88教案网

数据的收集与整理(省优质课的教案)

每个老师需要在上课前弄好自己的教案课件,大家在认真准备自己的教案课件了吧。写好教案课件工作计划,才能规范的完成工作!你们会写一段优秀的教案课件吗?考虑到您的需要,小编特地编辑了“数据的收集与整理(省优质课的教案)”,相信能对大家有所帮助。

第四章数据的收集与整理

§4.1喜爱哪种动物的同学最多——全面调查举例(第1课时)

从教学目标的三个方面进行简练的小结,帮助学生养成用数据说理的好习惯.

让学生加深对洋快餐危害的了解.

教学设计的几点说明:

1、为实现课程改革中“以学生的发展为本”的基本理念,本节课的设计不拘泥于原教材的内容安排,充分结合学生的生活经验和已有的知识体验,遵循学生认知的心理规律,对教学内容进行了重组和加工,从容易引起学生合情猜想的实际问题出发,激发学生的学习热情,进而优化课堂教学,促进学生的发展.

2、关于教学方法,为充分调动学生的学习积极性,使学生能够主动愉快地学习,我在课堂教学过程中始终贯彻“教师为主导、学生为主体”的数学教学思想,通过引导学生亲身经历统计活动的过程,让学生主动参与到教学全过程中来.

3、在教学手段方面,使用多媒体辅助教学.现代教育技术与课堂教学的有机整合,使得学生在轻松愉快的氛围中学习,从而大大提高了课堂教学效率.

4、关于教学过程,按照“创设情境,引入新课”——“提出问题,引发思考”——“设计问卷,收集数据”——“利用表格,整理数据”——“描述数据,分析数据”——“问题解决,及时巩固”——“归纳小结,布置作业”的程序展开,以趣味性较强的动画引入课题,提高学生学习积极性,主动性,进而水到渠成地得出数据处理的四个环节,让学生在轻松愉快的环境中学习到新知识.在设计课堂练习时,以“吃洋快餐的情况”作为调查对象,既提高了学生的学习兴趣,又渗透了科学健康的饮食观念.

精选阅读

25.1随机事件(省优质课的教案)


课题:25.1随机事件

教材分析

本节课提出了必然事件,不可能事件,随机事件的概念,并用枚举、实验、小组讨论等方法,逐步形成对随机事件的特点及定义的理性认识,是一节“概率”的起始课。学生学会怎样用观察的方法去认识身边随机现象。在新课程理念的指导下,注重对学生的动手能力,合作交流能力和对学生探究问题的习惯和意识的培养。

本节课掌握得如何,直接关系“概率”整个知识体系的“坚实”性。

教学目标

知识技能

①理解必然事件、不可能事件、随机事件的概念。

②会根据经验判断一个简单事件是属于必然事件、不可能事件、还是随机事件。

数学思考

①经历体验、操作、观察、归纳、总结的过程,发展学生从复杂的表象中,提炼出本质特征并加以抽象概括的能力。

②从事件的实际情形出发,会分析事件发生的可能性。

解决问题

能根据随机事件的特点,辨别哪些事件是随机事件,并在解决实际问题的过程中体会与他人的合作。

情感态度

感受数学与现实生活的联系,在独立思考的基础上,积极参与对数学问题的讨论,获得成功的体验。

教学难点

随机事件的特点,判断现实生活中哪些事件是随机事件。

知识重点

随机事件概念的形成

教具准备

多媒体、课件、口袋和小球(开拓学生视野,激发学生学习兴趣)

教学过程(师生活动)

设计理念

欣赏

(结合动画欣赏)播放一段天气预报,“天有不测风云”,这句话被引申为世界上有很多事情具有偶然性,人们不能事先判定这些事情是否会发生?但是随着人们对事件发生可能性的深入研究,人们发现许多偶然事件的发生也是有规律可循的。课题:随机事件

激发学生的兴趣,让学生体会数学来源于生活,生活中处处有数学。

创设情境

观察实例哪些是必然发生的,哪些是不可能发生的?

从日常生活的经验和常识入手,调动学生的积极性,让学生在感性上接受“必然事件”、“不可能事件”的概念。

探索分析

解决问题

问题一

5名同学参加讲演比赛,以抽签方式决定每个人的出场顺序,签筒中有5根形状、大小相同的纸签,上面分别标有出场序号1,2,3,4,5。小军首先抽签,他在看不到签上的数字的情况下从签筒中随机(任意)地取一根纸签,考虑以下问题:

①抽到的序号有几种可能的结果?

