专题四:立体几何
阶段质量评估(四)
一、选择题(本大题共12小题,每小题5分,总分60分)
1.如右图所示,一个空间几何体的主视图和左视图都是边长为的正方形,俯视图是一个直径为的圆,那么这个几何体的全面积为()
A.B.
C.D.
2.下列四个几何体中,每个几何体的三视图
有且仅有两个视图相同的是()
A.①②B.①③C.①④D.②④
3.如图,设平面,垂足分别为,若增加一个条件,就能推出.
现有①②与所成的角相等;
③与在内的射影在同一条直线上;④∥.
那么上述几个条件中能成为增加条件的个数是()
个个个个
4.已知直线和平面,则下列命题正确的是()
AB
CD
5.空间直角坐标系中,点关于平面的对称点的坐标是()
A.B.C.D.
6.给定下列四个命题:
①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;
②若一条直线和两个平行平面中的一个平面垂直,那么这条直线也和另一个平面垂直;
③若一条直线和两个互相垂直的平面中的一个平面垂直,那么这条直线一定平行于另一个平面;
④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.
其中,为真命题的是()
A.①和②B.②和③C.③和④D.②和④
7.如图,正四棱柱中,,则异面直线所成角的余弦值为()
A.B.C.D.
8.如图,已知六棱锥的底面是正六边形,则下列结论正确的是()
A.B.
C.直线∥D.直线所成的角为45°
9.正六棱锥P-ABCDEF中,G为PB的中点,则三棱锥D-GAC与三棱锥P-GAC体积之比为()
(A)1:1(B)1:2(C)2:1(D)3:2
10.如图,在四面体中,截面是正方形,则在下列命题中,错误的为()
..∥截面
..异面直线与所成的角为
11.如图,在长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=1,则BC1与平面BB1D1D所成角的余弦值为()
A.B.
C.D.
12.如图,为正方体,下面结论错误的是()
(A)平面
(B)
(C)平面
(D)异面直线与所成的角为
二、填空题(本大题共4小题,每小题4分,总分16分)
13.图2中实线围成的部分是长方体(图1)的平面展开图,其中四边形ABCD是边长为1的正方形.若向虚线围成的矩形内任意抛掷一质点,它落在长方体的平面展开图内的概率是,则此长方体的体积是。
14.已知一圆锥的底面半径与一球的半径相等,且全面积也相等,则圆锥的母线与底面所成角的大小为.(结果用反三角函数值表示)
15.如图,在长方形中,,,为的中点,为线段(端点除外)上一动点.现将沿折起,使平面平面.在平面内过点,作,为垂足.设,则的取值范围是.
16.已知点O在二面角α-AB-β的棱上,点P在α内,且∠POB=45°.若对于β内异于O的任意一点Q,都有∠POQ≥45°,则二面角α-AB-β的取值范围是_________.
三、解答题(本大题共6小题,总分74分)
17.如图,在长方体,点E在棱AB上移动,小蚂蚁从点A沿长方体的表面爬到点C1,所爬的最短路程为.
(1)求证:D1E⊥A1D;
(2)求AB的长度;
(3)在线段AB上是否存在点E,使得二面角
。若存在,确定
点E的位置;若不存在,请说明理由.
18.如图,四棱锥P—ABCD的底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点.
(Ⅰ)证明PA//平面BDE;
(Ⅱ)求二面角B—DE—C的平面角的余弦值;
(Ⅲ)在棱PB上是否存在点F,使PB⊥平面DEF?证明你的结论.
19.如图所示的长方体中,底面是边长为的正方形,为与的交点,,
是线段的中点。
(Ⅰ)求证:平面;
(Ⅱ)求二面角的大小。
20.如图,已知三棱柱ABC—A1B1C1的侧棱与底面垂直,AA1=AB=AC=1,,M是CC1的中点,N是BC的中点,点P在A1B1上,且满足
(I)证明:
(II)当取何值时,直线PN与平面ABC
所成的角最大?并求该角最大值的正切值;
(II)若平面PMN与平面ABC所成的二面角
为45°,试确定点P的位置。
21.(本小题满分12分)
如图,四面体中,是的中点,和均为等边三角形,.
(I)求证:平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)求点到平面的距离.
22.如图,在中,,斜边.可以通过以直线为轴旋转得到,且二面角是直二面角.动点在斜边上.
(I)求证:平面平面;
(II)当为的中点时,求异面直线与所成角的大小;
(III)求与平面所成角的最大值.
