作为杰出的教学工作者,能够保证教课的顺利开展,高中教师要准备好教案,这是高中教师需要精心准备的。教案可以保证学生们在上课时能够更好的听课,帮助高中教师有计划有步骤有质量的完成教学任务。所以你在写高中教案时要注意些什么呢?考虑到您的需要,小编特地编辑了“排列、组合、二项式定理-基本原理”,大家不妨来参考。希望您能喜欢!
排列、组合、二项式定理-基本原理教学目标
(1)正确理解加法原理与乘法原理的意义,分清它们的条件和结论;
(2)能结合树形图来帮助理解加法原理与乘法原理;
(3)正确区分加法原理与乘法原理,哪一个原理与分类有关,哪一个原理与分步有关;
(4)能应用加法原理与乘法原理解决一些简单的应用问题,提高学生理解和运用两个原理的能力;
(5)通过对加法原理与乘法原理的学习,培养学生周密思考、细心分析的良好习惯。
教学建议
一、知识结构
二、重点难点分析
本节的重点是加法原理与乘法原理,难点是准确区分加法原理与乘法原理。
加法原理、乘法原理本身是轻易理解的,甚至是不言自明的。这两个原理是学习排列组合内容的基础,贯穿整个内容之中,一方面它是推导排列数与组合数的基础;另一方面它的结论与其思想在方法本身又在解题时有许多直接应用。
两个原理回答的,都是完成一件事的所有不同方法种数是多少的问题,其区别在于:运用加法原理的前提条件是,做一件事有n类方案,选择任何一类方案中的任何一种方法都可以完成此事,就是说,完成这件事的各种方法是相互独立的;运用乘法原理的前提条件是,做一件事有n个骤,只要在每个步骤中任取一种方法,并依次完成每一步骤就能完成此事,就是说,完成这件事的各个步骤是相互依存的。简单的说,假如完成一件事情的所有方法是属于分类的问题,每次得到的是最后结果,要用加法原理;假如完成一件事情的方法是属于分步的问题,每次得到的该步结果,就要用乘法原理。
三、教法建议
关于两个计数原理的教学要分三个层次:
第一是对两个计数原理的熟悉与理解.这里要求学生理解两个计数原理的意义,并弄清两个计数原理的区别.知道什么情况下使用加法计数原理,什么情况下使用乘法计数原理.(建议利用一课时).
第二是对两个计数原理的使用.可以让学生做一下习题(建议利用两课时):
①用0,1,2,……,9可以组成多少个8位号码;
②用0,1,2,……,9可以组成多少个8位整数;
③用0,1,2,……,9可以组成多少个无重复数字的4位整数;
④用0,1,2,……,9可以组成多少个有重复数字的4位整数;
⑤用0,1,2,……,9可以组成多少个无重复数字的4位奇数;
⑥用0,1,2,……,9可以组成多少个有两个重复数字的4位整数等等.
第三是使学生把握两个计数原理的综合应用,这个过程应该贯彻整个教学中,每个排列数、组合数公式及性质的推导都要用两个计数原理,每一道排列、组合问题都可以直接利用两个原理求解,另外直接计算法、间接计算法都是两个原理的一种体现.教师要引导学生认真地分析题意,恰当的分类、分步,用好、用活两个基本计数原理.
教学设计示例
加法原理和乘法原理
教学目标
正确理解和把握加法原理和乘法原理,并能准确地应用它们分析和解决一些简单的问题,从而发展学生的思维能力,培养学生分析问题和解决问题的能力.
教学重点和难点
重点:加法原理和乘法原理.
难点:加法原理和乘法原理的准确应用.
教学用具
投影仪.
教学过程设计
(一)引入新课
从本节课开始,我们将要学习中学代数内容中一个独特的部分——排列、组合、二项式定理.它们研究对象独特,研究问题的方法不同一般.虽然份量不多,但是与旧知识的联系很少,而且它还是我们今后学习概率论的基础,统计学、运筹学以及生物的选种等都与它直接有关.至于在日常的工作、生活上,只要涉及安排调配的问题,就离不开它.
