,M是侧棱CC1的中点,则异面直线AB1和BM所成的角的大小是________.
8.如图所示,正四面体P—ABC中,M为棱AB的中点,则PA与CM所成角的余弦值为________.
三、解答题(共38分)
9.(12分)(2011•温州月考)
如图所示,正方体ABCD—A1B1C1D1中,E,F分别是AB和AA1的中点.
求证:(1)E,C,D1,F四点共面;
(2)CE,D1F,DA三线共点.
10.(12分)
在棱长为a的正方体ABCD—A1B1C1D1中,P,Q,R分别是棱CC1,A1D1,A1B1的中点,画出过这三点的截面,并求这个截面的周长.
11.(14分)(2011•舟山模拟)
如图,正方体ABCD—A1B1C1D1的棱长为2,E为AB的中点.
(1)求证:AC⊥平面BDD1;
(2)求异面直线BD1与CE所成角的余弦值.
(3)求点B到平面A1EC的距离.
学案42空间点、线、面之间的位置关系
自主梳理
1.两点不在一条直线上一条2.(1)平行相交
(2)①锐角或直角②0,π23.平行相交在平面内
4.平行相交5.同一条直线6.相等或互补
自我检测
1.D[a,c都与直线b异面,并不能确定直线a,c的关系.]
2.C[a,b是异面直线,直线c∥直线a.
因而cDb,
否则,若c∥b,则a∥b与已知矛盾,
因而cDb.]
3.C[A中PQ∥RS;B中RS∥PQ;
D中RS和PQ相交.]
4.C[
将直三棱柱ABC—A1B1C1补成如图所示的几何体.
由已知易知:该几何体为正方体.
连接C1D,则C1D∥BA1.
∴异面直线BA1与AC1所成的角为∠AC1D(或补角),
在等边△AC1D中,∠AC1D=60°.]
5.④
课堂活动区
例1解题导引证明线共点的问题实质上是证明点在线上的问题,其基本理论是把直线看作两平面的交线,点看作是两平面的公共点,由公理3得证.
(1)解∵AEEB=CFFB=2,∴EF∥AC.
∴EF∥平面ACD.而EF⊂平面EFGH,
且平面EFGH∩平面ACD=GH,∴EF∥GH.
而EF∥AC,∴AC∥GH.
∴AHHD=CGGD=3,即AH∶HD=3∶1.
(2)证明∵EF∥GH,且EFAC=13,GHAC=14,
∴EF≠GH,∴四边形EFGH为梯形.
令EH∩FG=P,则P∈EH,而EH⊂平面ABD,
P∈FG,FG⊂平面BCD,
平面ABD∩平面BCD=BD,
∴P∈BD.∴EH、FG、BD三线共点.
变式迁移1证明∵E∈AB,H∈AD,
∴E∈平面ABD,H∈平面ABD.∴EH⊂平面ABD.
∵EH∩FG=O,∴O∈平面ABD.
同理可证O∈平面BCD,
∴O∈平面ABD∩平面BCD,
即O∈BD,∴B、D、O三点共线.
例2解题导引高考中对异面直线所成角的考查,一般出现在综合题的某一步,求异面直线所成角的一般步骤为:
(1)平移:选择适当的点,平移异面直线中的一条或两条成为相交直线,这里的点通常选择特殊位置的点,如线段的中点或端点,也可以是异面直线中某一条直线上的特殊点.
(2)证明:证明所作的角是异面直线所成的角.
(3)寻找:在立体图形中,寻找或作出含有此角的三角形,并解之.
(4)取舍:因为异面直线所成角θ的取值范围是0°θ≤90°,所以所作的角为钝角时,应取它的补角作为异面直线所成的角.
D[
如图,A1D⊥平面ABC,且D为BC的中点,设三棱柱的各棱长为1,则AD=32,由A1D⊥平面ABC知A1D=12,Rt△A1BD中,易求A1B=14+14=22.