参考答案
一、选择题
1.【解析】选A.。
2.【解析】选D.①三个都相同,②正视图和侧视图相同,③三个视图均不同,④正视图和侧视图相同。
3.C
4.【解析】选B.对A,,
对C画出图形可知,对D,缺少条件。
5.C
6.D
7.D
8.D
9.【解析】选C.由于G是PB的中点,故P-GAC的体积等于B-GAC的体积
在底面正六边形ABCDER中
BH=ABtan30°=AB
而BD=AB
故DH=2BH
于是VD-GAC=2VB-GAC=2VP-GAC
10.【解析】选.由∥,∥,⊥可得⊥,故正确;由∥可得∥截面,故正确;异面直线与所成的角等于与所成的角,故正确;综上是错误的.
11.【解析】选D.连与交于O点,再连BO,则为BC1与平面BB1D1D所成的角.
,,
.
12.【解析】选D.显然异面直线与所成的角为。
二、填空题
13.【解析】向虚线围成的矩形内任意抛掷一质点,它落在长方体的平面展开图内的概率是,设长方体的高为x,则,所以,所以长方体的体积为3。
答案:3
14.
15.【解析】此题的破解可采用二个极端位置法,即对于F位于DC的中点时,,随着F点到C点时,因平面,即有,对于,又,因此有,则有,因此的取值范围是.
答案:
16.【解析】若二面角α-AB-β的大小为锐角,则过点P向平面作垂线,设垂足为H.
过H作AB的垂线交于C,连PC、CH、OH,则就是所求二面角
的平面角.根据题意得,由于对于β内异于O的任意一点
Q,都有∠POQ≥45°,∴,设PO=,则
又∵∠POB=45°,∴OC=PC=,∵PC≤PH而在中应有
PCPH,∴显然矛盾,故二面角α-AB-β的大小不可能为锐角。
即二面角的范围是。
若二面角α-AB-β的大小为直角或钝角,则由于∠POB=45°,结合图形容易判断对于β内异于O的任意一点Q,都有∠POQ≥45°。
即二面角的范围是。
答案:
三、解答题
17.【解析】(1)证明:连结AD1,由长方体的性质可知:
AE⊥平面AD1,∴AD1是ED1在
平面AD1内的射影。又∵AD=AA1=1,
∴AD1⊥A1D
∴D1E⊥A1D1(三垂线定理)
(2)设AB=x,
点C1可能有两种途径,如图甲的最短路程为
如图乙的最短路程为
(3)假设存在,平面DEC的法向量,
设平面D1EC的法向量,则
由题意得:
解得(舍去)
18.【解析】(Ⅰ)以D为坐标原点,分别以DA、DC、DP所在直线为x轴、
y轴、z轴建立空间直角坐标系,设PD=DC=2,则A(2,0,0),
P(0,0,2),E(0,1,1),B(2,2,0),
设是平面BDE的一个法向量,
则由
∵
(Ⅱ)由(Ⅰ)知是平面BDE的一个法向量,
又是平面DEC的一个法向量.
设二面角B—DE—C的平面角为,由图可知
∴
故二面角B—DE—C的余弦值为
(Ⅲ)∵∴
假设棱PB上存在点F,使PB⊥平面DEF,设,
则,
由
∴
即在棱PB上存在点F,PB,使得PB⊥平面DEF
19.【解析】(Ⅰ)建立如图所示的空间直角坐标系.连接,则点、,
∴又点,,∴
∴,且与不共线,∴.
又平面,平面,∴平面.
(Ⅱ)∵,,∴平面,
∴为平面的法向量.
∵,,
∴为平面的法向量.
∴,
∴与的夹角为,即二面角的大小为.
20.解:(I)如图,以AB,AC,AA1分别为轴,建立空间直角坐标系
则2分
从而
所以…………3分
(II)平面ABC的一个法向量为
则
(※)…………5分
而
由(※)式,当…………6分
(III)平面ABC的一个法向量为
设平面PMN的一个法向量为
由(I)得
由…………7分
解得…………9分
平面PMN与平面ABC所成的二面角为45°,
解得11分
故点P在B1A1的延长线上,且…………12分
21.解法一:(I)证明:连结,为等边三角形,为的中点,
,和为等边三角形,为的中点,,
。
在中,,
,即.
,面.
(Ⅱ)过作于连结,
平面,在平面上的射影为
为二面角的平角。
在中,
二面角的余弦值为
(Ⅲ)解:设点到平面的距离为,
,
在中,,
而
点到平面的距离为.
解法二:(I)同解法一.
(Ⅱ)解:以为原点,如图建立空间直角坐标系,
则
平面,平面的法向量
设平面的法向量,
由
设与夹角为,则
∴二面角的余弦值为.
(Ⅲ)解:设平面的法向量为又
设与夹角为,则
设到平面的距离为,
到平面的距离为.
