古人云,工欲善其事,必先利其器。作为高中教师就要早早地准备好适合的教案课件。教案可以让学生能够在教学期间跟着互动起来,让高中教师能够快速的解决各种教学问题。那么一篇好的高中教案要怎么才能写好呢?以下是小编为大家收集的“高考数学(理科)一轮复习空间的垂直关系学案含答案”希望对您的工作和生活有所帮助。
学案44空间的垂直关系
导学目标:1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面垂直的有关性质与判定定理.2.能运用公理、定理和已获得的结论证明一些空间图形的垂直关系的简单命题.
自主梳理
1.直线与平面垂直
(1)判定直线和平面垂直的方法
①定义法.
②利用判定定理:一条直线和一个平面内的两条______直线都垂直,则该直线与此平面垂直.
③推论:如果在两条平行直线中,有一条垂直于一个平面,那么另一条直线也______这个平面.
(2)直线和平面垂直的性质
①直线垂直于平面,则垂直于平面内______直线.
②垂直于同一个平面的两条直线______.
③垂直于同一直线的两个平面________.
2.直线与平面所成的角
平面的一条斜线和它在平面内的________所成的锐角,叫做这条直线和这个平面所成的角.
一直线垂直于平面,说它们所成角为________;直线l∥α或lα,则它们成________角.
3.平面与平面垂直
(1)平面与平面垂直的判定方法
①定义法.
②利用判定定理:一个平面过另一个平面的__________,则这两个平面垂直.
(2)平面与平面垂直的性质
两个平面垂直,则一个平面内垂直于________的直线与另一个平面垂直.
4.二面角的平面角
以二面角棱上的任一点为端点,在两个半平面内分别作与棱________的射线,则两射线所成的角叫做二面角的平面角.
自我检测
1.平面α⊥平面β的一个充分条件是()
A.存在一条直线l,l⊥α,l⊥β
B.存在一个平面γ,γ∥α,γ∥β
C.存在一个平面γ,γ⊥α,γ⊥β
D.存在一条直线l,l⊥α,l∥β
2.(2010浙江)设l,m是两条不同的直线,α是一个平面,则下列命题正确的是()
A.若l⊥m,mα,则l⊥α
B.若l⊥α,l∥m,则m⊥α
C.若l∥α,mα,则l∥m
D.若l∥α,m∥α,则l∥m
3.(2011长沙模拟)对于不重合的两个平面α与β,给定下列条件:
①存在平面γ,使得α,β都垂直于γ;
②存在平面γ,使得α,β都平行于γ;
③存在直线lα,直线mβ,使得l∥m;
④存在异面直线l、m,使得l∥α,l∥β,m∥α,m∥β.
其中,可以判定α与β平行的条件有()
A.1个B.2个
C.3个D.4个
4.(2011十堰月考)已知m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的是()
A.若m∥α,n∥α,则m∥n
B.若α⊥γ,β⊥γ,则α∥β
C.若m∥α,m∥β,则α∥β
D.若m⊥α,n⊥α,则m∥n
5.(2011大纲全国)已知点E、F分别在正方体ABCD-A1B1C1D1的棱BB1、CC1上,且B1E=2EB,CF=2FC1,则面AEF与面ABC所成的二面角的正切值为________.
探究点一线面垂直的判定与性质
例1Rt△ABC所在平面外一点S,且SA=SB=SC,D为斜边AC的中点.
(1)求证:SD⊥平面ABC;
(2)若AB=BC.求证:BD⊥平面SAC.
变式迁移1
在四棱锥V—ABCD中,底面ABCD是正方形,侧面VAD是正三角形,平面VAD⊥底面ABCD.证明:AB⊥VD.
探究点二面面垂直的判定与性质
例2(2011邯郸月考)如图所示,已知四棱柱ABCD—A1B1C1D1的底面为正方形,O1、O分别为上、下底面的中心,且A1在底面ABCD内的射影是O.求证:平面O1DC⊥平面ABCD.
变式迁移2(2011江苏)如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E,F分别是AP,AD的中点.
求证:(1)直线EF∥平面PCD;
(2)平面BEF⊥平面PAD.
探究点三直线与平面,平面与平面所成的角
例3(2009湖北)如图,四棱锥S—ABCD的底面是正方形,SD⊥平面ABCD,SD=2a,AD=2a,点E是SD上的点,且DE=λa(0λ≤2).
(1)求证:对任意的λ∈(0,2],都有AC⊥BE;
(2)设二面角C—AE—D的大小为θ,直线BE与平面ABCD所成的角为φ,若tanθtanφ=1,求λ的值.
变式迁移3(2009北京)如图,在三棱锥P—ABC中,PA⊥底面ABC,PA=AB,∠ABC=60°,∠BCA=90°,点D、E分别在棱PB、PC上,且DE∥BC.
(1)求证:BC⊥平面PAC.
(2)当D为PB的中点时,求AD与平面PAC所成角的正弦值.
(3)是否存在点E使得二面角A—DE—P为直二面角?并说明理由.
转化与化归思想综合应用
例(12分)已知四棱锥P—ABCD,底面ABCD是∠A=60°的
菱形,又PD⊥底面ABCD,点M、N分别是棱AD、PC的中点.
(1)证明:DN∥平面PMB;
(2)证明:平面PMB⊥平面PAD.
多角度审题(1)在平面PMB内找到(或构造)一条直线与DN平行即可;(2)要证面PMB⊥面PAD,只需证明MB⊥面PAD即可.
【答题模板】
证明(1)
取PB中点Q,连接MQ、NQ,因为M、N分别是棱AD、PC的中点,所以QN∥BC∥MD,且QN=MD,故四边形QNDM是平行四边形,
于是DN∥MQ.
又∵MQ平面PMB,DN平面PMB
∴DN∥平面PMB.[6分]
(2)∵PD⊥平面ABCD,MB平面ABCD,∴PD⊥MB.
又因为底面ABCD是∠A=60°的菱形,且M为AD中点,
所以MB⊥AD.又AD∩PD=D,所以MB⊥平面PAD.
又∵MB平面PMB,∴平面PMB⊥平面PAD.[12分]
【突破思维障碍】
立体几何的证明问题充分体现线面关系的转化思想,其思路为:
1.证明线面垂直的方法:(1)线面垂直的定义:a与α内任何直线都垂直a⊥α;(2)判定定理1:m、nα,m∩n=Al⊥m,l⊥nl⊥α;(3)判定定理2:a∥b,a⊥αb⊥α;(4)面面平行的性质:α∥β,a⊥αa⊥β;(5)面面垂直的性质:α⊥β,α∩β=l,aα,a⊥la⊥β.
2.证明线线垂直的方法:(1)定义:两条直线的夹角为90°;(2)平面几何中证明线线垂直的方法;(3)线面垂直的性质:a⊥α,bαa⊥b;(4)线面垂直的性质:a⊥α,b∥αa⊥b.
3.证明面面垂直的方法:(1)利用定义:两个平面相交,所成的二面角是直二面角;(2)判定定理:aα,a⊥βα⊥β.
(满分:75分)
一、选择题(每小题5分,共25分)
1.(2011滨州月考)已知直线a,b和平面α,β,且a⊥α,b⊥β,那么α⊥β是a⊥b的()
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件
2.已知两个不同的平面α、β和两条不重合的直线m、n,有下列四个命题:
①若m∥n,m⊥α,则n⊥α;②若m⊥α,m⊥β,则α∥β;③若m⊥α,m∥n,nβ,则α⊥β;④若m∥α,α∩β=n,则m∥n.
其中正确命题的个数是()
A.0B.1C.2D.3
3.设α,β,γ是三个不重合的平面,l是直线,给出下列四个命题:
①若α⊥β,l⊥β,则l∥α;②若l⊥α,l∥β,则α⊥β;
③若l上有两点到α的距离相等,则l∥α;④若α⊥β,α∥γ,则γ⊥β.
其中正确命题的序号是()
A.①②B.①④C.②④D.③④
4.(2011浙江)下列命题中错误的是()
A.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面β
B.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β
C.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γ
D.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β
5.平面α的斜线AB交α于点B,过定点A的动直线l与AB垂直,且交α于点C,则动点C的轨迹是()
A.一条直线B.一个圆
C.一个椭圆D.双曲线的一支
二、填空题(每小题4分,共12分)
6.如图所示,四棱锥P—ABCD的底面ABCD是边长为a的正方形,侧棱PA=a,PB=PD=2a,则它的5个面中,互相垂直的面有________对.
7.(2011金华模拟)如图所示,正方体ABCD—A1B1C1D1的棱长是1,过A点作平面A1BD的垂线,
垂足为点H,有下列三个命题:
①点H是△A1BD的中心;
②AH垂直于平面CB1D1;③AC1与B1C所成的角是90°.其中正确命题的序号是____________.
8.正四棱锥S-ABCD底面边长为2,高为2,E是边BC的中点,动点P在表面上运动,并且总保持PE⊥AC,则动点P的轨迹的周长为________.
三、解答题(共38分)
9.(12分)(2010山东)在如图所示的
几何体中,四边形ABCD是正方形,MA⊥平面ABCD,PD∥MA,E、G、F分别为MB、PB、PC的中点,且AD=PD=2MA.
(1)求证:平面EFG⊥平面PDC;
(2)求三棱锥P-MAB与四棱锥P-ABCD的体积之比.