今天我们先学习两个基本原理.
(二)讲授新课
1.介绍两个基本原理
先考虑下面的问题:
问题1:从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船.一天中,火车有4个班次,汽车有2个班次,轮船有3个班次.那么一天中乘坐这些交通工具从甲地到乙地,共有多少种不同的走法?
因为一天中乘火车有4种走法,乘汽车有2种走法,乘轮船有3种走法,每种走法都可以完成由甲地到乙地这件事情.所以,一天中乘坐这些交通工具从甲地到乙地共有423=9种不同的走法.
这个问题可以总结为下面的一个基本原理(打出片子——加法原理):
加法原理:做一件事,完成它可以有几类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法.那么,完成这件事共有N=m1m2…mn种不同的方法.
请大家再来考虑下面的问题(打出片子——问题2):
问题2:由A村去B村的道路有3条,由B村去C村的道路有2条(见下图),从A村经B村去C村,共有多少种不同的走法?
这里,从A村到B村,有3种不同的走法,按这3种走法中的每一种走法到达B村后,再从B村到C村又各有2种不同的走法,因此,从A村经B村去C村共有3×2=6种不同的走法.
一般地,有如下基本原理(找出片子——乘法原理):
乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法.那么,完成这件事共有N=m1×m2×…×mn种不同的方法.
2.浅释两个基本原理
两个基本原理的用途是计算做一件事完成它的所有不同的方法种数.
比较两个基本原理,想一想,它们有什么区别?
两个基本原理的区别在于:一个与分类有关,一个与分步有关.
看下面的分析是否正确(打出片子——题1,题2):
题1:找1~10这10个数中的所有合数.第一类办法是找含因数2的合数,共有4个;第二类办法是找含因数3的合数,共有2个;第三类办法是找含因数5的合数,共有1个.
1~10中一共有N=4+2+1=7个合数.
题2:在前面的问题2中,步行从A村到B村的北路需要8时,中路需要4时,南路需要6时,B村到C村的北路需要5时,南路需要3时,要求步行从A村到C村的总时数不超过12时,共有多少种不同的走法?
第一步从A村到B村有3种走法,第二步从B村到C村有2种走法,共有N=3×2=6种不同走法.
题2中的合数是4,6,8,9,10这五个,其中6既含有因数2,也含有因数3;10既含有因数2,也含有因数5.题中的分析是错误的.
从A村到C村总时数不超过12时的走法共有5种.题2中从A村走北路到B村后再到C村,只有南路这一种走法.
(此时给出题1和题2的目的是为了引导学生找出应用两个基本原理的注重事项,这样安排,不但可以使学生对两个基本原理的理解更深刻,而且还可以培养学生的学习能力)
进行分类时,要求各类办法彼此之间是相互排斥的,不论哪一类办法中的哪一种方法,都能单独完成这件事.只有满足这个条件,才能直接用加法原理,否则不可以.
假如完成一件事需要分成几个步骤,各步骤都不可缺少,需要依次完成所有步骤才能完成这件事,而各步要求相互独立,即相对于前一步的每一种方法,下一步都有m种不同的方法,那么计算完成这件事的方法数时,就可以直接应用乘法原理.
也就是说:类类互斥,步步独立.
(在学生对问题的分析不是很清楚时,教师及时地归纳小结,能使学生在应用两个基本原理时,思路进一步清楚和明确,不再简单地认为什么样的分类都可以直接用加法,只要分步而不管是否相互联系就用乘法.从而深入理解两个基本原理中分类、分步的真正含义和实质)
(三)应用举例
现在我们已经有了两个基本原理,我们可以用它们来解决一些简单问题了.
例1书架上放有3本不同的数学书,5本不同的语文书,6本不同的英语书.
(1)若从这些书中任取一本,有多少种不同的取法?
(2)若从这些书中,取数学书、语文书、英语书各一本,有多少种不同的取法?
(3)若从这些书中取不同的科目的书两本,有多少种不同的取法?