22.【解析】解法一:
(I)由题意,,,
是二面角的平面角,
又二面角是直二面角,
,又,
平面,
又平面.
平面平面.
(II)作,垂足为,连结(如图),则,
是异面直线与所成的角.
在中,,,
.
又.
在中,.
异面直线与所成角的大小为.
(III)由(I)知,平面,
是与平面所成的角,且.
当最小时,最大,
这时,,垂足为,,,
与平面所成角的最大值为.
解法二:
(I)同解法一.
(II)建立空间直角坐标系,如图,则,,,,
,,
.
异面直线与所成角的大小为.
(III)同解法一
第4讲不等式
(推荐时间:60分钟)
一、填空题
1.(2011广东改编)不等式2x2-x-10的解集是____________________.
2.(2011上海)不等式x+1x≤3的解集为____________.
3.“a+cb+d”是“ab且cd”的________条件.
4.不等式x2-43|x|的解集是____________.
5.已知正数x,y满足x2+y2=1,则1x+1y的最小值为________.
6.设命题甲:ax2+2ax+10的解集是实数集R;命题乙:0a1.则命题甲是命题乙成立的______________条件.
7.(2011浙江)若实数x,y满足x2+y2+xy=1,则x+y的最大值是________.
8.设实数x,y满足x-y-2≤0,x+2y-4≥0,2y-3≤0,则当yx37时,实数x,y满足的不等式组为____________.
9.设a>b>0,则a2+1ab+1a(a-b)的最小值是________.
10.若关于x的不等式(2x-1)2ax2的解集中整数恰好有3个,则实数a的取值范围是__________.
11.若不等式x2+ax+1≥0对于一切x∈0,12恒成立,则a的最小值是________.
12.若a0,b0,a+b=2,则下列不等式对一切满足条件的a,b恒成立的是______(写出所有正确命题的序号).
①ab≤1;②a+b≤2;③a2+b2≥2;
④a3+b3≥3;⑤1a+1b≥2.
二、解答题
13.已知二次函数f(x)=ax2+x有最小值,不等式f(x)0的解集为A.
(1)求集合A;
(2)设集合B={x||x+4|a},若集合B是集合A的子集,求a的取值范围.
14.如图所示,动物园要围成相同面积的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成.
(1)现有可围36m长的钢筋网材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼面积最大?
(2)若使每间虎笼面积为24m2,则每间虎笼的长、宽各设计为多少时,可使围成四间虎笼的钢筋网总长最小?
15.已知函数f(x)=13ax3-14x2+cx+d(a,c,d∈R)满足f(0)=0,f′(1)=0,且f′(x)≥0在R上恒成立.
(1)求a,c,d的值;
(2)若h(x)=34x2-bx+b2-14,解不等式f′(x)+h(x)0.
答案
1.(-∞,-12)∪(1,+∞)2.x|x≥12或x0
3.必要不充分4.(-∞,-4)∪(4,+∞)
5.226.必要不充分
7.2338.3x-7y0,x+2y-4≥0,2y-3≤0
9.410.259,491611.-5212.①③⑤
13.解(1)二次函数f(x)=ax2+x有最小值,所以,a0,由f(x)0,
解得A=-1a,0.
(2)解得B=(-a-4,a-4),
因为集合B是集合A的子集,
所以-1a≤-a-4,a-4≤0,
-2-5≤a≤-2+5,a≤4,
解得0a≤-2+5.
14.解设每间虎笼的长、宽分别为xm、ym.则s=xy.
(1)由题意知:4x+6y=36,
∴2x+3y=18.
又2x+3y≥26xy,
∴xy≤(2x+3y)224=18224=272,
当且仅当2x=3y=9,即x=4.5,y=3时,s=xy最大,
∴每间虎笼的长为4.5m,宽为3m时,每间虎笼面积最大.
(2)由题意知xy=24,
4x+6y≥224xy=48,
当且仅当4x=6y时,取得等号成立.
由4x=6yxy=24得x=6,y=4,
∴每间虎笼的长为6m,宽为4m时,
可使钢筋网总长最小.
15.解(1)∵f(0)=0,∴d=0,
∵f′(x)=ax2-12x+c.
又f′(1)=0,∴a+c=12.
∵f′(x)≥0在R上恒成立,
即ax2-12x+c≥0恒成立,
∴ax2-12x+12-a≥0恒成立,
显然当a=0时,上式不恒成立.
∴a≠0,
∴a0,(-12)2-4a(12-a)≤0,即a0,a2-12a+116≤0,即a0,(a-14)2≤0,
解得:a=14,c=14.
(2)∵a=c=14.