10.(12分)(2009天津)如图,
在四棱锥P—ABCD中,PD⊥平面ABCD,AD⊥CD,DB平分∠ADC,E为PC的中点,AD=CD=1,DB=22.
(1)证明:PA∥平面BDE;
(2)证明:AC⊥平面PBD;
(3)求直线BC与平面PBD所成的角的正切值.
11.(14分)(2011杭州调研)如图所示,已知正方体ABCD-A1B1C1D1中,E为AB的中点.
(1)求直线B1C与DE所成角的余弦值;
(2)求证:平面EB1D⊥平面B1CD;
(3)求二面角E-B1C-D的余弦值.
学案44空间的垂直关系
自主梳理
1.(1)②相交③垂直(2)①任意②平行③平行
2.射影直角0°3.(1)②一条垂线(2)交线4.垂直
自我检测
1.D2.B3.B4.D5.23
课堂活动区
例1解题导引线面垂直的判断方法是:证明直线垂直平面内的两条相交直线.即从“线线垂直”到“线面垂直”.
证明
(1)取AB中点E,连接SE,DE,在Rt△ABC中,D、E分别为AC、AB的中点,
故DE∥BC,且DE⊥AB,
∵SA=SB,
∴△SAB为等腰三角形,∴SE⊥AB.
∵SE⊥AB,DE⊥AB,SE∩DE=E,
∴AB⊥面SDE.而SD面SDE,∴AB⊥SD.
在△SAC中,SA=SC,D为AC的中点,∴SD⊥AC.
∵SD⊥AC,SD⊥AB,AC∩AB=A,
∴SD⊥平面ABC.
(2)若AB=BC,则BD⊥AC,
由(1)可知,SD⊥面ABC,而BD面ABC,
∴SD⊥BD.
∵SD⊥BD,BD⊥AC,SD∩AC=D,
∴BD⊥平面SAC.
变式迁移1证明∵平面VAD⊥平面ABCD,
AB⊥AD,AB平面ABCD,
AD=平面VAD∩平面ABCD,
∴AB⊥平面VAD.
∵VD平面VAD,∴AB⊥VD.
例2解题导引证明面面垂直,可先证线面垂直,即设法先找到其中一个平面的一条垂线,再证明这条垂线在另一个平面内或与另一个平面内的一条直线平行.
证明如图所示,连接AC,BD,A1C1,则O为AC,BD的交点,O1为A1C1,B1D1的交点.
由棱柱的性质知:
A1O1∥OC,且A1O1=OC,
∴四边形A1OCO1为平行四边形,
∴A1O∥O1C,
又A1O⊥平面ABCD,∴O1C⊥平面ABCD,
又O1C平面O1DC,
∴平面O1DC⊥平面ABCD.
变式迁移2
证明(1)如图,在△PAD中,因为E,F分别为AP,AD的中点,所以EF∥PD.又因为EF平面PCD,PD平面PCD,
所以直线EF∥平面PCD.
(2)连接BD.因为AB=AD,∠BAD=60°,所以△ABD为正三角形.
因为F是AD的中点,所以BF⊥AD.
因为平面PAD⊥平面ABCD,BF平面ABCD,
平面PAD∩平面ABCD=AD,所以BF⊥平面PAD.
又因为BF平面BEF,所以平面BEF⊥平面PAD.
例3解题导引高考中对直线与平面所成的角及二面角的考查是热点之一.有时在客观题中考查,更多的是在解答题中考查.
求这两种空间角的步骤:(几何法).
根据线面角的定义或二面角的平面角的定义,作(找)出该角,再解三角形求出该角,步骤是作(找)→认(指)→求.
(1)证明如图所示,连接BD,由底面ABCD是正方形可得AC⊥BD.
∵SD⊥平面ABCD,∴BD是BE在平面ABCD上的射影,∴AC⊥BE.
(2)解如图所示,由SD⊥平面ABCD,CD平面ABCD,
∴SD⊥CD.
又底面ABCD是正方形,
∴CD⊥AD.又SD∩AD=D,
∴CD⊥平面SAD.
过点D在平面SAD内作DF⊥AE于F,连接CF,则CF⊥AE,故∠CFD是二面角C—AE—D的平面角,即∠CFD=θ.
在Rt△BDE中,∵BD=2a,DE=λa,
∴tanφ=DEBD=λ2.
在Rt△ADE中,∵AD=2a=CD,DE=λa,
∴AE=aλ2+2,
从而DF=ADDEAE=2λaλ2+2.
在Rt△CDF中,tanθ=CDDF=λ2+2λ,
由tanθtanφ=1,得
λ2+2λλ2=1λ2+2=2λ2=2.
由λ∈(0,2],解得λ=2,即为所求.
变式迁移3(1)证明∵PA⊥底面ABC,∴PA⊥BC.
又∠BCA=90°,∴AC⊥BC.又AC∩PA=A,
∴BC⊥平面PAC.
(2)解∵D为PB的中点,DE∥BC,∴DE=12BC.
又由(1)知,BC⊥平面PAC,
∴DE⊥平面PAC,垂足为点E.
∴∠DAE是AD与平面PAC所成的角.
∵PA⊥底面ABC,∴PA⊥AB.
又PA=AB,∴△ABP为等腰直角三角形.
∴AD=22AB.
在Rt△ABC中,∠ABC=60°,∴BC=12AB.
∴在Rt△ADE中,sin∠DAE=DEAD=BC2AD=24.
∴AD与平面PAC所成的角的正弦值为24.
(3)解∵DE∥BC,又由(1)知,BC⊥平面PAC,
∴DE⊥平面PAC.
又∵AE平面PAC,PE平面PAC,
∴DE⊥AE,DE⊥PE.
∴∠AEP为二面角A—DE—P的平面角.
∵PA⊥底面ABC,∴PA⊥AC,∴∠PAC=90°.
∴在棱PC上存在一点E,使得AE⊥PC.
这时,∠AEP=90°,
故存在点E使得二面角A—DE—P是直二面角.
课后练习区
1.C2.D3.C
4.D[两个平面α,β垂直时,设交线为l,则在平面α内与l平行的直线都平行于平面β,故A正确;如果平面α内存在直线垂直于平面β,那么由面面垂直的判定定理知α⊥β,故B正确;两个平面都与第三个平面垂直时,易证交线与第三个平面垂直,故C正确;两个平面α,β垂直时,平面α内与交线平行的直线与β平行,故D错误.]
5.A
6.5
解析面PAB⊥面PAD,
面PAB⊥面ABCD,面PAB⊥面PBC,
面PAD⊥面ABCD,面PAD⊥面PCD.
7.①②③
解析由于ABCD—A1B1C1D1是正方体,所以A—A1BD是一个正三棱锥,因此A点在平面A1BD上的射影H是三角形A1BD的中心,故①正确;又因为平面CB1D1与平面A1BD平行,所以AH⊥平面CB1D1,故②正确;从而可得AC1⊥平面CB1D1,即AC1与B1C垂直,所成的角等于90°.
8.6+2
解析如图取CD的中点F,SC的中点G,连接EF,GF,GE.
则AC⊥平面GEF,故动点P的轨迹是△EFG的三边.
又EF=12DB=2,
GE=GF=12SB=62,
∴EF+FG+GE=6+2.
9.(1)证明因为MA⊥平面ABCD,
PD∥MA,所以PD⊥平面ABCD.
又BC平面ABCD,所以PD⊥BC.(2分)
因为四边形ABCD为正方形,
所以BC⊥DC.
又PD∩DC=D,所以BC⊥平面PDC.(4分)
在△PBC中,因为G、F分别为PB、PC的中点,
所以GF∥BC,所以GF⊥平面PDC.又GF平面EFG,
所以平面EFG⊥平面PDC.(6分)
(2)解因为PD⊥平面ABCD,四边形ABCD为正方形,不妨设MA=1,
则PD=AD=2,
所以VP-ABCD=13S正方形ABCDPD=83.(8分)
由题意可知,DA⊥平面MAB,且PD∥MA,
所以DA即为点P到平面MAB的距离,
所以VP-MAB=13×12×1×2×2=23.(10分)
所以VP-MAB∶VP-ABCD=1∶4.(12分)
10.(1)证明
设AC∩BD=H,连接EH.在△ADC中,因为AD=CD,且DB平分∠ADC,所以H为AC的中点,又由题设,知E为PC的中点,故EH∥PA.又EH平面BDE,且PA平面BDE,
所以PA∥平面BDE.(4分)
(2)证明因为PD⊥平面ABCD,AC平面ABCD,所以PD⊥AC.由(Ⅰ)可得,DB⊥AC.又PD∩DB=D,
故AC⊥平面PBD.(8分)
(3)解由AC⊥平面PBD可知,BH为BC在平面PBD内的射影,所以∠CBH为直线BC与平面PBD所成的角.
由AD⊥CD,AD=CD=1,DB=22,可得DH=CH=22,BH=322.
在Rt△BHC中,tan∠CBH=CHBH=13.
所以直线BC与平面PBD所成的角的正切值为13.
(12分)
11.(1)解连接A1D,则由A1D∥B1C知,B1C与DE所成角即为A1D与DE所成角.(2分)
连接A1E,可设正方体ABCD-A1B1C1D1的棱长为a,
则A1D=2a,
A1E=DE=52a,
∴cos∠A1DE=
A1D2+DE2-A1E22A1DDE=105.