(让学生思考,要求依据两个基本原理写出这3个问题的答案及理由,教师巡视指导,并适时口述解法)
(1)从书架上任取一本书,可以有3类办法:第一类办法是从3本不同数学书中任取1本,有3种方法;第二类办法是从5本不同的语文书中任取1本,有5种方法;第三类办法是从6本不同的英语书中任取一本,有6种方法.根据加法原理,得到的取法种数是
N=m1+m2+m3=3+5+6=14.故从书架上任取一本书的不同取法有14种.
(2)从书架上任取数学书、语文书、英语书各1本,需要分成三个步骤完成,第一步取1本数学书,有3种方法;第二步取1本语文书,有5种方法;第三步取1本英语书,有6种方法.根据乘法原理,得到不同的取法种数是N=m1×m2×m3=3×5×6=90.故,从书架上取数学书、语文书、英语书各1本,有90种不同的方法.
(3)从书架上任取不同科目的书两本,可以有3类办法:第一类办法是数学书、语文书各取1本,需要分两个步骤,有3×5种方法;第二类办法是数学书、英语书各取1本,需要分两个步骤,有3×6种方法;第三类办法是语文书、英语书各取1本,有5×6种方法.一共得到不同的取法种数是N=3×5+3×6+5×6=63.即,从书架任取不同科目的书两本的不同取法有63种.
例2由数字0,1,2,3,4可以组成多少个三位整数(各位上的数字答应重复)?
解:要组成一个三位数,需要分成三个步骤:第一步确定百位上的数字,从1~4这4个数字中任选一个数字,有4种选法;第二步确定十位上的数字,由于数字答应重复,共有5种选法;第三步确定个位上的数字,仍有5种选法.根据乘法原理,得到可以组成的三位整数的个数是N=4×5×5=100.
答:可以组成100个三位整数.
教师的连续发问、启发、引导,帮助学生找到正确的解题思路和计算方法,使学生的分析问题能力有所提高.教师在第二个例题中给出板书示范,能帮助学生进一步加深对两个基本原理实质的理解,周密的考虑,准确的表达、规范的书写,对于学生周密思考、准确表达、规范书写良好习惯的形成有着积极的促进作用,也可以为学生后面应用两个基本原理解排列、组合综合题打下基础.
(四)归纳小结
归纳什么时候用加法原理、什么时候用乘法原理:
分类时用加法原理,分步时用乘法原理.
应用两个基本原理时需要注重分类时要求各类办法彼此之间相互排斥;分步时要求各步是相互独立的.
(五)课堂练习
P222:练习1~4.
(对于题4,教师有必要对三个多项式乘积展开后各项的构成给以提示)
(六)布置作业
P222:练习5,6,7.
补充题:
1.在所有的两位数中,个位数字小于十位数字的共有多少个?
(提示:按十位上数字的大小可以分为9类,共有9+8+7+…+2+1=45个个位数字小于十位数字的两位数)
2.某学生填报高考志愿,有m个不同的志愿可供选择,若只能按第一、二、三志愿依次填写3个不同的志愿,求该生填写志愿的方式的种数.
(提示:需要按三个志愿分成三步,共有m(m1)(m2)种填写方式)
3.在所有的三位数中,有且只有两个数字相同的三位数共有多少个?
(提示:可以用下面方法来求解:(1)△△□,(2)△□△,(3)□△□,(1),(2),(3)类中每类都是9×9种,共有9×99×99×9=3×9×9=243个只有两个数字相同的三位数)
4.某小组有10人,每人至少会英语和日语中的一门,其中8人会英语,5人会日语,(1)从中任选一个会外语的人,有多少种选法?(2)从中选出会英语与会日语的各1人,有多少种不同的选法?
(提示:由于8+5=1310,所以10人中必有3人既会英语又会日语.