②抽到的序号小于6吗?

③抽到的序号会是0吗?

④抽到的序号会是1吗?

问题二

小伟掷一个质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,请考虑以下问题:掷一次骰子,在骰子向上的一面上,

①可能出现哪些点数?

②出现的点数大于0吗?

③出现的点数会是7吗?

④出现的点数会是4吗?

注意强调二个问题中的第④个问题的结果是否确定?有什么共同特点?

在一定条件下可能发生也可能不发生的事件,称为随机事件(randomevent).

从扔硬币、掷骰子和玩扑克等简单的机会游戏,到复杂的社会现象;从婴儿的诞生,到世间万物的繁衍生息;从流星坠落,到大自然的千变万化……,我们无时无刻不面临着不确定性和随机性.

(这两次试验较简单,学生不假思索即可回答,但我们要的并不只是学生的答案,更注重的是学生是否经历了猜测、检验等过程。因此,在这个环节,一定要留给学生猜测、检验的时间,让学生经历这一数学活动过程,同时也为后面的学习做好铺垫。)通过探究与讨论,形成对随机事件定义的理性认识。

巩固练习

1.做一做

在某次国际乒乓球单打比赛中,我国运动员张怡宁、王楠经过奋力拼搏,一路过关斩将,会师最后决赛,那么,在比赛开始前,你能确定该项比赛的

(1)冠军属于中国吗?必然事件

(2)冠军属于外国选手吗?不可能事件

(3)冠军属于王楠吗?随机事件

2.相信你会很快完成

下列事件中,哪些是必然发生的,哪些是不可能发生的,哪些是随机事件。

(1)通常加热到100℃时,水沸腾;

(2)篮球队员在罚线上投篮一次,未投中;

(3)掷一枚骰子,向上的一面是6点;

(4)度量三角形的内角和,结果是360°;

(5)经过城市中某一有交通信号灯的路口,遇到红灯;

(6)某射击运动员射击一次,命中靶心。

在学生了解和接受了“必然事件”、“不可能事件”、“随机事件”的概念后,结合自己的生活常识与经验,完成题组练习。(多媒体显示)

本题考察学生对必然发生事件、不可能发生事件和随机事件的理解与判断。

合作交流

自由讨论

同桌为一组,每位同学各举一例事件,让对方判断它是什么事件?(同桌的两位同学讨论,全班交流,深化概念。)

在举例中使学生体会概念的条件,随着条件的改变事件是可转化的,体现了辩证的观点。体现了合作交流、共同提高的原则,也体现了数学从生活中来到生活中去的原则

合作学习,强化概念,巩固新知。让学生自己举例子加深对概念的理解,充分发挥学生的想象力和创新力,有利于学生发散思维的培养;充分肯定学生有利于学生信心的提高。

拓展演练

(摸球游戏)现在有一个口袋,4个黄球,2个

白球,每个球除颜色外全部相同。

请你们按要求放球:

①任意摸出一球是黄球是不可能事件

②任意摸出两球,一个是黄球,一个是白球是必然事件

③任意摸出两球,都是黄球随机事件

④任意摸出三个球,两个是黄球,一个是白球是随机事件

通过学生动手设计摸球游戏,通过演练达到深化理解和认识随机事件、必然事件和不可能事件。

故事明理

(生死签)相传古代有个王国,国王非常阴险而多疑,一位正直的大臣得罪了国王,被叛死刑,这个国家世代沿袭着一条奇特的法规:凡是死囚,在临刑前都要抽一次“生死签”(写着“生”和“死”的两张纸条),犯人当众抽签,若抽到“死”签,则立即处死,若抽到“生”签,则当场赦免。国王一心想处死大臣,与几个心腹密谋,想出一条毒计:暗中让执行官把“生死签”上都写成“死”,两死抽一,必死无疑。然而在断头台前,聪明的大臣迅速抽出一张签纸塞进嘴里,等到执行官反应过来,签纸早已吞下,大臣故作叹息说:“我听天意,将苦果吞下,只要看剩下的签是什么字就清楚了。”剩下的当然写着“死”字,国王怕犯众怒,只好当众释放了大臣。

国王“机关算尽”,想让大臣死,反而搬起石头砸自己脚,让机智的大臣死里逃生。

提出问题:(1)在法规中,大臣被处死是什么事件?