∴f′(x)=14x2-12x+14.
f′(x)+h(x)0,即14x2-12x+14+34x2-bx+b2-140,
即x2-(b+12)x+b20,
即(x-b)(x-12)0,
当b12时,解集为(12,b),
当b12时,解集为(b,12),
当b=12时,解集为.
俗话说,凡事预则立,不预则废。教师在教学前就要准备好教案,做好充分的准备。教案可以让学生更容易听懂所讲的内容,使教师有一个简单易懂的教学思路。教案的内容具体要怎样写呢?小编为此仔细地整理了以下内容《2012届高考数学第二轮数列备考复习教案》,相信能对大家有所帮助。
2012届高考数学二轮复习资料
专题三数列(教师版)
【考纲解读】
1.理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.
2.理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能运用公式解答简单的问题.
3.理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能运用公式解决简单的问题.
【考点预测】
1.等差(比)数列的基本知识是必考内容,这类问题既有选择题、填空题,也有解答题;难度易、中、难三类皆有.
2.数列中an与Sn之间的互化关系也是高考的一个热点.
3.函数思想、方程思想、分类讨论思想等数学思想方法在解决问题中常常用到,解答试题时要注意灵活应用.
4.解答题的难度有逐年增大的趋势,还有一些新颖题型,如与导数和极限相结合等.
因此复习中应注意:
1.数列是一种特殊的函数,学习时要善于利用函数的思想来解决.如通项公式、前n项和公式等.
2.运用方程的思想解等差(比)数列,是常见题型,解决此类问题需要抓住基本量a1、d(或q),掌握好设未知数、列出方程、解方程三个环节,常通过“设而不求,整体代入”来简化运算.
3.分类讨论的思想在本章尤为突出.学习时考虑问题要全面,如等比数列求和要注意q=1和q≠1两种情况等等.
4.等价转化是数学复习中常常运用的,数列也不例外.如an与Sn的转化;将一些数列转化成等差(比)数列来解决等.复习时,要及时总结归纳.
5.深刻理解等差(比)数列的定义,能正确使用定义和等差(比)数列的性质是学好本章的关键.
6.解题要善于总结基本数学方法.如观察法、类比法、错位相减法、待定系数法、归纳法、数形结合法,养成良好的学习习惯,定能达到事半功倍的效果.
7.数列应用题将是命题的热点,这类题关键在于建模及数列的一些相关知识的应用.
【要点梳理】
1.证明数列是等差数列的两种基本方法:(1)定义法:为常数;(2)等差中项法:.
2.证明数列是等比数列的两种基本方法:(1)定义法:(非零常数);(2)等差中项法:.
3.常用性质:(1)等差数列中,若,则;
(2)等比数列中,若,则.
4.求和:
(1)等差等比数列,用其前n项和求出;
(2)掌握几种常见的求和方法:错位相减法、裂项相消法、分组求和法、倒序相加法;
(3)掌握等差等比数列前n项和的常用性质.
【考点在线】
考点1等差等比数列的概念及性质
在等差、等比数列中,已知五个元素或,中的任意三个,运用方程的思想,便可求出其余两个,即“知三求二”。本着化多为少的原则,解题时需抓住首项和公差(或公比)。另外注意等差、等比数列的性质的运用.例如
(1)等差数列中,若,则;等比数列中,若,则.
(2)等差数列中,成等差数列。其中是等差数列的前n项和;等比数列中(),成等比数列。其中是等比数列的前n项和;
(3)在等差数列中,项数n成等差的项也称等差数列.
(4)在等差数列中,;.
在复习时,要注意深刻理解等差数列与等比数列的定义及其等价形式.注意方程思想、整体思想、分类讨论思想、数形结合思想的运用.
例1.(2011年高考重庆卷理科11)在等差数列中,,则
.
【答案】74
【解析】,故
【名师点睛】本题考查等差数列的性质.
【备考提示】:熟练掌握等差等比数列的概念与性质是解答好本类题的关键.
考点2数列的递推关系式的理解与应用
在解答给出的递推关系式的数列问题时,要对其关系式进行适当的变形,转化为常见的类型进行解题。如“逐差法”若且;我们可把各个差列出来进行求和,可得到数列的通项.
再看“逐商法”即且,可把各个商列出来求积。
另外可以变形转化为等差数列与等比数列,利用等差数列与等比数列的性质解决问题.
例2.(2011年高考四川卷文科9)数列{an}的前n项和为Sn,若a1=1,an+1=3Sn(n≥1),则a6=()
(A)3×44(B)3×44+1
(C)44(D)44+1
【答案】A
【解析】由题意,得a2=3a1=3.当n≥1时,an+1=3Sn(n≥1)①,所以an+2=3Sn+1②,
②-①得an+2=4an+1,故从第二项起数列等比数列,则a6=3×44.