(1)N=5+2+3;(2)N=5×2+5×3+2×3)二项式定理
一名优秀的教师就要对每一课堂负责,高中教师要准备好教案,这是高中教师的任务之一。教案可以让讲的知识能够轻松被学生吸收,帮助高中教师营造一个良好的教学氛围。您知道高中教案应该要怎么下笔吗?以下是小编为大家精心整理的“二项式定理”,仅供参考,欢迎大家阅读。
1.5.1二项式定理
教学目标:
知识与技能:进一步掌握二项式定理和二项展开式的通项公式
过程与方法:能解决二项展开式有关的简单问题
情感、态度与价值观:教学过程中,要让学生充分体验到归纳推理不仅可以猜想到一般性的结果,而且可以启发我们发现一般性问题的解决方法。
教学重点:二项式定理及通项公式的掌握及运用
教学难点:二项式定理及通项公式的掌握及运用
授课类型:新授课
课时安排:3课时
教具:多媒体、实物投影仪
内容分析:
二项式定理是初中乘法公式的推广,是排列组合知识的具体运用,是学习概率的重要基础.这部分知识具有较高应用价值和思维训练价值.中学教材中的二项式定理主要包括:定理本身,通项公式,杨辉三角,二项式系数的性质等.
通过二项式定理的学习应该让学生掌握有关知识,同时在求展开式、其通项、证恒等式、近似计算等方面形成技能或技巧;进一步体会过程分析与特殊化方法等等的运用;重视学生正确情感、态度和世界观的培养和形成.
二项式定理本身是教学重点,因为它是后面一切结果的基础.通项公式,杨辉三角,特殊化方法等意义重大而深远,所以也应该是重点.
二项式定理的证明是一个教学难点.这是因为,证明中符号比较抽象、需要恰当地运用组合数的性质2、需要用到不太熟悉的数学归纳法.
在教学中,努力把表现的机会让给学生,以发挥他们的自主精神;尽量创造让学生活动的机会,以让学生在直接体验中建构自己的知识体系;尽量引导学生的发展和创造意识,以使他们能在再创造的氛围中学习.
教学过程:
一、复习引入:
⑴;
⑵
⑶的各项都是次式,
即展开式应有下面形式的各项:,,,,,
展开式各项的系数:上面个括号中,每个都不取的情况有种,即种,的系数是;恰有个取的情况有种,的系数是,恰有个取的情况有种,的系数是,恰有个取的情况有种,的系数是,有都取的情况有种,的系数是,
∴.
二、讲解新课:
二项式定理:
⑴的展开式的各项都是次式,即展开式应有下面形式的各项:
,,…,,…,,
⑵展开式各项的系数:
每个都不取的情况有种,即种,的系数是;
恰有个取的情况有种,的系数是,……,
恰有个取的情况有种,的系数是,……,
有都取的情况有种,的系数是,
∴,
这个公式所表示的定理叫二项式定理,右边的多项式叫的二项展开式,⑶它有项,各项的系数叫二项式系数,
⑷叫二项展开式的通项,用表示,即通项.
⑸二项式定理中,设,则
三、讲解范例:
例1.展开.
解一:.
解二:
.
例2.展开.
解:
.
例3.求的展开式中的倒数第项
解:的展开式中共项,它的倒数第项是第项,
.
例4.求(1),(2)的展开式中的第项.
解:(1),
(2).
点评:,的展开后结果相同,但展开式中的第项不相同
例5.(1)求的展开式常数项;
(2)求的展开式的中间两项
解:∵,
∴(1)当时展开式是常数项,即常数项为;
(2)的展开式共项,它的中间两项分别是第项、第项,
,
例6.(1)求的展开式的第4项的系数;
(2)求的展开式中的系数及二项式系数
解:的展开式的第四项是,
∴的展开式的第四项的系数是.
(2)∵的展开式的通项是,
∴,,
∴的系数,的二项式系数.
例7.求的展开式中的系数
分析:要把上式展开,必须先把三项中的某两项结合起来,看成一项,才可以用二项式定理展开,然后再用一次二项式定理,,也可以先把三项式分解成两个二项式的积,再用二项式定理展开
解:(法一)
,
显然,上式中只有第四项中含的项,
∴展开式中含的项的系数是
(法二):
∴展开式中含的项的系数是.