∵CC1∥AA1,∴AB与AA1所成的角即为AB与CC1所成的角.在△A1BA中,由余弦定理可知cos∠A1AB=1+1-122×1×1=34.∴AB与CC1所成的角的余弦值为34.]
变式迁移2解
如图所示,分别取AD、CD、AB、BD的中点E、F、G、H,连接EF、FH、HG、GE、GF.
由三角形的中位线定理知,EF∥AC,且EF=34,GE∥BD,且GE=134.GE和EF所成的锐角(或直角)就是AC和BD所成的角.
同理,GH∥AD,HF∥BC.GH=12,HF=32,
又AD⊥BC,∴∠GHF=90°,∴GF2=GH2+HF2=1.
在△EFG中,EG2+EF2=1=GF2,
∴∠GEF=90°,即AC和BD所成的角为90°.
课后练习区
1.D
2.C[①错,c可与a、b都相交;
②错,因为a、c可能相交也可能平行;
③正确,例如过异面直线a、b的公垂线段的中点且与公垂线垂直的平面即可满足条件.]
3.B[
将三角形折成三棱锥,如图所示,HG与IJ为一对异面直线,过D分别作HG与IJ的平行线,
因GH∥DF,
IJ∥AD,
所以∠ADF为所求,
因此HG与IJ所成角为60°.]
4.C[
如图所示,连接A1B,则A1B∥CD1故异面直线BE与CD1所成的角即为BE与A1B所成的角.设AB=a,则A1E=a,A1B=5a,
BE=2a.
△A1BE中,由余弦定理得
cos∠A1BE=BE2+A1B2-A1E22BE•A1B
=2a2+5a2-a22×2a×5a=31010.]
5.C[设AC中点为O,则OE∥SC,连接BO,则∠BEO(或其补角)即为异面直线BE和SC所成的角,
EO=12SC=22,BO=12BD=62,
在△SAB中,cosA=12ABSA=322=64
=AB2+AE2-BE22AB•AE,∴BE=2.
在△BEO中,cos∠BEO=BE2+EO2-BO22BE•EO=12,
∴∠BEO=60°.
]
6.①③
解析把正方体的平面展开图还原成原来的正方体,如图所示,易知AB⊥EF,AB∥CM,EF与MN异面,MN⊥CD,故①③正确.
7.90°
解析延长A1B1至D,使A1B1=B1D,则AB1∥BD,
∠MBD就是直线AB1和BM所成的角.设三棱柱的各条棱长为2,
则BM=5,BD=22,
C1D2=A1D2+A1C21-2A1D•A1C1cos60°
=16+4-2×4=12.
DM2=C1D2+C1M2=13,
∴cos∠DBM=BM2+BD2-DM22•BM•BD=0,∴∠DBM=90°.
8.36
解析如图,取PB中点N,连接CN、MN.
∠CMN为PA与CM所成的角(或补角),
设PA=2,则CM=3,
MN=1,CN=3.
∴cos∠CMN=MN2+CM2-CN22MN•CM=36.
9.证明(1)如图所示,连接CD1,EF,A1B,
∵E、F分别是AB和AA1的中点,
∴EF∥A1B,且EF=12A1B,(2分)
又∵A1D1綊BC,
∴四边形A1BCD1是平行四边形,
∴A1B∥CD1,∴EF∥CD1,
∴EF与CD1确定一个平面α,
∴E,F,C,D1∈α,
即E,C,D1,F四点共面.(6分)
(2)由(1)知EF∥CD1,且EF=12CD1,
∴四边形CD1FE是梯形,
∴CE与D1F必相交,设交点为P,(8分)
则P∈CE⊂平面ABCD,且P∈D1F⊂平面A1ADD1,
∴P∈平面ABCD且P∈平面A1ADD1.(10分)
又平面ABCD∩平面A1ADD1=AD,
∴P∈AD,∴CE,D1F,DA三线共点.(12分)
10.解如图所示,连接QR并延长,分别与C1B1,C1D1的延长线交于E,F两点.