【名师点睛】本小题主要考查与的关系:,数列前n项和和通项是数列中两个重要的量,在运用它们的关系式时,一定要注意条件,求通项时一定要验证是否适合。解决含与的式子问题时,通常转化为只含或者转化为只的式子.
【备考提示】:递推数列也是高考的内容之一,要熟练此类题的解法,这是高考的热点.
练习2.(2011年高考辽宁卷文科5)若等比数列{an}满足anan+1=16n,则公比为()[Z
(A)2(B)4(C)8(D)16
【答案】B
【解析】设公比是q,根据题意a1a2=16①,a2a3=162②,②÷①,得q2=16.因为a12q=160,a120,则q0,q=4.
考点3数列的通项公式与前n项和公式的应用
等差、等比数列的前n项和公式要深刻理解,等差数列的前n项和公式是关于n的二次函数.等比数列的前n项和公式(),因此可以改写为是关于n的指数函数,当时,.
例3.(2011年高考江苏卷13)设,其中成公比为q的等比数列,成公差为1的等差数列,则q的最小值是.
【答案】
【解析】由题意:,
【答案】A
【解析】通过,设公比为,将该式转化为,解得=-2,带入所求式可知答案选A,本题主要考察了本题主要考察了等比数列的通项公式与前n项和公式.
考点4.数列求和
例4.(山东省济南市2011年2月高三教学质量调研理科20题)
已知为等比数列,;为等差数列的前n项和,.
(1)求和的通项公式;
(2)设,求.
【解析】(1)设的公比为,由,得所以
设的公差为,由得,
所以
(2)
①
②
②-①得:
所以
【名师点睛】本小题主要考查等比等差数列的通项公式及前n项和公式、数列求和等基础知识,考查运算能力、综合分析和解决问题的能力.
【备考提示】:熟练数列的求和方法等基础知识是解答好本类题目的关键.
练习4.(2010年高考山东卷文科18)
已知等差数列满足:,.的前n项和为.
(Ⅰ)求及;(Ⅱ)令(),求数列的前n项和.
【解析】(Ⅰ)设等差数列的公差为d,因为,,所以有
考点5等差、等比数列的综合应用
解综合题要总揽全局,尤其要注意上一问的结论可作为下面论证的已知条件,在后面求解的过程中适时应用.
例5.(2011年高考浙江卷理科19)已知公差不为0的等差数列的首项(),设数列的前n项和为,且,,成等比数列(Ⅰ)求数列的通项公式及(Ⅱ)记,,当时,试比较与的大小.[
当时,即;
所以当时,;当时,.
【名师点睛】本小题主要考查等差等比数列的通项与前n项和等基本知识,考查逻辑思维能力、分析问题和解决问题的能力.
【备考提示】:熟练掌握等差等比数列的基础知识是解决本类问题的关键.
练习5.(2011年高考天津卷文科20)
已知数列与满足,,且.
(Ⅰ)求的值;
(Ⅱ)设,,证明是等比数列;
(Ⅲ)设为的前n项和,证明.
【解析】(Ⅰ)由,可得
,,
当n=1时,由,得;
当n=2时,可得.
(Ⅱ)证明:对任意,--------①
---------------②
②-①得:,即,于是,所以是等比数列.
(Ⅲ)证明:,由(Ⅱ)知,当且时,
=2+3(2+)=2+,故对任意,,
由①得所以,,
因此,,于是,
故=,
所以.
【易错专区】
问题:已知,求时,易忽视的情况
例.(2010年高考上海卷文科21)
已知数列的前项和为,且,
(1)证明:是等比数列;
(2)求数列的通项公式,并求出使得成立的最小正整数.
【考题回放】
1.(2011年高考安徽卷文科7)若数列的通项公式是,则()
(A)15(B)12(C)(D)
【答案】A
【解析】法一:分别求出前10项相加即可得出结论;
法二:,故.故选A.
2.(2011年高考江西卷文科5)设{}为等差数列,公差d=-2,为其前n项和.若,则=()
A.18B.20C.22D.24
【答案】B
【解析】.
3.(2011年高考江西卷理科5)已知数列{}的前n项和满足:,且=1.那么=()
A.1B.9C.10D.55
【答案】A
【解析】因为,所以令,可得;令,可得;同理可得,,,
,所以=,故选A.
4.(2011年高考四川卷理科8)数列的首项为,为等差数列且.若则,,则()
(A)0(B)3(C)8(D)11
【答案】B
【解析】由已知知由叠加法.
5.(2010年高考全国Ⅰ卷文科4)已知各项均为正数的等比数列{},=5,=10,则=()
(A)(B)7(C)6(D)
【答案】A
【解析】由等比数列的性质知,10,所以,所以.