(2)在国王的阴谋中,大臣被处死是什么事件?

(3)在大臣的计策中,大臣被处死是什么事件?

小结:事件发生的可能性要注意一定的条件。条件改变了,三类事件可以互相转化。

讲故事能激起学生学习的兴趣和热情。该故事中“大臣被处死”的可能性由于条件的改变在相互转化,一方面强调了事件发生的可能性要有一定的条件,另一方面,告诉学生,事物在不断的发生变化,要用辩证的思想看问题。

小结与作业

小结提高

通过这节课的学习,你们有什么收获吗?

通过激发学生的主动参与意识,调动学生的学习兴趣,为每一位学生都创造在数学学习活动中获得成功的体验机会,并为程度不同的学生提供充分展示自己的机会。使小结活动不流于形式而具有实效性,为学生创设条件,以梳理自己在本节课中的收获。

布置作业

①教科书习题25.1第1题

②举出一些随机事件的例子。

便于及时了解学生的学习效果,调整教学安排。

本课教育评注(课堂设计理念,实际教学效果及改进设想)

新的数学教育观指出――动手实践、自主探索和合作交流是学生学习数学的重要方式。针对教学内容的特点,本节课我遵循了教科书的结构模式:创设情景→数学活动→概括→巩固、应用和拓展。先由贴近学生生活的两个试验、猜测让学生了解随机事件的概念,然后再去判定,最后根据学生的生活实际去举例,进一步去体会概念。在合作交流的过程中,学生不仅理解和掌握了基本的数学知识技能,而且在数学学习过程中增强了应用意识。课上,关注了学生感兴趣的抽签、掷骰子、摸球等实际问题,使学生能够学以致用,注重了趣味性与知识性相结合,体现了寓教于乐的原则,让学生动起来,用数学本身的魅力去吸引学生,提高学习数学的积极性。

数据的收集、整理与描述教案


老师工作中的一部分是写教案课件,大家应该要写教案课件了。只有制定教案课件工作计划,可以更好完成工作任务!你们到底知道多少优秀的教案课件呢?小编特地为您收集整理“数据的收集、整理与描述教案”,欢迎阅读,希望您能够喜欢并分享!

第十章数据的收集、整理与描述
第1课时10.1统计调查(一)
教学目标1、了解全面调查的概念;2、会设计简单的调查问卷,收集数据;3、掌握划记法,会用表格整理数据;4、会画扇形统计图,能用统计图描述数据;5、经历统计调查的一般过程,体验统计与生活的关系.
教学重点:全面调查的过程(数据的收集、整理、描述)
教学难点:绘制扇形统计图
教学过程
一、问题导入
在日常生活中,我们可能遇到下面一些问题:
(1)中央电视台《青年歌手大奖赛》的收视情况怎样?
(2)班级里同学出生主要集中在哪一年?
(3)本年度最受欢迎的影片是哪几部?
要解决这些问题,需要进行统计调查。
二、数据的收集
问题1:现在我们如果要了解全班同学对新闻、体育、动画、娱乐四类电视节目的喜爱情况,你怎样才能知道结果?
举手表决、问卷调查等。
问卷调查是一种比较常用的调查方式,采用这种方式要设计好调查问卷。
你认为设计调查问卷应包括哪些内容?
问卷设计的内容应包括调查中所提的问题、答案选项以及要求等。
就上面的问题我们可以设计如下的调查问卷:、
如果想了解男、女生喜爱节目的差异,问卷中还应该包含什么内容?
应加“男□女□(打勾)”这一项.
问卷设计好后,请每位同学填写,然后收集起来。例如,调查的结果是:
DCADBCADCDCDABDDBCDBDBDCDBDCDBABBDDDCDBD
注意:用字母代替节目的类型,可方便统计.
三、数据的整理
从上面的数据中你容易看出全班同学喜爱各类节目的情况吗?为什么?
不容易。因为这些数据杂乱无章,不容易发现其中的规律。
为了更清楚地了解数据所蕴含的规律,需要对数据进行整理。你认为应该怎样整理我们收集到的数据?
划“正”字。这就是所谓的划记法。
下面我们利用下表整理数据。
全班同学最喜爱节目的人数统计表:
节目类型划记人数百分比
A新闻
410%
B体育正正1025%
C动画正820%
D娱乐正正正
1845%
合计4040100%