连接EP交BB1于M点,
连接FP交DD1于N点.
再连接RM,QN,则五边形PMRQN为过三点P,Q,R的截面.(3分)
由Q,R分别是边A1D1,A1B1的中点,知△QRA1≌△ERB1,(6分)
∴B1E=QA1=12a,
由△EB1M∽△EC1P,
知EM∶EP=EB1∶EC1=1∶3,(9分)
PM=23EP=2312a2+32a2=103a,
同理PN=PM=103a,
易求RM=QN=106a,QR=22a,
∴五边形PMRQN的周长为10+22a.
(12分)
11.(1)证明由已知有D1D⊥平面ABCD
得AC⊥D1D,又由ABCD是正方形,
得AC⊥BD,∵D1D与BD相交,∴AC⊥平面BDD1.(4分)
(2)解延长DC至G,使CG=EB,连接BG、D1G,
∵CG綊EB,∴四边形EBGC是平行四边形.
∴BG∥EC.
∴∠D1BG就是异面直线BD1与CE所成的角.(6分)
在△D1BG中,D1B=23,
BG=5,D1G=22+32=13.
∴cos∠D1BG=D1B2+BG2-D1G22D1B•BG
=12+5-132×23×5=1515.
∴异面直线BD1与CE所成角的余弦值是1515.(8分)
(3)解连接A1B,
∵△A1AE≌△CBE,∴A1E=CE=5.
又∵A1C=23,
∴点E到A1C的距离d=5-3=2.
∴S△A1EC=12A1C•d=6,
S△A1EB=12EB•A1A=1.(11分)
又∵VB—A1EC=VC—A1EB,
设点B到平面A1EC的距离为h,
∴13S△A1EC•h=13S△A1EB•CB,∴6•h=2,h=63.
∴点B到平面A1EC的距离为63.(14分)
学案48直线与直线的位置关系
导学目标:1.能根据两条直线的斜率判定这两条直线平行或垂直.2.能用解方程组的方法求两条相交直线的交点坐标.3.掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.
自主梳理
1.两直线的位置关系
平面上两条直线的位置关系包括平行、相交、重合三种情况.
(1)两直线平行
对于直线l1:y=k1x+b1,l2:y=k2x+b2,
l1∥l2________________________.
对于直线l1:A1x+B1y+C1=0,
l2:A2x+B2y+C2=0(A2B2C2≠0),
l1∥l2________________________.
(2)两直线垂直
对于直线l1:y=k1x+b1,l2:y=k2x+b2,
l1⊥l2k1k2=____.
对于直线l1:A1x+B1y+C1=0,
l2:A2x+B2y+C2=0,
l1⊥l2A1A2+B1B2=____.
2.两条直线的交点
两条直线l1:A1x+B1y+C1=0,
l2:A2x+B2y+C2=0,
如果两直线相交,则交点的坐标一定是这两个方程组成的方程组的____;反之,如果这个方程组只有一个公共解,那么以这个解为坐标的点必是l1和l2的________,因此,l1、l2是否有交点,就看l1、l2构成的方程组是否有________.
3.有关距离
(1)两点间的距离
平面上两点P1(x1,y1),P2(x2,y2)间的距离|P1P2|=__________________________________.
(2)点到直线的距离
平面上一点P(x0,y0)到一条直线l:Ax+By+C=0的距离d=________________________.
(3)两平行线间的距离
已知l1、l2是平行线,求l1、l2间距离的方法:
①求一条直线上一点到另一条直线的距离;
②设l1:Ax+By+C1=0,l2:Ax+By+C2=0,则l1与l2之间的距离d=________________.