6.(2010年高考全国卷Ⅱ文科6)如果等差数列中,++=12,那么++…+=()
(A)14(B)21(C)28(D)35
【答案】C
【解析】∵,∴
7.(2009年高考安徽卷理科第5题)已知为等差数列,++=105,=99,以表示的前项和,则使得达到最大值的是高.()
【解析】设公比为,由已知得,即,因为等比数列的公比为正数,所以,故,选B
9.(2009年高考湖南卷文科第3题)设是等差数列的前n项和,已知,,则等于()
A.13B.35C.49D.63
【答案】C
【解析】故选C.
或由,
所以故选C.
10.(2009年高考福建卷理科第3题)等差数列的前n项和为,且=6,=4,则公差d等于()
A.1BC.-2D3
【答案】C
【解析】∵且.故选C
11.(2009年高考江西卷理科第8题)数列的通项,其前项和为,则为()
A.B.C.D.
【答案】A
【解析】由于以3为周期,故
故选A
12.(2011年高考湖北卷文科9)《九章算术》“竹九节”问题:现有一根9节的竹子,自下而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为()
A.1升B.升C.升D.升
【答案】D
【解析】设9节竹子的容积从上往下依次为a1,a2,……a9,公差为d,则有a1+a2+a3+a4=3,a7+a8+a9=4,即4a5-10d=3,3a5+9d=4,联立解得:,所以选B.
13.(2011年高考湖南卷理科12)设是等差数列的前项和,且,,则.
【答案】25
【解析】因为,,所以,则.故填25
14.(2011年高考广东卷理科11)等差数列前9项的和等于前4项的和.若,则.
【答案】10
【解析】由题得.
【解析】则
于是令得,则,时递增,令得,则,时递减,故是最大项,即.
17.(2011年高考江西卷文科21)(本小题满分14分)
(1)已知两个等比数列,满足,
若数列唯一,求的值;
(2)是否存在两个等比数列,使得成公差为
的等差数列?若存在,求的通项公式;若存在,说明理由.
【解析】(1)要唯一,当公比时,由且,
,最少有一个根(有两个根时,保证仅有一个正根)
,此时满足条件的a有无数多个,不符合。
当公比时,等比数列首项为a,其余各项均为常数0,唯一,此时由,可推得符合
综上:。
(2)假设存在这样的等比数列,则由等差数列的性质可得:,整理得:
要使该式成立,则=或此时数列,公差为0与题意不符,所以不存在这样的等比数列.
18.(2011年高考福建卷文科17)(本小题满分12分)
已知等差数列{an}中,a1=1,a3=-3.
(I)求数列{an}的通项公式;
(II)若数列{an}的前k项和Sk=-35,求k的值.
【解析】(I)设等差数列{an}的公差为,则,由,可得,解得
,从而.
(II)由(I)可知,所以,由Sk=-35,可得,
即,解得或,又,故.
19.(2011年高考湖南卷文科20)(本题满分13分)
某企业在第1年初购买一台价值为120万元的设备M,M的价值在使用过程中逐年减少,从第2年到第6年,每年初M的价值比上年初减少10万元;从第7年开始,每年初M的价值为上年初的75%.
(I)求第n年初M的价值的表达式;
(II)设若大于80万元,则M继续使用,否则须在第n年初对M更新,证明:须在第9年初对M更新.
【解析】(I)当时,数列是首项为120,公差为的等差数列.
因为是递减数列,所以是递减数列,又
所以须在第9年初对M更新.
20.(2011年高考四川卷文科20)(本小题共12分)
已知﹛﹜是以为首项,q为公比的等比数列,为它的前项和.
(Ⅰ)当成等差数列时,求q的值;
(Ⅱ)当,,成等差数列时,求证:对任意自然数也成等差数列.
【解析】(Ⅰ)当时,,因为成等差数列,所以,解得,因为,故;
当时,,由成等差数列得,得,即,.
21.(2010年高考天津卷文科22)(本小题满分14分)
在数列中,=0,且对任意k,成等差数列,其公差为2k.
(Ⅰ)证明成等比数列;(Ⅱ)求数列的通项公式;
(Ⅲ)记,证明.
【解析】(I)证明:由题设可知,,,,,.从而,所以,,成等比数列.
(II)解:由题设可得
所以
.
由,得,从而.
所以数列的通项公式为或写为,。
(III)证明:由(II)可知,,
以下分两种情况进行讨论:
(1)当n为偶数时,设n=2m
若,则,
若,则
.