∴直线B1C与DE所成角的余弦值是105.(6分)
(2)证明取B1C的中点F,B1D的中点G,
连接BF,EG,GF.∵CD⊥平面BCC1B1,
且BF平面BCC1B1,∴CD⊥BF.
又∵BF⊥B1C,CD∩B1C=C,
∴BF⊥平面B1CD.(8分)
又∵GF綊12CD,BE綊12CD,
∴GF綊BE,∴四边形BFGE是平行四边形,
∴BF∥GE,∴GE⊥平面B1CD.
∵GE平面EB1D,
∴平面EB1D⊥B1CD.(10分)
(3)解连接EF.
∵CD⊥B1C,GF∥CD,∴GF⊥B1C.
又∵GE⊥平面B1CD,∴GE⊥B1C.
又∵GE∩GF=G,∴B1C⊥平面GEF,∴EF⊥B1C,
∴∠EFG是二面角E-B1C-D的平面角.(12分)
设正方体的棱长为a,则在△EFG中,
GF=12a,EF=32a,GE⊥GF,∴cos∠EFG=GFEF=33,
∴二面角E-B1C-D的余弦值为33.(14分)
经验告诉我们,成功是留给有准备的人。作为高中教师准备好教案是必不可少的一步。教案可以让上课时的教学氛围非常活跃,有效的提高课堂的教学效率。你知道怎么写具体的高中教案内容吗?小编经过搜集和处理,为您提供高考数学(理科)一轮复习直线、圆的位置关系学案有答案,相信能对大家有所帮助。
学案50直线、圆的位置关系
导学目标:1.能根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系.2.能用直线和圆的方程解决一些简单的问题.3.在学习过程中,体会用代数方法处理几何问题的思想.
自主梳理
1.直线与圆的位置关系
位置关系有三种:________、________、________.
判断直线与圆的位置关系常见的有两种方法:
(1)代数法:利用判别式Δ,即直线方程与圆的方程联立方程组消去x或y整理成一元二次方程后,计算判别式Δ
(2)几何法:利用圆心到直线的距离d和圆半径r的大小关系:
dr________,d=r________,dr________.
2.圆的切线方程
若圆的方程为x2+y2=r2,点P(x0,y0)在圆上,则过P点且与圆x2+y2=r2相切的切线方程为____________________________.
注:点P必须在圆x2+y2=r2上.
经过圆(x-a)2+(y-b)2=r2上点P(x0,y0)的切线方程为________________________.
3.计算直线被圆截得的弦长的常用方法
(1)几何方法
运用弦心距(即圆心到直线的距离)、弦长的一半及半径构成直角三角形计算.
(2)代数方法
运用韦达定理及弦长公式
|AB|=1+k2|xA-xB|
=1+k2[xA+xB2-4xAxB].
说明:圆的弦长、弦心距的计算常用几何方法.
4.圆与圆的位置关系
(1)圆与圆的位置关系可分为五种:________、________、________、________、________.
判断圆与圆的位置关系常用方法:
(几何法)设两圆圆心分别为O1、O2,半径为r1、r2(r1≠r2),则|O1O2|r1+r2________;|O1O2|=r1+r2______;|r1-r2||O1O2|r1+r2________;|O1O2|=|r1-r2|________;0≤|O1O2||r1-r2|??________.
(2)已知两圆x2+y2+D1x+E1y+F1=0和x2+y2+D2x+E2y+F2=0相交,则与两圆共交点的圆系方程为________________________________________________________________,其中λ为λ≠-1的任意常数,因此圆系不包括第二个圆.
当λ=-1时,为两圆公共弦所在的直线,方程为(D1-D2)x+(E1-E2)y+(F1-F2)=0.
自我检测
1.(2010江西)直线y=kx+3与圆(x-3)2+(y-2)2=4相交于M,N两点,若|MN|≥23,则k的取值范围是()
A.-34,0
B.-∞,-34∪0,+∞
C.-33,33
D.-23,0
2.圆x2+y2-4x=0在点P(1,3)处的切线方程为()
A.x+3y-2=0B.x+3y-4=0
C.x-3y+4=0D.x-3y+2=0
3.(2011宁夏调研)圆C1:x2+y2+2x+2y-2=0与圆C2:x2+y2-4x-2y+1=0的公切线有且仅有()
A.1条B.2条
C.3条D.4条
4.过点(0,1)的直线与x2+y2=4相交于A、B两点,则|AB|的最小值为()
A.2B.23C.3D.25
5.(2011聊城月考)直线y=x+1与圆x2+y2=1的位置关系是()
A.相切B.相交但直线不过圆心
C.直线过圆心D.相离
探究点一直线与圆的位置关系
例1已知圆C:x2+y2+2x-4y+3=0.
(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程;
(2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使得|PM|取得最小值时点P的坐标.
变式迁移1从圆C:(x-1)2+(y-1)2=1外一点P(2,3)向该圆引切线,求切线的方程及过两切点的直线方程.
探究点二圆的弦长、中点弦问题
例2(2011汉沽模拟)已知点P(0,5)及圆C:x2+y2+4x-12y+24=0.
(1)若直线l过点P且被圆C截得的线段长为43,求l的方程;
(2)求过P点的圆C的弦的中点的轨迹方程.
变式迁移2已知圆C:x2+y2-6x-8y+21=0和直线kx-y-4k+3=0.
(1)证明:不论k取何值,直线和圆总有两个不同交点;
(2)求当k取什么值时,直线被圆截得的弦最短,并求这条最短弦的长.
探究点三圆与圆的位置关系
例3已知圆C1:x2+y2-2mx+4y+m2-5=0,圆C2:x2+y2+2x-2my+m2-3=0,m为何值时,
(1)圆C1与圆C2相外切;(2)圆C1与圆C2内含.
变式迁移3已知⊙A:x2+y2+2x+2y-2=0,⊙B:x2+y2-2ax-2by+a2-1=0.当a,b变化时,若⊙B始终平分⊙A的周长,求:
(1)⊙B的圆心B的轨迹方程;
(2)⊙B的半径最小时圆的方程.
探究点四综合应用
例4已知圆C:x2+y2-2x+4y-4=0.问在圆C上是否存在两点A、B关于直线y=kx-1对称,且以AB为直径的圆经过原点?若存在,写出直线AB的方程;若不存在,说明理由.
变式迁移4已知过点A(0,1)且斜率为k的直线l与圆C:(x-2)2+(y-3)2=1相交于M、N两点.
(1)求实数k的取值范围;
(2)若O为坐标原点,且OM→ON→=12,求k的值.
1.求切线方程时,若知道切点,可直接利用公式;若过圆外一点求切线,一般运用圆心到直线的距离等于半径来求,但注意有两条.
2.解决与弦长有关的问题时,注意运用由半径、弦心距、弦长的一半构成的直角三角形,也可以运用弦长公式.这就是通常所说的“几何法”和“代数法”.
3.判断两圆的位置关系,从圆心距和两圆半径的关系入手.
(满分:75分)
一、选择题(每小题5分,共25分)
1.直线l:y-1=k(x-1)和圆x2+y2-2y=0的位置关系是()
A.相离B.相切或相交
C.相交D.相切
2.(2011珠海模拟)直线3x-y+m=0与圆x2+y2-2x-2=0相切,则实数m等于()
A.3或-3B.-3或33
C.-33或3D.-33或33
3.过原点且倾斜角为60°的直线被圆x2+y2-4y=0所截得的弦长为()
A.3B.2
C.6D.23
4.若圆(x-3)2+(y+5)2=r2上有且仅有两个点到直线4x-3y-2=0的距离为1,则半径r的取值范围是()
A.(4,6)B.[4,6)
C.(4,6]D.[4,6]
5.(2010全国Ⅰ)已知圆O的半径为1,PA、PB为该圆的两条切线,A、B为两切点,那么PA→PB→的最小值为()
A.-4+2B.-3+2
C.-4+22D.-3+22
二、填空题(每小题4分,共12分)
6.若圆x2+y2=4与圆x2+y2+2ay-6=0(a0)的公共弦的长为23,则a=________.
7.(2011三明模拟)已知点A是圆C:x2+y2+ax+4y-5=0上任意一点,A点关于直线x+2y-1=0的对称点也在圆C上,则实数a=________.
8.(2011杭州高三调研)设直线3x+4y-5=0与圆C1:x2+y2=4交于A,B两点,若圆C2的圆心在线段AB上,且圆C2与圆C1相切,切点在圆C1的劣弧上,则圆C2的半径的最大值是________.
三、解答题(共38分)
9.(12分)圆x2+y2=8内一点P(-1,2),过点P的直线l的倾斜角为α,直线l交圆于A、B两点.
(1)当α=3π4时,求AB的长;
(2)当弦AB被点P平分时,求直线l的方程.
10.(12分)(2011湛江模拟)自点A(-3,3)发出的光线l射到x轴上,被x轴反射,其反射光线所在直线与圆x2+y2-4x-4y+7=0相切,求光线l所在直线的方程.
11.(14分)已知两圆x2+y2-2x-6y-1=0和x2+y2-10x-12y+m=0.求:
(1)m取何值时两圆外切?
(2)m取何值时两圆内切?
(3)m=45时两圆的公共弦所在直线的方程和公共弦的长.