自我检测
1.(2011济宁模拟)若点P(a,3)到直线4x-3y+1=0的距离为4,且点P在不等式2x+y-30表示的平面区域内,则实数a的值为()
A.7B.-7C.3D.-3
2.若直线l1:y=k(x-4)与直线l2关于点(2,1)对称,则直线l2恒过定点()
A.(0,4)B.(0,2)
C.(-2,4)D.(4,-2)
3.已知直线l1:ax+by+c=0,直线l2:mx+ny+p=0,则ambn=-1是直线l1⊥l2的()
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
4.(2009上海)已知直线l1:(k-3)x+(4-k)y+1=0与l2:2(k-3)x-2y+3=0平行,则k的值是()
A.1或3B.1或5
C.3或5D.1或2
5.已知2x+y+5=0,则x2+y2的最小值是________.
探究点一两直线的平行与垂直
例1已知两条直线l1:ax-by+4=0和l2:(a-1)x+y+b=0.求满足以下条件的a、b的值:
(1)l1⊥l2且l1过点(-3,-1);
(2)l1∥l2,且原点到这两条直线的距离相等.
变式迁移1已知直线l1:ax+2y+6=0和直线l2:x+(a-1)y+a2-1=0,
(1)试判断l1与l2是否平行;
(2)l1⊥l2时,求a的值.
探究点二直线的交点坐标
例2已知直线l1:4x+7y-4=0,l2:mx+y=0,l3:2x+3my-4=0.当m为何值时,三条直线不能构成三角形.
变式迁移2△ABC的两条高所在直线的方程分别为2x-3y+1=0和x+y=0,顶点A的坐标为(1,2),求BC边所在直线的方程.
探究点三距离问题
例3(2011厦门模拟)已知三条直线:l1:2x-y+a=0(a0);l2:-4x+2y+1=0;l3:x+y-1=0.且l1与l2的距离是7510.
(1)求a的值;
(2)能否找到一点P,使P同时满足下列三个条件:
①点P在第一象限;
②点P到l1的距离是点P到l2的距离的12;
③点P到l1的距离与点P到l3的距离之比是2∶5.
若能,求点P的坐标;若不能,说明理由.
变式迁移3已知直线l过点P(3,1)且被两平行线l1:x+y+1=0,l2:x+y+6=0截得的线段长为5,求直线l的方程.
转化与化归思想的应用
例(12分)已知直线l:2x-3y+1=0,点A(-1,-2).求:
(1)点A关于直线l的对称点A′的坐标;
(2)直线m:3x-2y-6=0关于直线l的对称直线m′的方程;
(3)直线l关于点A(-1,-2)对称的直线l′的方程.
【答题模板】
解(1)设A′(x,y),再由已知
∴A′-3313,413.[4分]
(2)在直线m上取一点,如M(2,0),则M(2,0)关于直线l的对称点M′必在直线m′上.设对称点M′(a,b),则得M′613,3013.[6分]
设直线m与直线l的交点为N,则由
得N(4,3).
又∵m′经过点N(4,3),∴由两点式得直线m′的方程为9x-46y+102=0.[8分]
(3)方法一在l:2x-3y+1=0上任取两点,
如M(1,1),N(4,3),则M,N关于点A(-1,-2)的对称点M′,N′均在直线l′上,
易得M′(-3,-5),N′(-6,-7),[10分]
再由两点式可得l′的方程为2x-3y-9=0.[12分]
方法二∵l∥l′,∴设l′的方程为2x-3y+C=0(C≠1),
∵点A(-1,-2)到两直线l,l′的距离相等,∴由点到直线的距离公式得
|-2+6+C|22+32=|-2+6+1|22+32,解得C=-9,[10分]
∴l′的方程为2x-3y-9=0.[12分]
方法三设P(x,y)为l′上任意一点,
则P(x,y)关于点A(-1,-2)的对称点为P′(-2-x,-4-y),[10分]
∵点P′在直线l上,∴2(-2-x)-3(-4-y)+1=0,
即2x-3y-9=0.[12分]
【突破思维障碍】
点关于直线对称是轴对称中最基本的,要抓住两点:一是已知点与对称点的连线与对称轴垂直;二是已知点与对称点为端点的线段中点在对称轴上.直线关于点的对称可转化为点关于点的对称,直线关于直线的对称可转化为点关于直线的对称.