例8.已知的展开式中含项的系数为,求展开式中含项的系数最小值
分析:展开式中含项的系数是关于的关系式,由展开式中含项的系数为,可得,从而转化为关于或的二次函数求解
解:展开式中含的项为
∴,即,
展开式中含的项的系数为
,
∵,∴,
∴
,∴当时,取最小值,但,
∴时,即项的系数最小,最小值为,此时.
例9.已知的展开式中,前三项系数的绝对值依次成等差数列,
(1)证明展开式中没有常数项;(2)求展开式中所有的有理项
解:由题意:,即,∴舍去)
∴
①若是常数项,则,即,
∵,这不可能,∴展开式中没有常数项;
②若是有理项,当且仅当为整数,
∴,∴,
即展开式中有三项有理项,分别是:,,
例10.求的近似值,使误差小于.
解:,
展开式中第三项为,小于,以后各项的绝对值更小,可忽略不计,
∴,
一般地当较小时
四、课堂练习:
1.求的展开式的第3项.
2.求的展开式的第3项.
3.写出的展开式的第r+1项.
4.求的展开式的第4项的二项式系数,并求第4项的系数.
5.用二项式定理展开:
(1);(2).
6.化简:(1);(2)
7.展开式中的第项为,求.
8.求展开式的中间项
答案:1.
2.
3.
4.展开式的第4项的二项式系数,第4项的系数
5.(1);
(2).
6.(1);
(2)
7.展开式中的第项为
8.展开式的中间项为
五、小结:二项式定理的探索思路:观察——归纳——猜想——证明;二项式定理及通项公式的特点
六、课后作业:P36习题1.3A组1.2.3.4
七、板书设计(略)
八、教学反思:
(a+b)n=
这个公式表示的定理叫做二项式定理,公式右边的多项式叫做(a+b)n的,其中(r=0,1,2,……,n)叫做,叫做二项展开式的通项,它是展开式的第项,展开式共有个项.
掌握二项式定理和二项展开式的通项公式,并能用它们解决与二项展开式有关的简单问题。
培养归纳猜想,抽象概括,演绎证明等理性思维能力。教材的探求过程将归纳推理与演绎推理有机结合起来,是培养学生数学探究能力的极好载体,教学过程中,要让学生充分体验到归纳推理不仅可以猜想到一般性的结果,而且可以启发我们发现一般性问题的解决方法。
二项式定理是指
这样一个展开式的公式.它是(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3…等等展开式的一般形式,在初等数学中它各章节的联系似乎不太多,而在高等数学中它是许多重要公式的共同基础,根据二项式定理的展开,才求得y=xn的导数公式y′=nxn-1,同时=e≈2.718281…也正是由二项式定理的展开规律所确定,而e在高等数学中的地位更是举足轻重,概率中的正态分布,复变函数中的欧拉公式eiθ=cosθ+isinθ,微分方程中二阶变系数方程及高阶常系数方程的解由e的指数形式来表达.且直接由e的定义建立的y=lnx的导数公式y=与积分公式=dxlnx+c是分析学中用的最多的公式之一.而由y=xn的各阶导数为基础建立的泰勒公式;f(x)=f(x0)+(x-x0)2+…(x-x0)n+(θ∈(0,1))以及由此建立的幂级数理论,更是广泛深入到高等数学的各个分支中.
怎样使二项式定理的教学生动有趣
正因为二项式定理在初等数学中与其他内容联系较少,所以教材上教法就显得呆板,单调,课本上先给出一个(a+b)4用组合知识来求展开式的系数的例子.然后推广到一般形式,再用数学归纳法证明,因为证明写得很长,上课时的板书几乎占了整个黑板,所以课必然上得累赘,学生必然感到被动.那么多的算式学生看都不及细看,记也感到吃力,又怎能发挥主体作用?
怎样才能使得在这节课上学生获得主动?采用课前预习;自学辅导;还是学生讨论,或读,议、讲,练,或目标教学,还是设置发现情境?看来这些办法遇到真正困难时都会无能为力,因为这些方法都无法改变算式的冗长,证法的呆板,课堂上的新情境与学生的认知结构中的图式不协调的事实.