学案50直线、圆的位置关系
自主梳理
1.相切相交相离(1)相交相切相离(2)相交相切相离2.x0x+y0y=r2(x0-a)(x-a)+(y0-b)(y-b)=r24.(1)相离外切相交内切内含相离外切相交内切内含(2)(x2+y2+D1x+E1y+F1)+λ(x2+y2+D2x+E2y+F2)=0
自我检测
1.A2.D3.B4.B5.B
课堂活动区
例1解题导引(1)过点P作圆的切线有三种类型:
当P在圆外时,有2条切线;
当P在圆上时,有1条切线;
当P在圆内时,不存在.
(2)利用待定系数法设圆的切线方程时,一定要注意直线方程的存在性,有时要进行恰当分类.
(3)切线长的求法:
过圆C外一点P作圆C的切线,切点为M,半径为R,
则|PM|=|PC|2-R2.
解(1)将圆C配方得(x+1)2+(y-2)2=2.
①当直线在两坐标轴上的截距为零时,设直线方程为y=kx,
由|k+2|1+k2=2,解得k=2±6,得y=(2±6)x.
②当直线在两坐标轴上的截距不为零时,
设直线方程为x+y-a=0,
由|-1+2-a|2=2,
得|a-1|=2,即a=-1,或a=3.
∴直线方程为x+y+1=0,或x+y-3=0.
综上,圆的切线方程为y=(2+6)x,或y=(2-6)x,
或x+y+1=0,或x+y-3=0.
(2)由|PO|=|PM|,
得x21+y21=(x1+1)2+(y1-2)2-2,
整理得2x1-4y1+3=0.
即点P在直线l:2x-4y+3=0上.
当|PM|取最小值时,即OP取得最小值,直线OP⊥l,
∴直线OP的方程为2x+y=0.
解方程组2x+y=0,2x-4y+3=0,得点P的坐标为-310,35.
变式迁移1解设圆切线方程为y-3=k(x-2),
即kx-y+3-2k=0,∴1=|k+2-2k|k2+1,
∴k=34,另一条斜率不存在,方程为x=2.
∴切线方程为x=2和3x-4y+6=0.
圆心C为(1,1),∴kPC=3-12-1=2,
∴过两切点的直线斜率为-12,又x=2与圆交于(2,1),
∴过切点的直线为x+2y-4=0.
例2解题导引(1)有关圆的弦长的求法:
已知直线的斜率为k,直线与圆C相交于A(x1,y1),B(x2,y2)两点,点C到l的距离为d,圆的半径为r.
方法一代数法:弦长|AB|=1+k2|x2-x1|
=1+k2x1+x22-4x1x2;
方法二几何法:弦长|AB|=2r2-d2.
(2)有关弦的中点问题:
圆心与弦的中点连线和已知直线垂直,利用这条性质可确定某些等量关系.
解(1)方法一
如图所示,|AB|=43,取AB的中点D,连接CD,则CD⊥AB,连接AC、BC,
则|AD|=23,|AC|=4,
在Rt△ACD中,可得|CD|=2.
当直线l的斜率存在时,设所求直线的斜率为k,则直线的方程为y-5=kx,即kx-y+5=0.
由点C到直线AB的距离公式,得|-2k-6+5|k2+-12=2,
解得k=34.
当k=34时,直线l的方程为3x-4y+20=0.
又直线l的斜率不存在时,也满足题意,此时方程为x=0.
∴所求直线的方程为3x-4y+20=0或x=0.
方法二当直线l的斜率存在时,
设所求直线的斜率为k,
则直线的方程为y-5=kx,即y=kx+5.
联立直线与圆的方程y=kx+5,x2+y2+4x-12y+24=0,
消去y,得(1+k2)x2+(4-2k)x-11=0.①
设方程①的两根为x1,x2,
由根与系数的关系,得x1+x2=2k-41+k2,x1x2=-111+k2.②
由弦长公式,得1+k2|x1-x2|
=1+k2[x1+x22-4x1x2]=43.
将②式代入,解得k=34,
此时直线方程为3x-4y+20=0.
又k不存在时也满足题意,此时直线方程为x=0.
∴所求直线的方程为x=0或3x-4y+20=0.
(2)设过P点的圆C的弦的中点为D(x,y),
则CD⊥PD,即CD→PD→=0,
(x+2,y-6)(x,y-5)=0,
化简得所求轨迹方程为x2+y2+2x-11y+30=0.
变式迁移2(1)证明由kx-y-4k+3=0,
得(x-4)k-y+3=0.
∴直线kx-y-4k+3=0过定点P(4,3).
由x2+y2-6x-8y+21=0,
即(x-3)2+(y-4)2=4,
又(4-3)2+(3-4)2=24.
∴直线和圆总有两个不同的交点.
(2)解kPC=3-44-3=-1.
可以证明与PC垂直的直线被圆所截得的弦AB最短,因此过P点斜率为1的直线即为所求,其方程为y-3=x-4,即x-y-1=0.|PC|=|3-4-1|2=2,
∴|AB|=2|AC|2-|PC|2=22.
例3解题导引圆和圆的位置关系,从交点个数也就是方程组解的个数来判断,有时得不到确切的结论,通常还是从圆心距d与两圆半径和、差的关系入手.
解对于圆C1与圆C2的方程,经配方后
C1:(x-m)2+(y+2)2=9;
C2:(x+1)2+(y-m)2=4.
(1)如果C1与C2外切,
则有m+12+-2-m2=3+2.
(m+1)2+(m+2)2=25.
m2+3m-10=0,解得m=-5或m=2.
(2)如果C1与C2内含,
则有m+12+m+223-2.
(m+1)2+(m+2)21,m2+3m+20,
得-2m-1,
∴当m=-5或m=2时,圆C1与圆C2外切;
当-2m-1时,圆C1与圆C2内含.
变式迁移3解(1)两圆方程相减得公共弦方程
2(a+1)x+2(b+1)y-a2-1=0.①
依题意,公共弦应为⊙A的直径,
将(-1,-1)代入①得a2+2a+2b+5=0.②
设圆B的圆心为(x,y),∵x=ay=b,
∴其轨迹方程为x2+2x+2y+5=0.
(2)⊙B方程可化为(x-a)2+(y-b)2=1+b2.
由②得b=-12[(a+1)2+4]≤-2,
∴b2≥4,b2+1≥5.当a=-1,b=-2时,⊙B半径最小,
∴⊙B方程为(x+1)2+(y+2)2=5.
例4解题导引这是一道探索存在性问题,应先假设存在圆上两点关于直线对称,由垂径定理可知圆心应在直线上,以AB为直径的圆经过原点O,应联想直径所对的圆周角为直角利用斜率或向量来解决.因此能否将问题合理地转换是解题的关键.
解圆C的方程可化为(x-1)2+(y+2)2=9,
圆心为C(1,-2).
假设在圆C上存在两点A、B,则圆心C(1,-2)在直线y=kx-1上,即k=-1.
于是可知,kAB=1.
设lAB:y=x+b,代入圆C的方程,
整理得2x2+2(b+1)x+b2+4b-4=0,
Δ=4(b+1)2-8(b2+4b-4)0,b2+6b-90,
解得-3-32b-3+32.
设A(x1,y1),B(x2,y2),
则x1+x2=-b-1,x1x2=12b2+2b-2.
由OA⊥OB,知x1x2+y1y2=0,
也就是x1x2+(x1+b)(x2+b)=0,
∴2x1x2+b(x1+x2)+b2=0,
∴b2+4b-4-b2-b+b2=0,化简得b2+3b-4=0,
解得b=-4或b=1,均满足Δ0.
即直线AB的方程为x-y-4=0,或x-y+1=0.
变式迁移4解(1)方法一∵直线l过点A(0,1)且斜率为k,
∴直线l的方程为y=kx+1.
将其代入圆C:(x-2)2+(y-3)2=1,
得(1+k2)x2-4(1+k)x+7=0.①
由题意:Δ=[-4(1+k)]2-4×(1+k2)×70,
得4-73k4+73.
方法二同方法一得直线方程为y=kx+1,
即kx-y+1=0.
又圆心到直线距离d=|2k-3+1|k2+1=|2k-2|k2+1,
∴d=|2k-2|k2+11,解得4-73k4+73.
(2)设M(x1,y1),N(x2,y2),则由①得x1+x2=4+4k1+k2x1x2=71+k2,
∴OM→ON→=x1x2+y1y2=(1+k2)x1x2+k(x1+x2)+1
=4k1+k1+k2+8=12k=1(经检验符合题意),∴k=1.
课后练习区
1.C2.C3.D4.A5.D
6.17.-108.1
9.解(1)当α=3π4时,kAB=-1,
直线AB的方程为y-2=-(x+1),即x+y-1=0.(3分)
故圆心(0,0)到AB的距离d=|0+0-1|2=22,
从而弦长|AB|=28-12=30.(6分)
(2)设A(x1,y1),B(x2,y2),
则x1+x2=-2,y1+y2=4.由x21+y21=8,x22+y22=8,
两式相减得(x1+x2)(x1-x2)+(y1+y2)(y1-y2)=0,
即-2(x1-x2)+4(y1-y2)=0,
∴kAB=y1-y2x1-x2=12.(10分)
∴直线l的方程为y-2=12(x+1),
即x-2y+5=0.(12分)
10.