【易错点剖析】
(1)点关于线对称,不能转化为“垂直”及“线的中点在轴上”的问题.
(2)线关于线对称,不能转化为点关于线的对称问题;线关于点的对称,不能转化为点关于点的对称问题.
1.在两条直线的位置关系中,讨论最多的还是平行与垂直,它们是两条直线的特殊位置关系.解题时认真画出图形,有助于快速准确地解决问题.判断两直线平行与垂直时,不要忘记考虑斜率不存在的情形,利用一般式则可避免分类讨论.
2.运用公式d=|C1-C2|A2+B2求两平行直线间的距离时,一定要把x、y项系数化为相等的系数.
3.对称思想是高考热点,主要分为中心对称和轴对称两种,关键要把握对称问题的本质,必要情况下可与函数的对称轴建立联系.
(满分:75分)
一、选择题(每小题5分,共25分)
1.直线3x+2y+4=0与2x-3y+4=0()
A.平行B.垂直
C.重合D.关于直线y=-x对称
2.(2011六安月考)若直线x+ay-a=0与直线ax-(2a-3)y-1=0互相垂直,则a的值是()
A.2B.-3或1C.2或0D.1或0
3.已知直线l的倾斜角为3π4,直线l1经过点A(3,2)、B(a,-1),且l1与l垂直,直线l2:2x+by+1=0与直线l1平行,则a+b等于()
A.-4B.-2C.0D.2
4.P点在直线3x+y-5=0上,且点P到直线x-y-1=0的距离为2,则P点坐标为()
A.(1,2)B.(2,1)
C.(1,2)或(2,-1)D.(2,1)或(-1,2)
5.设两条直线的方程分别为x+y+a=0,x+y+b=0,已知a、b是方程x2+x+c=0的两个实根,且0≤c≤18,则这两条直线之间的距离的最大值和最小值分别是()
A.24,12B.2,22
C.2,12D.22,12
二、填空题(每小题4分,共12分)
6.(2011重庆云阳中学高三月考)直线l1:x+my+6=0和l2:3x-3y+2=0,若l1∥l2,则m的值为______.
7.设直线l经过点(-1,1),则当点(2,-1)与直线l的距离最大时,直线l的方程为______________.
8.若直线m被两平行线l1:x-y+1=0与l2:x-y+3=0所截得的线段的长为22,则m的倾斜角可以是
①15°②30°③45°④60°⑤75°
其中正确答案的序号是________.
三、解答题(共38分)
9.(12分)(2011福州模拟)k为何值时,直线l1:y=kx+3k-2与直线l2:x+4y-4=0的交点在第一象限.
10.(12分)已知点P1(2,3),P2(-4,5)和A(-1,2),求过点A且与点P1,P2距离相等的直线方程.
11.(14分)(2011杭州调研)过点P(3,0)作一直线,使它夹在两直线l1:2x-y-2=0与l2:x+y+3=0之间的线段AB恰被点P平分,求此直线的方程.
自主梳理
1.(1)k1=k2且b1≠b2A1A2=B1B2≠C1C2(2)-10
2.解交点唯一解3.(1)x2-x12+y2-y12
(2)|Ax0+By0+C|A2+B2(3)②|C1-C2|A2+B2
自我检测
1.D2.B3.A4.C
5.5
课堂活动区
例1解题导引运用直线的斜截式y=kx+b时,要特别注意直线斜率不存在时的特殊情况.运用直线的一般式Ax+By+C=0时,要特别注意A、B为0时的情况,求解两直线平行或垂直有关的问题并与求直线方程相联系,联立方程组求解,对斜率不存在的情况,可考虑用数形结合的方法研究.