而MM教育方式即数学方法论的教育方式却能根据习题理论注意到充分利用数学方法与数学技术把所要证明或计算的形式变换得十分简洁,心理学家皮亚杰一再强调“认识起因于主各体之间的相互作用”[1]只有客体的形式与学生主体认知结构中的图式取得某种一致的时候,才能完成认识的主动建构,也就是学生获得真正的理解.
MM教育方式遵循“兴趣与能力的同步发展规律”和“教,学,研互相促进的规律”[2]在教学中追求简易,重视直观,并巧妙地在应用抽象使问题变得十分有趣,学生学得生动主动,充分发挥其课堂上的主体作用.二项式定理导学案
古人云,工欲善其事,必先利其器。作为高中教师就要早早地准备好适合的教案课件。教案可以让学生能够在课堂积极的参与互动,帮助高中教师能够井然有序的进行教学。写好一份优质的高中教案要怎么做呢?下面是小编精心为您整理的“二项式定理导学案”,供大家参考,希望能帮助到有需要的朋友。
第11课时
1.3.1二项式定理(一)
学习目标
1.用两个计数原理分析的展开式,归纳地得出二项式定理,并能用计数原理证明;
2.掌握二项展开式的通项公式;能应用它解决简单问题.
学习过程
一、学前准备
试试:用多项式乘法法则得到下列式子的展开式,并说出未合并同类项之前的项数与各项的形式.
(1);(2);(3)。
二、新课导学
◆探究新知(预习教材P29~P31,找出疑惑之处)
问题:如何利用两个计数原理得到
的展开式?你能由此猜想一下
的展开式是什么吗?
◆应用示例
例1.求的展开式。
例2.展开,并求第3项二项式系数和第6项系数。
例3.(1)求的展开式的第4项的系数;
(2)求的展开式中的系数。
◆反馈练习(课本P31练1-4)
1.写出的展开式.
2.求的展开式的第3项.
3.写出的展开式的第项.
4.的展开式的第6项的系数是()
A、B、C、D、
三、当堂检测
1.求的展开式。
2.求的展开式中的系数。
3.求二项式的展开式中的常数项。
四、课后作业
1.用二项式定理展开:.
3.求下列各式的二项展开式中指定各项的系数:(1)的含的项;
(2)的常数项。
二项式定理学案
俗话说,居安思危,思则有备,有备无患。高中教师在教学前就要准备好教案,做好充分的准备。教案可以更好的帮助学生们打好基础,帮助高中教师营造一个良好的教学氛围。那么,你知道高中教案要怎么写呢?以下是小编收集整理的“二项式定理学案”,仅供参考,欢迎大家阅读。
§1.5.1二项式定理
一、知识要点
1.二项式定理:
2.通项:
3.二项式系数与项的系数:
二、典型例题
例1.展开下列各式:
⑴⑵
例2.求的展开式中第4项的二项式系数和系数.
例3.求的二项展开式中的常数项.
例4.已知在的展开式中,第6项为常数项.
⑴求;⑵求含的项的系数;⑶求展开式中所有的有理项.
三、巩固练习
1.的展开式为.
2.的展开式中第3项的二项式系数是,第3项的系数为.
3.写出的展开式第项()为.
4.的展开式中含的项为.
5.的展开式中的常数项为.
四、课堂小结
五、课后反思
六、课后作业
1.展开式中项的系数为.
2.的展开式中,含的项的系数是.
3.在展开式中,项的系数是15,则实数=.
4.化简=.
5.的展开式中的常数项为.
6.若的展开式中,第2项小于第1项,且不小于第3项,则的取值范围是.
7.展开式中,含项的系数为.
8.若的展开式中的第3项与第5项的系数相等,求展开式中的系数.
9.二项式的展开式中第2,3,4项的二项式系数成等差数列,求展开式中的常数项.
10.求展开式中的所有的含的有理项.
订正栏:
文章来源:http://m.jab88.com/j/56469.html
更多