解已知圆C:x2+y2-4x-4y+7=0关于x轴对称的圆为C1:(x-2)2+(y+2)2=1,其圆心C1的坐标为(2,-2),半径为1,由光的反射定律知,入射光线所在直线方程与圆C1相切.(4分)
设l的方程为y-3=k(x+3),则
|5k+2+3|12+k2=1,(8分)
即12k2+25k+12=0.∴k1=-43,k2=-34.
则l的方程为4x+3y+3=0或3x+4y-3=0.
(12分)
11.解两圆的标准方程分别为
(x-1)2+(y-3)2=11,(x-5)2+(y-6)2=61-m,
圆心分别为M(1,3),N(5,6),
半径分别为11和61-m.
(1)当两圆外切时,5-12+6-32=11+61-m.
解得m=25+1011.(4分)
(2)当两圆内切时,因定圆的半径11小于两圆圆心间距离,故只有61-m-11=5.
解得m=25-1011.(8分)
(3)两圆的公共弦所在直线的方程为
(x2+y2-2x-6y-1)-(x2+y2-10x-12y+45)=0,
即4x+3y-23=0.(12分)
由圆的半径、弦长、弦心距间的关系,不难求得公共弦的长为
2×112-|4+3×3-23|42+322=27.(14分)
学案48直线与直线的位置关系
导学目标:1.能根据两条直线的斜率判定这两条直线平行或垂直.2.能用解方程组的方法求两条相交直线的交点坐标.3.掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.
自主梳理
1.两直线的位置关系
平面上两条直线的位置关系包括平行、相交、重合三种情况.
(1)两直线平行
对于直线l1:y=k1x+b1,l2:y=k2x+b2,
l1∥l2________________________.
对于直线l1:A1x+B1y+C1=0,
l2:A2x+B2y+C2=0(A2B2C2≠0),
l1∥l2________________________.
(2)两直线垂直
对于直线l1:y=k1x+b1,l2:y=k2x+b2,
l1⊥l2k1k2=____.
对于直线l1:A1x+B1y+C1=0,
l2:A2x+B2y+C2=0,
l1⊥l2A1A2+B1B2=____.
2.两条直线的交点
两条直线l1:A1x+B1y+C1=0,
l2:A2x+B2y+C2=0,
如果两直线相交,则交点的坐标一定是这两个方程组成的方程组的____;反之,如果这个方程组只有一个公共解,那么以这个解为坐标的点必是l1和l2的________,因此,l1、l2是否有交点,就看l1、l2构成的方程组是否有________.
3.有关距离
(1)两点间的距离
平面上两点P1(x1,y1),P2(x2,y2)间的距离|P1P2|=__________________________________.
(2)点到直线的距离
平面上一点P(x0,y0)到一条直线l:Ax+By+C=0的距离d=________________________.
(3)两平行线间的距离
已知l1、l2是平行线,求l1、l2间距离的方法:
①求一条直线上一点到另一条直线的距离;
②设l1:Ax+By+C1=0,l2:Ax+By+C2=0,则l1与l2之间的距离d=________________.
自我检测
1.(2011济宁模拟)若点P(a,3)到直线4x-3y+1=0的距离为4,且点P在不等式2x+y-30表示的平面区域内,则实数a的值为()
A.7B.-7C.3D.-3
2.若直线l1:y=k(x-4)与直线l2关于点(2,1)对称,则直线l2恒过定点()
A.(0,4)B.(0,2)
C.(-2,4)D.(4,-2)
3.已知直线l1:ax+by+c=0,直线l2:mx+ny+p=0,则ambn=-1是直线l1⊥l2的()
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
4.(2009上海)已知直线l1:(k-3)x+(4-k)y+1=0与l2:2(k-3)x-2y+3=0平行,则k的值是()
A.1或3B.1或5
C.3或5D.1或2
5.已知2x+y+5=0,则x2+y2的最小值是________.
探究点一两直线的平行与垂直
例1已知两条直线l1:ax-by+4=0和l2:(a-1)x+y+b=0.求满足以下条件的a、b的值:
(1)l1⊥l2且l1过点(-3,-1);
(2)l1∥l2,且原点到这两条直线的距离相等.
变式迁移1已知直线l1:ax+2y+6=0和直线l2:x+(a-1)y+a2-1=0,
(1)试判断l1与l2是否平行;
(2)l1⊥l2时,求a的值.
探究点二直线的交点坐标
例2已知直线l1:4x+7y-4=0,l2:mx+y=0,l3:2x+3my-4=0.当m为何值时,三条直线不能构成三角形.
变式迁移2△ABC的两条高所在直线的方程分别为2x-3y+1=0和x+y=0,顶点A的坐标为(1,2),求BC边所在直线的方程.
探究点三距离问题
例3(2011厦门模拟)已知三条直线:l1:2x-y+a=0(a0);l2:-4x+2y+1=0;l3:x+y-1=0.且l1与l2的距离是7510.
(1)求a的值;
(2)能否找到一点P,使P同时满足下列三个条件:
①点P在第一象限;
②点P到l1的距离是点P到l2的距离的12;
③点P到l1的距离与点P到l3的距离之比是2∶5.
若能,求点P的坐标;若不能,说明理由.
变式迁移3已知直线l过点P(3,1)且被两平行线l1:x+y+1=0,l2:x+y+6=0截得的线段长为5,求直线l的方程.
转化与化归思想的应用
例(12分)已知直线l:2x-3y+1=0,点A(-1,-2).求:
(1)点A关于直线l的对称点A′的坐标;
(2)直线m:3x-2y-6=0关于直线l的对称直线m′的方程;
(3)直线l关于点A(-1,-2)对称的直线l′的方程.
【答题模板】
解(1)设A′(x,y),再由已知
∴A′-3313,413.[4分]
(2)在直线m上取一点,如M(2,0),则M(2,0)关于直线l的对称点M′必在直线m′上.设对称点M′(a,b),则得M′613,3013.[6分]
设直线m与直线l的交点为N,则由
得N(4,3).
又∵m′经过点N(4,3),∴由两点式得直线m′的方程为9x-46y+102=0.[8分]
(3)方法一在l:2x-3y+1=0上任取两点,
如M(1,1),N(4,3),则M,N关于点A(-1,-2)的对称点M′,N′均在直线l′上,
易得M′(-3,-5),N′(-6,-7),[10分]
再由两点式可得l′的方程为2x-3y-9=0.[12分]
方法二∵l∥l′,∴设l′的方程为2x-3y+C=0(C≠1),
∵点A(-1,-2)到两直线l,l′的距离相等,∴由点到直线的距离公式得
|-2+6+C|22+32=|-2+6+1|22+32,解得C=-9,[10分]
∴l′的方程为2x-3y-9=0.[12分]
方法三设P(x,y)为l′上任意一点,
则P(x,y)关于点A(-1,-2)的对称点为P′(-2-x,-4-y),[10分]
∵点P′在直线l上,∴2(-2-x)-3(-4-y)+1=0,
即2x-3y-9=0.[12分]
【突破思维障碍】
点关于直线对称是轴对称中最基本的,要抓住两点:一是已知点与对称点的连线与对称轴垂直;二是已知点与对称点为端点的线段中点在对称轴上.直线关于点的对称可转化为点关于点的对称,直线关于直线的对称可转化为点关于直线的对称.
【易错点剖析】
(1)点关于线对称,不能转化为“垂直”及“线的中点在轴上”的问题.
(2)线关于线对称,不能转化为点关于线的对称问题;线关于点的对称,不能转化为点关于点的对称问题.
1.在两条直线的位置关系中,讨论最多的还是平行与垂直,它们是两条直线的特殊位置关系.解题时认真画出图形,有助于快速准确地解决问题.判断两直线平行与垂直时,不要忘记考虑斜率不存在的情形,利用一般式则可避免分类讨论.
2.运用公式d=|C1-C2|A2+B2求两平行直线间的距离时,一定要把x、y项系数化为相等的系数.
3.对称思想是高考热点,主要分为中心对称和轴对称两种,关键要把握对称问题的本质,必要情况下可与函数的对称轴建立联系.
(满分:75分)
一、选择题(每小题5分,共25分)
1.直线3x+2y+4=0与2x-3y+4=0()
A.平行B.垂直
C.重合D.关于直线y=-x对称
2.(2011六安月考)若直线x+ay-a=0与直线ax-(2a-3)y-1=0互相垂直,则a的值是()
A.2B.-3或1C.2或0D.1或0
3.已知直线l的倾斜角为3π4,直线l1经过点A(3,2)、B(a,-1),且l1与l垂直,直线l2:2x+by+1=0与直线l1平行,则a+b等于()
A.-4B.-2C.0D.2
4.P点在直线3x+y-5=0上,且点P到直线x-y-1=0的距离为2,则P点坐标为()
A.(1,2)B.(2,1)
C.(1,2)或(2,-1)D.(2,1)或(-1,2)
5.设两条直线的方程分别为x+y+a=0,x+y+b=0,已知a、b是方程x2+x+c=0的两个实根,且0≤c≤18,则这两条直线之间的距离的最大值和最小值分别是()
A.24,12B.2,22
C.2,12D.22,12
二、填空题(每小题4分,共12分)
6.(2011重庆云阳中学高三月考)直线l1:x+my+6=0和l2:3x-3y+2=0,若l1∥l2,则m的值为______.