解(1)由已知可得l2的斜率必存在,且k2=1-a.
若k2=0,则a=1.由l1⊥l2,l1的斜率不存在,∴b=0.
又l1过(-3,-1),∴-3a+b+4=0,
∴b=3a-4=-1,矛盾.∴此情况不存在,即k2≠0.
若k2≠0,即k1=ab,k2=1-a.
由l1⊥l2,得k1k2=ab(1-a)=-1.
由l1过(-3,-1),得-3a+b+4=0,
解之得a=2,b=2.
(2)∵l2的斜率存在,l1∥l2,∴l1的斜率存在,
∴k1=k2,即ab=1-a.
又原点到两直线的距离相等,且l1∥l2,
∴l1、l2在y轴上的截距互为相反数,即4b=b.
解之得a=2,b=-2或a=23,b=2.
∴a、b的值为2和-2或23和2.
变式迁移1解(1)方法一当a=1时,
l1:x+2y+6=0,
l2:x=0,l1与l2不平行;
当a=0时,l1:y=-3,l2:x-y-1=0,l1与l2不平行;
当a≠1且a≠0时,两直线可化为l1:y=-a2x-3,
l2:y=11-ax-(a+1),
l1∥l2-a2=11-a,-3≠-a+1,解得a=-1,
综上可知,a=-1时,l1∥l2,否则l1与l2不平行.
方法二由A1B2-A2B1=0,
得a(a-1)-1×2=0.
由A1C2-A2C1≠0,得a(a2-1)-1×6≠0,
∴l1∥l2aa-1-1×2=0aa2-1-1×6≠0a2-a-2=0,aa2-1≠6.
∴a=-1,故当a=-1时,l1∥l2,否则l1与l2不平行.
(2)方法一当a=1时,l1:x+2y+6=0,l2:x=0,l1与l2不垂直;
当a=0时,l1:y=-3,l2:x-y-1=0,l1与l2不垂直;
当a≠1且a≠0时,l1:y=-a2x-3,
l2:y=11-ax-(a+1),
由-a211-a=-1a=23.
方法二由A1A2+B1B2=0,
得a+2(a-1)=0a=23.
例2解题导引①转化思想的运用
三条直线l1、l2、l3不能构成三角形l1、l2、l3交于一点或至少有两条直线平行
三条直线交于一点l2与l3的交点在l1上l2与l3对应方程组的解适合l1的方程
②分类讨论思想的运用
本题依据直线的位置关系将不能构成三角形的情况分成两类,分类应注意按同一标准,不重不漏.
解当三条直线共点或至少有两条直线平行时,不能围成三角形.
①三条直线共点时,
由mx+y=0,2x+3my=4,得x=42-3m2y=-4m2-3m2(m2≠23),
即l2与l3的交点为42-3m2,-4m2-3m2,
代入l1的方程得4×42-3m2+7×-4m2-3m2-4=0,
解得m=13,或m=2.
②当l1∥l2时,4=7m,∴m=47;
当l1∥l3时,4×3m=7×2,∴m=76;
当l2∥l3时,3m2=2,即m=±63.
∴m取集合-63,13,63,47,76,2中的元素时,三条直线不能构成三角形.
变式迁移2解可以判断A不在所给的两条高所在的直线上,则可设AB,AC边上的高所在直线的方程分别为2x-3y+1=0,x+y=0,
则可求得AB,AC边所在直线的方程分别为
y-2=-32(x-1),y-2=x-1,
即3x+2y-7=0,x-y+1=0.
由3x+2y-7=0x+y=0,得B(7,-7),
由x-y+1=02x-3y+1=0,得C(-2,-1),
所以BC边所在直线的方程为2x+3y+7=0.