所以,从而
(2)当n为奇数时,设。
所以,从而
综合(1)和(2)可知,对任意有
22.(2010年高考北京卷文科16)(本小题共13分)
已知为等差数列,且,。
(Ⅰ)求的通项公式;
(Ⅱ)若等差数列满足,,求的前n项和公式
【解析】(Ⅰ)设等差数列的公差。
23.(2010年高考江西卷文科22)(本小题满分14分)
正实数数列中,,,且成等差数列.
(1)证明数列中有无穷多项为无理数;
(2)当为何值时,为整数,并求出使的所有整数项的和.
【解析】证明:(1)由已知有:,从而,
方法一:取,则.
用反证法证明这些都是无理数.
假设为有理数,则必为正整数,且,
故.,与矛盾,
所以都是无理数,即数列中有无穷多项为无理数;
方法二:因为,当得末位数字是3,4,8,9时,的末位数字是3和7,它不是整数的平方,也不是既约分数的平方,故此时不是有理数,因这种有无穷多,故这种无理项也有无穷多.
(2)要使为整数,由可知:同为偶数,且其中一个必为3的倍数,所以有或当时,有又必为偶数,所以满足
即时,为整数;同理有
也满足
即时,为整数;显然和是数列中的不同项;所以当和时,为整数;由有,
由有.
设中满足的所有整数项的和为,则
.
24.(2010年高考浙江卷文科19)(本题满分14分)设a1,d为实数,首项为a1,公差为d的等差数列{an}的前n项和为Sn,满足+15=0.
(Ⅰ)若=5,求及a1;(Ⅱ)求d的取值范围.
【解析】(Ⅰ)解:由题意知S6==-3,
A6=S6-S5=-8所以解得a1=7,所以S6=-3,a1=7
(Ⅱ)解:因为S5S6+15=0,所以(5a1+10d)(6a1+15d)+15=0,即2a12+9da1+10d2+1=0.
【解析】通过,设公比为,将该式转化为,解得=-2,带入所求式可知答案选A,本题主要考察了本题主要考察了等比数列的通项公式与前n项和公式
2.(2010年高考安徽卷文科5)设数列的前n项和,则的值为()
(A)15(B)16(C)49(D)64
【答案】A
【解析】.
3.(2010年高考山东卷文科7)设是首项大于零的等比数列,则“”是“数列是递增数列”的()
(A)充分而不必要条件(B)必要而不充分条件
(C)充分必要条件(D)既不充分也不必要条件
【答案】C
【解析】若已知,则设数列的公比为,因为,所以有,解得又,所以数列是递增数列;反之,若数列是递增数列,则公比且,所以,即,所以是数列是递增数列的充分必要条件。
4.(2010年高考江西卷文科7)等比数列中,,,,则
A.B.C.D.
5.(2010年高考辽宁卷文科3)设为等比数列的前项和,已知,,则公比()
(A)3(B)4(C)5(D)6
【答案】B
【解析】两式相减得,,.
6.(2010年高考广东卷文科4)已知数列{}为等比数列,是它的前n项和,若,
且与的等差中项为,则S5=w()
A.35B.33C.31D.29
7.(2010年高考重庆卷文科2)在等差数列中,,则的值为()
(A)5(B)6
(C)8(D)10
【答案】A
【解析】由角标性质得,所以=5.
8.(2010年高考湖北卷文科7)已知等比数列{}中,各项都是正数,且,成等差数列,则()
A.B.C.D
【答案】C
二.填空题:
13.(2009年高考北京卷文科第10题)若数列满足:,则
;前8项的和.(用数字作答)
【答案】255
【解析】,
易知.
14.(2010年高考辽宁卷文科14)设为等差数列的前项和,若,则。
【答案】15
【解析】由,解得,
15.(浙江省温州市2011年高三第一次适应性测试理科)已知数列是公比为的等比数列,集合,从中选出4个不同的数,使这4个数成等比数列,这样得到4个数的不同的等比数列共有.
【答案】
【解析】以公比为的等比数列有…共组;
以公比为的等比数列有…共组;
以公比为的等比数列有共组.
再考虑公比分别为的情形,可得得到4个数的不同的等比数列共有个.
三.解答题:
17.(2009年高考山东卷理科第20题)(本小题满分12分)
等比数列{}的前n项和为,已知对任意的,点,均在函数的图像上.
(Ⅰ)求r的值;
(文科)(Ⅱ)当b=2时,记,求数列的前n项和.
(理科)(Ⅱ)当b=2时,记,证明:对任意的,不等式成立
【解析】(Ⅰ)由题意知:,
当时,,
由于且所以当时,{}是以为公比的等比数列,
又,,即解得.
(理科)(Ⅱ)∵,∴当时,,
又当时,,适合上式,∴,,
∴,
下面用数学归纳法来证明不等式:
证明:(1)当时,左边=右边,不等式成立.