7.设直线l经过点(-1,1),则当点(2,-1)与直线l的距离最大时,直线l的方程为______________.
8.若直线m被两平行线l1:x-y+1=0与l2:x-y+3=0所截得的线段的长为22,则m的倾斜角可以是
①15°②30°③45°④60°⑤75°
其中正确答案的序号是________.
三、解答题(共38分)
9.(12分)(2011福州模拟)k为何值时,直线l1:y=kx+3k-2与直线l2:x+4y-4=0的交点在第一象限.
10.(12分)已知点P1(2,3),P2(-4,5)和A(-1,2),求过点A且与点P1,P2距离相等的直线方程.
11.(14分)(2011杭州调研)过点P(3,0)作一直线,使它夹在两直线l1:2x-y-2=0与l2:x+y+3=0之间的线段AB恰被点P平分,求此直线的方程.
自主梳理
1.(1)k1=k2且b1≠b2A1A2=B1B2≠C1C2(2)-10
2.解交点唯一解3.(1)x2-x12+y2-y12
(2)|Ax0+By0+C|A2+B2(3)②|C1-C2|A2+B2
自我检测
1.D2.B3.A4.C
5.5
课堂活动区
例1解题导引运用直线的斜截式y=kx+b时,要特别注意直线斜率不存在时的特殊情况.运用直线的一般式Ax+By+C=0时,要特别注意A、B为0时的情况,求解两直线平行或垂直有关的问题并与求直线方程相联系,联立方程组求解,对斜率不存在的情况,可考虑用数形结合的方法研究.
解(1)由已知可得l2的斜率必存在,且k2=1-a.
若k2=0,则a=1.由l1⊥l2,l1的斜率不存在,∴b=0.
又l1过(-3,-1),∴-3a+b+4=0,
∴b=3a-4=-1,矛盾.∴此情况不存在,即k2≠0.
若k2≠0,即k1=ab,k2=1-a.
由l1⊥l2,得k1k2=ab(1-a)=-1.
由l1过(-3,-1),得-3a+b+4=0,
解之得a=2,b=2.
(2)∵l2的斜率存在,l1∥l2,∴l1的斜率存在,
∴k1=k2,即ab=1-a.
又原点到两直线的距离相等,且l1∥l2,
∴l1、l2在y轴上的截距互为相反数,即4b=b.
解之得a=2,b=-2或a=23,b=2.
∴a、b的值为2和-2或23和2.
变式迁移1解(1)方法一当a=1时,
l1:x+2y+6=0,
l2:x=0,l1与l2不平行;
当a=0时,l1:y=-3,l2:x-y-1=0,l1与l2不平行;
当a≠1且a≠0时,两直线可化为l1:y=-a2x-3,
l2:y=11-ax-(a+1),
l1∥l2-a2=11-a,-3≠-a+1,解得a=-1,
综上可知,a=-1时,l1∥l2,否则l1与l2不平行.
方法二由A1B2-A2B1=0,
得a(a-1)-1×2=0.
由A1C2-A2C1≠0,得a(a2-1)-1×6≠0,
∴l1∥l2aa-1-1×2=0aa2-1-1×6≠0a2-a-2=0,aa2-1≠6.
∴a=-1,故当a=-1时,l1∥l2,否则l1与l2不平行.
(2)方法一当a=1时,l1:x+2y+6=0,l2:x=0,l1与l2不垂直;
当a=0时,l1:y=-3,l2:x-y-1=0,l1与l2不垂直;
当a≠1且a≠0时,l1:y=-a2x-3,
l2:y=11-ax-(a+1),
由-a211-a=-1a=23.
方法二由A1A2+B1B2=0,
得a+2(a-1)=0a=23.
例2解题导引①转化思想的运用
三条直线l1、l2、l3不能构成三角形l1、l2、l3交于一点或至少有两条直线平行
三条直线交于一点l2与l3的交点在l1上l2与l3对应方程组的解适合l1的方程
②分类讨论思想的运用
本题依据直线的位置关系将不能构成三角形的情况分成两类,分类应注意按同一标准,不重不漏.
解当三条直线共点或至少有两条直线平行时,不能围成三角形.
①三条直线共点时,
由mx+y=0,2x+3my=4,得x=42-3m2y=-4m2-3m2(m2≠23),
即l2与l3的交点为42-3m2,-4m2-3m2,
代入l1的方程得4×42-3m2+7×-4m2-3m2-4=0,
解得m=13,或m=2.
②当l1∥l2时,4=7m,∴m=47;
当l1∥l3时,4×3m=7×2,∴m=76;
当l2∥l3时,3m2=2,即m=±63.
∴m取集合-63,13,63,47,76,2中的元素时,三条直线不能构成三角形.
变式迁移2解可以判断A不在所给的两条高所在的直线上,则可设AB,AC边上的高所在直线的方程分别为2x-3y+1=0,x+y=0,
则可求得AB,AC边所在直线的方程分别为
y-2=-32(x-1),y-2=x-1,
即3x+2y-7=0,x-y+1=0.
由3x+2y-7=0x+y=0,得B(7,-7),
由x-y+1=02x-3y+1=0,得C(-2,-1),
所以BC边所在直线的方程为2x+3y+7=0.
例3解题导引在应用平行线间的距离公式求两条平行线间的距离时,应注意公式的适用条件,即在两条平行线的方程中x与y的系数化为分别对应相等的条件下,才能应用该公式.
如本例中求两条直线2x-y+a=0与-4x+2y+1=0间的距离时,需将前一条直线化为-4x+2y-2a=0,或将后一条直线化为2x-y-12=0后,再应用平行线间的距离公式.
解(1)∵l1:4x-2y+2a=0(a0),l2:4x-2y-1=0,
∴两条平行线l1与l2间的距离为d=|2a+1|25,
由已知,可得|2a+1|25=7510.
又a0,可解得a=3.
(2)设点P的坐标为(x,y),
由条件①,可知x0,y0.
由条件②和③,
可得|2x-y+3|5=|4x-2y-1|455|2x-y+3|5=2|x+y-1|2,
化简得4|2x-y+3|=|4x-2y-1||2x-y+3|=|x+y-1|,
于是可得,4|x+y-1|=|4x-2y-1|,
也就是4(x+y-1)=4x-2y-1,或4(x+y-1)=-4x+2y+1,
解得y=12,或8x+2y-5=0.
当y=12时,代入方程|2x-y+3|=|x+y-1|,
解得x=-30或x=-230,均舍去.
由8x+2y-5=0|2x-y+3|=|x+y-1|,
化简得8x+2y-5=0x-2y+4=0,或8x+2y-5=03x=-2,
解得x=19y=3718或x=-230y=316(舍去).
即存在满足题设条件的点P,其坐标为19,3718.
变式迁移3解方法一若直线l的斜率不存在,则直线l的方程为x=3,此时与l1,l2的交点分别是A(3,-4),B(3,-9),截得的线段长|AB|=|-4+9|=5,符合题意.
当直线l的斜率存在时,则设直线l的方程为y=k(x-3)+1,分别与直线l1,l2的方程联立,
由y=kx-3+1,x+y+1=0,解得A3k-2k+1,1-4kk+1.
由y=kx-3+1,x+y+6=0,解得B3k-7k+1,1-9kk+1.
由两点间的距离公式,得
3k-2k+1-3k-7k+12+1-4kk+1-1-9kk+12=25,
解得k=0,即所求直线方程为y=1.
综上可知,直线l的方程为x=3或y=1.
方法二因为两平行线间的距离
d=|6-1|2=522,
如图,直线l被两平行线截得的线段长为5,
设直线l与两平行线的夹角为θ,
则sinθ=22,所以θ=45°.
因为两平行线的斜率是-1,
故所求直线的斜率不存在或为0.
又因为直线l过点P(3,1),
所以直线l的方程为x=3或y=1.
课后练习区
1.B2.C3.B4.C5.D
6.-17.3x-2y+5=08.①⑤
9.解由y=kx+3k-2x+4y-4=0,得x=12-12k4k+1y=7k-24k+1.(5分)
∵两直线的交点在第一象限,
∴12-12k4k+107k-24k+10,∴27k1.(11分)
即当27k1时,
两直线的交点在第一象限.(12分)
10.解设所求直线为l,由于l过点A且与点P1,P2距离相等,所以有两种情况,
(1)当P1,P2在l同侧时,有l∥P1P2,此时可求得l的方程为
y-2=5-3-4-2(x+1),即x+3y-5=0;(5分)
(2)当P1,P2在l异侧时,l必过P1P2的中点(-1,4),此时l的方程为x=-1.(10分)
∴所求直线的方程为x+3y-5=0或x=-1.
(12分)
11.解设点A(x,y)在l1上,
由题意知x+xB2=3,y+yB2=0,∴点B(6-x,-y),(6分)
解方程组2x-y-2=0,6-x+-y+3=0,
得x=113,y=163,∴k=163-0113-3=8.(12分)
∴所求的直线方程为y=8(x-3),即8x-y-24=0.(14分)
学案54直线与圆锥曲线的位置关系
导学目标:1.了解圆锥曲线的简单应用.2.理解数形结合的思想.
自主梳理
1.直线与椭圆的位置关系的判定方法
(1)将直线方程与椭圆方程联立,消去一个未知数,得到一个一元二次方程,若Δ0,则直线与椭圆________;若Δ=0,则直线与椭圆________;若Δ0,则直线与椭圆________.