例3解题导引在应用平行线间的距离公式求两条平行线间的距离时,应注意公式的适用条件,即在两条平行线的方程中x与y的系数化为分别对应相等的条件下,才能应用该公式.
如本例中求两条直线2x-y+a=0与-4x+2y+1=0间的距离时,需将前一条直线化为-4x+2y-2a=0,或将后一条直线化为2x-y-12=0后,再应用平行线间的距离公式.
解(1)∵l1:4x-2y+2a=0(a0),l2:4x-2y-1=0,
∴两条平行线l1与l2间的距离为d=|2a+1|25,
由已知,可得|2a+1|25=7510.
又a0,可解得a=3.
(2)设点P的坐标为(x,y),
由条件①,可知x0,y0.
由条件②和③,
可得|2x-y+3|5=|4x-2y-1|455|2x-y+3|5=2|x+y-1|2,
化简得4|2x-y+3|=|4x-2y-1||2x-y+3|=|x+y-1|,
于是可得,4|x+y-1|=|4x-2y-1|,
也就是4(x+y-1)=4x-2y-1,或4(x+y-1)=-4x+2y+1,
解得y=12,或8x+2y-5=0.
当y=12时,代入方程|2x-y+3|=|x+y-1|,
解得x=-30或x=-230,均舍去.
由8x+2y-5=0|2x-y+3|=|x+y-1|,
化简得8x+2y-5=0x-2y+4=0,或8x+2y-5=03x=-2,
解得x=19y=3718或x=-230y=316(舍去).
即存在满足题设条件的点P,其坐标为19,3718.
变式迁移3解方法一若直线l的斜率不存在,则直线l的方程为x=3,此时与l1,l2的交点分别是A(3,-4),B(3,-9),截得的线段长|AB|=|-4+9|=5,符合题意.
当直线l的斜率存在时,则设直线l的方程为y=k(x-3)+1,分别与直线l1,l2的方程联立,
由y=kx-3+1,x+y+1=0,解得A3k-2k+1,1-4kk+1.
由y=kx-3+1,x+y+6=0,解得B3k-7k+1,1-9kk+1.
由两点间的距离公式,得
3k-2k+1-3k-7k+12+1-4kk+1-1-9kk+12=25,
解得k=0,即所求直线方程为y=1.
综上可知,直线l的方程为x=3或y=1.
方法二因为两平行线间的距离
d=|6-1|2=522,
如图,直线l被两平行线截得的线段长为5,
设直线l与两平行线的夹角为θ,
则sinθ=22,所以θ=45°.
因为两平行线的斜率是-1,
故所求直线的斜率不存在或为0.
又因为直线l过点P(3,1),
所以直线l的方程为x=3或y=1.
课后练习区
1.B2.C3.B4.C5.D
6.-17.3x-2y+5=08.①⑤
9.解由y=kx+3k-2x+4y-4=0,得x=12-12k4k+1y=7k-24k+1.(5分)
∵两直线的交点在第一象限,
∴12-12k4k+107k-24k+10,∴27k1.(11分)
即当27k1时,
两直线的交点在第一象限.(12分)
10.解设所求直线为l,由于l过点A且与点P1,P2距离相等,所以有两种情况,
(1)当P1,P2在l同侧时,有l∥P1P2,此时可求得l的方程为
y-2=5-3-4-2(x+1),即x+3y-5=0;(5分)
(2)当P1,P2在l异侧时,l必过P1P2的中点(-1,4),此时l的方程为x=-1.(10分)
∴所求直线的方程为x+3y-5=0或x=-1.
(12分)
11.解设点A(x,y)在l1上,
由题意知x+xB2=3,y+yB2=0,∴点B(6-x,-y),(6分)
解方程组2x-y-2=0,6-x+-y+3=0,
得x=113,y=163,∴k=163-0113-3=8.(12分)
∴所求的直线方程为y=8(x-3),即8x-y-24=0.(14分)
文章来源:http://m.jab88.com/j/56552.html
更多