(2)假设当时,不等式成立,即,
则当时,
不等式左边=
所以当时,不等式也成立,
综上(1)(2)可知:当时,不等式恒成立,
所以对任意的,不等式成立.
(文科)(Ⅱ)由(Ⅰ)知,,,所以=,
,
+,
两式相减得:
,
故=.
(Ⅱ)因为,…10分
所以
.…14分
19.(天津市南开中学2011年3月高三月考文科)已知数列的前以项和为且对于任意的恒有设
(1)求证:数列是等比数列;(2)求数列的通项公式和
(3)若证明:
【解析】(1)当n=l时,得
当时,两式相减得:
是以为首项,2为公比的等比数列.……………………4分
(2)由(1)得
……………………………………8分
由为正项数列,所以也为正项数列,
从而所以数列递减,
所以…12分
另证:由
所以
20.(天津市红桥区2011届高三一模文科)(本题满分14分)
设数列的前项和为,且;数列为等差数列,且。
(1)求数列的通项公式;
(2)若为数列的前项和,求证:。
【解析】(1)由,
(2)数列为等差数列,公差
从而
从而
21.(山东省济南市2011年2月高三教学质量调研文科)
已知{an}是递增的等差数列,满足a2a4=3,a1+a5=4.
(1)求数列{an}的通项公式和前n项和公式;
(2)设数列{bn}对n∈N*均有成立,求数列{bn}的通项公式.
22.(山东省青岛市2011年3月高考第一次模拟理科)已知数列满足,且,为的前项和.
(Ⅰ)求证:数列是等比数列,并求的通项公式;
(Ⅱ)如果对任意,不等式恒成立,求实数的取值范围.
【解析】(Ⅰ)对任意,都有,所以
则成等比数列,首项为,公比为…………2分
所以,…………4分
(Ⅱ)因为
所以…………6分
因为不等式,化简得对任意恒成立…………7分
设,则…………8分
当,,为单调递减数列,当,,为单调递增数列
,所以,时,取得最大值…………11分
所以,要使对任意恒成立,…………12分
一名优秀的教师在教学时都会提前最好准备,作为高中教师就要精心准备好合适的教案。教案可以让学生们充分体会到学习的快乐,帮助授课经验少的高中教师教学。那么,你知道高中教案要怎么写呢?急您所急,小编为朋友们了收集和编辑了“2012届高考数学第二轮备考复习:函数的单调性、最值、极值问题”,欢迎阅读,希望您能够喜欢并分享!
题型九函数的单调性、最值、极值问题
(推荐时间:30分钟)
1.已知函数f(x)=ax3+bx2+cx在点x0处取得极小值5,其导函数的图象经过(1,0),(2,0),如图所示,求:
(1)x0的值;
(2)a,b,c的值;
(3)f(x)的极大值.
2.已知函数f(x)=xlnx.
(1)求f(x)的最小值;
(2)讨论关于x的方程f(x)-m=0(m∈R)的解的个数.
答案
1.解f′(x)=3ax2+2bx+c,
(1)观察图象,我们可发现当x∈(-∞,1)时,f′(x)0,此时f(x)为增函数;
当x∈(1,2)时,f′(x)0,此时f(x)为减函数;
当x∈(2,+∞)时,f′(x)0,此时f(x)为增函数,
因此在x=2处函数取得极小值.
结合已知,可得x0=2.
(2)由(1)知f(2)=5,即8a+4b+2c=5.
再结合f′(x)的图象可知,方程f′(x)=3ax2+2bx+c=0的两根分别为1,2,
那么1+2=-2b3a,1×2=c3a即2b=-9a,c=6a.
联立8a+4b+2c=5,得a=52,b=-454,c=15.
(3)由(1)知f(x)在x=1处函数取得极大值,
∴f(x)极大值=f(1)=a+b+c=52-454+15=254.
2.解(1)f(x)的定义域为(0,+∞),f′(x)=lnx+1,
令f′(x)=0,得x=1e,
当x∈(0,+∞)时,f′(x),f(x)的变化情况如下:
x0,1e
1e
1e,+∞
f′(x)-0+
f(x)?
极小值?
所以,f(x)在(0,+∞)上的最小值是f1e=-1e.
(2)当x∈0,1e时,f(x)单调递减且f(x)的取值范围是-1e,0;
当x∈1e,+∞时,f(x)单调递增且f(x)的取值范围是-1e,+∞,
下面讨论f(x)-m=0的解,
当m-1e时,原方程无解;
当m=-1e或m≥0,原方程有唯一解;
当-1em0时,原方程有两解.
文章来源:http://m.jab88.com/j/52036.html
更多