(2)直线与双曲线的位置关系的判定方法
将直线方程与双曲线方程联立消去y(或x),得到一个一元方程ax2+bx+c=0.
①若a≠0,当Δ0时,直线与双曲线________;当Δ=0时,直线与双曲线________;当Δ0时,直线与双曲线________.
②若a=0时,直线与渐近线平行,与双曲线有________交点.
(3)直线与抛物线位置关系的判定方法
将直线方程与抛物线方程联立,消去y(或x),得到一个一元方程ax2+bx+c=0.
①当a≠0,用Δ判定,方法同上.
②当a=0时,直线与抛物线的对称轴________,只有________交点.
2.已知弦AB的中点,研究AB的斜率和方程
(1)AB是椭圆x2a2+y2b2=1(ab0)的一条弦,M(x0,y0)是AB的中点,则kAB=________,kABkOM=__________.点差法求弦的斜率的步骤是:
①将端点坐标代入方程:x21a2+y21b2=1,x22a2+y22b2=1.
②两等式对应相减:x21a2-x22a2+y21b2-y22b2=0.
③分解因式整理:kAB=y1-y2x1-x2=-b2x1+x2a2y1+y2=-b2x0a2y0.
(2)运用类比的手法可以推出:已知AB是双曲线x2a2-y2b2=1的弦,中点M(x0,y0),则kAB=__________________.已知抛物线y2=2px(p0)的弦AB的中点M(x0,y0),则kAB=____________.
3.弦长公式
直线l:y=kx+b与圆锥曲线C:F(x,y)=0交于A(x1,y1),B(x2,y2)两点,
则|AB|=1+k2|x1-x2|
=1+k2x1+x22-4x1x2
或|AB|=1+1k2|y1-y2|=1+1k2y1+y22-4y1y2.
自我检测
1.抛物线y2=4x的焦点为F,准线为l,经过F且斜率为3的直线与抛物线在x轴上方的部分相交于点A,AK⊥l,垂足为K,则△AKF的面积是()
A.4B.33C.43D.8
2.(2011中山调研)与抛物线x2=4y关于直线x+y=0对称的抛物线的焦点坐标是()
A.(1,0)B.116,0
C.(-1,0)D.0,-116
3.(2011许昌模拟)已知曲线x2a+y2b=1和直线ax+by+1=0(a、b为非零实数),在同一坐标系中,它们的图形可能是()
4.(2011杭州模拟)过点0,-12的直线l与抛物线y=-x2交于A、B两点,O为坐标原点,则OA→OB→的值为()
A.-12B.-14C.-4D.无法确定
探究点一直线与圆锥曲线的位置关系
例1k为何值时,直线y=kx+2和曲线2x2+3y2=6有两个公共点?有一个公共点?没有公共点?
变式迁移1已知抛物线C的方程为x2=12y,过A(0,-1),B(t,3)两点的直线与抛物线C没有公共点,则实数t的取值范围是()
A.(-∞,-1)∪(1,+∞)
B.-∞,-22∪22,+∞
C.(-∞,-22)∪(22,+∞)
D.(-∞,-2)∪(2,+∞)
探究点二圆锥曲线中的弦长问题
例2如图所示,直线y=kx+b与椭圆x24+y2=1交于A、B两点,
记△AOB的面积为S.
(1)求在k=0,0b1的条件下,S的最大值;
(2)当|AB|=2,S=1时,求直线AB的方程.
变式迁移2已知椭圆的两焦点为F1(-3,0),F2(3,0),离心率e=32.
(1)求椭圆的标准方程;
(2)设直线l:y=x+m,若l与椭圆相交于P,Q两点,且|PQ|等于椭圆的短轴长,求m的值.
探究点三求参数的范围问题
例3(2011开封模拟)直线m:y=kx+1和双曲线x2-y2=1的左支交于A、B两点,直线l过点P(-2,0)和线段AB的中点M,求l在y轴上的截距b的取值范围.
变式迁移3在平面直角坐标系xOy中,经过点(0,2)且斜率为k的直线l与椭圆x22+y2=1有两个不同的交点P和Q.
(1)求k的取值范围;
(2)设椭圆与x轴正半轴、y轴正半轴的交点分别为A、B,是否存在常数k,使得向量OP→+OQ→与AB→共线?如果存在,求k值;如果不存在,请说明理由.
函数思想的应用
例(12分)已知椭圆C的方程为x2a2+y2b2=1(ab0),双曲线x2a2-y2b2=1的两条渐近线为l1,l2,
过椭圆C的右焦点F作直线l,使l⊥l1,又l与l2交于P点,设l与椭圆C的两个交点由上至下依次为A,B.
(1)当l1与l2夹角为60°,双曲线的焦距为4时,求椭圆C的方程及离心率;
(2)求|FA||AP|的最大值.
【答题模板】
解(1)双曲线的渐近线为y=±bax,两渐近线夹角为60°,又ba1,∴∠POx=30°,
∴ba=tan30°=33,∴a=3b.又a2+b2=22,
∴3b2+b2=4,[2分]
∴b2=1,a2=3,∴椭圆C的方程为x23+y2=1,
∴离心率e=a2-b2a=63.[4分]
(2)由已知,l:y=ab(x-c)与y=bax联立,
解方程组得Pa2c,abc.[6分]
设|FA||AP|=λ,则FA→=λAP→,∵F(c,0),设A(x0,y0),则(x0-c,y0)=λa2c-x0,abc-y0,
∴x0=c+λa2c1+λ,y0=λabc1+λ.即Ac+λa2c1+λ,λabc1+λ.[8分]
将A点坐标代入椭圆方程,得(c2+λa2)2+λ2a4=(1+λ)2a2c2,
等式两边同除以a4,(e2+λ)2+λ2=e2(1+λ)2,e∈(0,1),[10分]
∴λ2=e4-e2e2-2=-2-e2+22-e2+3
≤-22-e222-e2+3=3-22=(2-1)2,
∴当2-e2=2,即e2=2-2时,λ有最大值2-1,即|FA||AP|的最大值为2-1.[12分]
【突破思维障碍】
最值问题是从动态角度去研究解析几何中数学问题的主要内容,一是在准确把握题意的基础上,建立函数、不等式模型,利用二次函数、三角函数的有界性、基本不等式解决;二是利用数形结合,考虑相切、相交的几何意义解决.
【易错点剖析】
不能把|FA||AP|转化成向量问题,使得运算繁琐造成错误,由λ2=e4-e2e2-2不会求最值或忽视e2-20这个隐含条件.
1.直线与圆锥曲线的位置关系是解析几何的重点内容之一,也是高考的热点,这类问题往往与函数、不等式、三角、向量等知识综合、交汇考查,而且对综合能力的考查显见其中.因此解决此类问题需要有较广的知识面及较强的解决问题的能力.
2.从题目类型上多见于与弦的中点、弦长、弦所在直线的斜率等有关的最值问题、参数范围问题.基本思路就是直线方程与圆锥曲线方程联立消元得到形如ax2+bx+c=0的方程,由韦达定理得x1+x2=-ba,x1x2=ca.然后再把要研究的问题转化为用x1+x2和x1x2去表示.最后,用函数、不等式等知识加以解决.需要注意的就是要注意对隐含条件的挖掘,比如判别式Δ≥0,圆锥曲线中有关量的固有范围等.
(满分:75分)
一、选择题(每小题5分,共25分)
1.(2011菏泽调研)F1、F2是椭圆x2a2+y2b2=1(ab0)的两个焦点,P是椭圆上任一点,从任一焦点引∠F1PF2的外角平分线的垂线,垂足为Q,则点Q的轨迹为()
A.圆B.椭圆C.双曲线D.抛物线
2.若双曲线x29-y24=1的渐近线上的点A与双曲线的右焦点F的距离最小,抛物线y2=2px(p0)通过点A,则p的值为()
A.92B.2C.21313D.1313
3.(2011武汉月考)已知直线l1:4x-3y+6=0和直线l2:x=-1,抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值是()
A.2B.3C.115D.3716
4.已知直线y=k(x+2)(k0)与抛物线C:y2=8x相交于A、B两点,F为C的焦点.若|FA|=2|FB|,则k等于()
A.13B.23C.23D.223
5.斜率为1的直线l与椭圆x24+y2=1相交于A、B两点,则|AB|的最大值为()
A.2B.455
C.4105D.8105
二、填空题(每小题4分,共12分)
6.(2011届合肥期末)若直线y=kx+1(k∈R)与焦点在x轴上的椭圆x25+y2t=1恒有公共点,则t的范围是______________.
7.P为双曲线x2-y215=1右支上一点,M、N分别是圆(x+4)2+y2=4和(x-4)2+y2=1上的点,则|PM|-|PN|的最大值为________.
8.(2010全国Ⅱ)已知抛物线C:y2=2px(p>0)的准线为l,过M(1,0)且斜率为3的直线与l相交于点A,与C的一个交点为B,若AM→=MB→,则p=________.
三、解答题(共38分)
9.(12分)已知抛物线y=-x2+3上存在关于直线x+y=0对称的相异两点A、B,求|AB|的长.
10.(12分)(2010天津)已知椭圆x2a2+y2b2=1(ab0)的离心率e=32,连接椭圆的四个顶点得到的菱形的面积为4.
(1)求椭圆的方程;
(2)设直线l与椭圆相交于不同的两点A,B,已知点A的坐标为(-a,0),点Q(0,y0)在线段AB的垂直平分线上,且QA→QB→=4,求y0的值.
11.(14分)(2011江西)P(x0,y0)(x0≠±a)是双曲线E:x2a2-y2b2=1(a0,b0)上一点,M,N分别是双曲线E的左,右顶点,直线PM,PN的斜率之积为15.
(1)求双曲线的离心率;
(2)过双曲线E的右焦点且斜率为1的直线交双曲线于A,B两点,O为坐标原点,C为双曲线上一点,满足OC→=λOA→+OB→,求λ的值.
学案54直线与圆锥曲线的位置关系
自主梳理
1.(1)相交相切相离(2)①相交相切相离②一个
(3)②平行一个2.(1)-b2x0a2y0-b2a2(2)b2x0a2y0py0
自我检测
1.C2.C3.C4.B
课堂活动区
例1解题导引用直线方程和圆锥曲线方程组成的方程组解的个数,可以研究直线与圆锥曲线的位置关系,也就是用代数的方法研究几何问题,这是解析几何的重要思想方法.方程组消元后要注意所得方程的二次项系数是否含有参数,若含参数,需按二次项系数是否为零进行分类讨论,只有二次项系数不为零时,方程才是一元二次方程,后面才可以用判别式Δ的符号判断方程解的个数,从而说明直线与圆锥曲线的位置关系.
解由y=kx+2,2x2+3y2=6,得2x2+3(kx+2)2=6,
即(2+3k2)x2+12kx+6=0,
Δ=144k2-24(2+3k2)=72k2-48.
当Δ=72k2-480,即k63或k-63时,直线和曲线有两个公共点;
当Δ=72k2-48=0,即k=63或k=-63时,直线和曲线有一个公共点;
当Δ=72k2-480,即-63k63时,直线和曲线没有公共点.
变式迁移1D[直线AB的方程为y=4tx-1(t=0时不合题意,舍去),与抛物线方程x2=12y联立得x2-2tx+12=0,由于直线AB与抛物线C没有公共点,所以Δ=4t2-20,解得t2或t-2.]
例2解题导引本题主要考查椭圆的几何性质、椭圆与直线的位置关系等基础知识,考查解析几何的基本思想方法和综合解题能力.“设而不求”是解决直线与圆锥曲线交点问题的基本方法.当所求弦为焦点弦时,可结合圆锥曲线的定义求解.
解(1)设点A的坐标为(x1,b),点B的坐标为(x2,b),由x24+y2=1,解得x1,2=±21-b2,
所以S=12b|x1-x2|=2b1-b2≤b2+1-b2=1.
当且仅当b=22时,S取到最大值1.
(2)由y=kx+bx24+y2=1得(4k2+1)x2+8kbx+4b2-4=0,
Δ=16(4k2-b2+1).①
|AB|=1+k2|x1-x2|=1+k2164k2-b2+14k2+1=2.②
又因为O到AB的距离d=|b|1+k2=2S|AB|=1,
所以b2=k2+1.③
将③代入②并整理,得4k4-4k2+1=0,
解得k2=12,b2=32,代入①式检查,Δ0.
故直线AB的方程是:y=22x+62或y=22x-62或y=-22x+62或y=-22x-62.
变式迁移2解(1)设椭圆方程为x2a2+y2b2=1(ab0),
则c=3,ca=32.∴a=2,b=1.
∴所求椭圆方程为x24+y2=1.
(2)由y=x+m,x24+y2=1,消去y得关于x的方程:
5x2+8mx+4(m2-1)=0,
则Δ=64m2-80(m2-1)0,解得m25.(*)
设P(x1,y1),Q(x2,y2),则x1+x2=-85m,
x1x2=4m2-15,y1-y2=x1-x2,
∴|PQ|=x1-x22+y1-y22=2x1-x22
=2-85m2-165m2-1=2,
解得m2=158,满足(*),∴m=±304.
例3解题导引直线与圆锥曲线的位置关系从代数的角度来看,就是直线方程与圆锥曲线的方程组成的方程组有无解的问题,结合判别式Δ研究,利用设而不求与整体代入等技巧与方法,从而延伸出一些复杂的参数范围的研究.
解由y=kx+1x2-y2=1(x≤-1)
得(k2-1)x2+2kx+2=0.设A(x1,y1),B(x2,y2),
则Δ=4k2+81-k20x1+x2=2k1-k20x1x2=-21-k20,∴1k2.
设M(x0,y0),由x0=x1+x22=k1-k2y0=y1+y22=11-k2,
设l与y轴的交点为Q(0,b),则由P(-2,0),
Mk1-k2,11-k2,Q(0,b)三点共线得b=2-2k2+k+2,
设f(k)=-2k2+k+2,则f(k)在(1,2)上单调递减,
∴f(k)∈(-2+2,1),
∴b∈(-∞,-2-2)∪(2,+∞).
变式迁移3解(1)由已知条件,直线l的方程为y=kx+2,
代入椭圆方程得x22+(kx+2)2=1,
整理得12+k2x2+22kx+1=0.①
直线l与椭圆有两个不同的交点P和Q等价于
Δ=8k2-412+k2=4k2-20,解得k-22或k22.
即k的取值范围为-∞,-22∪22,+∞.
(2)设P(x1,y1),Q(x2,y2),则OP→+OQ→=(x1+x2,y1+y2),
由方程①,x1+x2=-42k1+2k2.②
又y1+y2=k(x1+x2)+22.③
而A(2,0),B(0,1),AB→=(-2,1).
所以OP→+OQ→与AB→共线等价于x1+x2=-2(y1+y2),
将②③代入上式,解得k=22.
由(1)知k-22或k22,故没有符合题意的常数k.
课后练习区
1.A2.C3.A4.D5.C
6.[1,5)7.58.2
9.解设直线AB的方程为y=x+b,
由y=-x2+3,y=x+b,消去y得x2+x+b-3=0,(3分)
∴x1+x2=-1.
于是AB的中点M(-12,-12+b),
且Δ=1-4(b-3)0,即b134.(6分)
又M(-12,-12+b)在直线x+y=0上,∴b=1符合.(8分)
∴x2+x-2=0.由弦长公式可得
|AB|=1+12-12-4×-2=32.(12分)
10.解(1)由e=ca=32,得3a2=4c2.
再由c2=a2-b2,得a=2b.
由题意可知12×2a×2b=4,即ab=2.
解方程组a=2b,ab=2,得a=2,b=1.
所以椭圆的方程为x24+y2=1.(4分)
(2)由(1)可知A(-2,0),且直线l的斜率必存在.设B点的坐标为(x1,y1),直线l的斜率为k,则直线l的方程为y=k(x+2).
于是A,B两点的坐标满足方程组y=kx+2,x24+y2=1.
由方程组消去y并整理,得
(1+4k2)x2+16k2x+(16k2-4)=0.
由根与系数的关系,得-2x1=16k2-41+4k2,
所以x1=2-8k21+4k2,从而y1=4k1+4k2.
设线段AB的中点为M,则M的坐标为(-8k21+4k2,2k1+4k2).(6分)
以下分两种情况讨论:
①当k=0时,点B的坐标是(2,0),线段AB的垂直平分线为y轴,于是QA→=(-2,-y0),QB→=(2,-y0).
由QA→QB→=4,得y0=±22.(8分)
②当k≠0时,线段AB的垂直平分线的方程为
y-2k1+4k2=-1k(x+8k21+4k2).
令x=0,解得y0=-6k1+4k2.
由QA→=(-2,-y0),QB→=(x1,y1-y0),
QA→QB→=-2x1-y0(y1-y0)
=-22-8k21+4k2+6k1+4k2(4k1+4k2+6k1+4k2)
=416k4+15k2-11+4k22=4,
整理得7k2=2,故k=±147.
所以y0=±2145.(11分)
综上,y0=±22或y0=±2145.(12分)
11.解(1)由点P(x0,y0)(x0≠±a)在双曲线x2a2-y2b2=1上,有x20a2-y20b2=1.
由题意有y0x0-ay0x0+a=15,(3分)
可得a2=5b2,c2=a2+b2=6b2,e=ca=305.(6分)
(2)联立x2-5y2=5b2,y=x-c,得4x2-10cx+35b2=0.
设A(x1,y1),B(x2,y2),则x1+x2=5c2,x1x2=35b24.①
设OC→=(x3,y3),OC→=λOA→+OB→,
即x3=λx1+x2,y3=λy1+y2.(9分)
又C为双曲线上一点,
即x23-5y23=5b2,有
(λx1+x2)2-5(λy1+y2)2=5b2.化简得
λ2(x21-5y21)+(x22-5y22)+2λ(x1x2-5y1y2)=5b2.②
又A(x1,y1),B(x2,y2)在双曲线上,
所以x21-5y21=5b2,x22-5y22=5b2.(11分)
由①式又有x1x2-5y1y2=x1x2-5(x1-c)(x2-c)
=-4x1x2+5c(x1+x2)-5c2=10b2,
②式可化为λ2+4λ=0,解得λ=0或λ=-4.
(14分)
文章来源:http://m.jab88.com/j/52280.html
更多