上表可以清楚地反映全班同学喜爱各类节目的情况。
四、数据的描述
为了更直观地看出上表中的信息,我们还可以用条形统计图和扇形统计图来描述数据。
绘制条形统计图[投影7]
绘制扇形统计图
我们知道,扇形图用圆代表总体,每一个扇形代表总体的一部分。扇形图通过扇形的大小来反映各个部分占总体的百分比。扇形的大小是由圆心角的大小决定的,所以,我们只要知道圆心角的度数就可以画出代表某一部分的扇形。
因为组成扇形图的各扇形圆心角的和是3600,所以只需根据各类节目所占的百分比就可以算出对应扇形圆心角的度数。
新闻:3600×10%≈360,体育:3600×25%=900,动画:3600×20%=720,娱乐:3600×45%=1620.在一个圆中,根据算得的圆心角的度数画出各个扇形,并注明各类节目的名称及相应的百分比。
你能根据上面的条形统计图和扇形统计图直接说出全班同学喜爱各类电视节目的情况吗?
在上面的调查中,我们利用调查问卷得到全班同学喜爱电视节目的数据,利用表格整理数据,并用统计图进行直观形象的描述。通过分析表和图,了解到了全班同学喜爱电视节目的情况。在这个调查中,全班同学是要考察的全体对象,我们对全体对象都进行了调查,像这样考察全体对象的调查叫做全面调查。例如,2000年我国进行的第五人口普查,就是一次全面调查。请你举出一些生活中运用全面调查的例子.
五、课堂练习:课本137页第1、2题。
六、课堂小结
1、本节课我们经历了全面调查的一般过程,知道了利用问卷调查来收集数据,利用表格来整理数据,利用条形统计图和扇形统计图来描述数据。
2、学会了设计调查问卷和扇形统计图的画法。
作业:课本P142第6题
第2课时10.1统计调查(二)
教学目标1、经历数据的收集、整理和分析的模拟过程,了解抽样调查、样本、个体与总体等统计概念;2、初步感受抽样调查的必要性,初步体会用样本估计总体的思想。
教学重点:抽样调查、样本、总体等概念以及用样本估计总体的思想
教学难点:样本的抽取
教学过程
一、问题导入
要了解一罐八宝粥里各种成分的比例,你会怎么做?把一罐八宝粥铺开在一个盆子里查看。这样可行吗?这样方便吗?为此我们必须找到一种方便合理的调查方法才行。
二、抽样调查及有关概念
问题2某校有2000名学生,要想了解全校学生对新闻、体育、动画、娱乐四类电视节目的喜爱情况,怎样进行调查?
可以用全面调查的方法对全校学生逐个进行调查,然后整理收集到的数据,统计出全校学生对四类电视节目的喜爱情况。
这样做,当然好,可以准确、全面地了解情况。但是,由于学生人数比较多,这样做又会有许多弊病,你能说说吗?
花费的时间长,消耗的人力、物力大。你能找到一种既省时省力又能解决问题的调查方法吗?
可以抽取一部分学生进行调查.
这种只抽取一部分对象进行调查,然后根据调查数据推断全体对象的情况的方法就是抽样调查。这里要考查的全体对象称为总体,组成总体的每一个考查对象称为个体,被抽取的那些个体组成一个样本,样本中个体的数目称为样本容量。上面问题中全校学生是总体,每一名学生是个体,我们从总体中抽取的部分学生是一个样本,抽取的学生数就是样本容量。例如抽取100名学生,样本容量就是100。
注意:抽样调查还适用一些具有破坏性的调查,如关于灯泡寿命、火柴质量等。
三、样本的抽取
抽样调查的关键是样本的抽取,如果抽取的样本得当,就能很好地反映总体的情况,否则,抽样调查的结果会偏离总体情况。上面的问题,抽取样本的要求是什么呢?
一、抽取的学生数目要适当。如果抽取的学生数太少,那么样本就不能很好地反映总体的情况;如果抽取的学生人数太多,那么达不到省时省力的目的。我们可以取100名学生作为一个样本。
二、要尽量使每一个学生抽取到的机会相等。例如,可以在2000名学生的注册学号中,用电脑随机抽取100个学号,调查这些学号对应的100名学生。
你还能想出使每个学生都有相等机会被抽到的方法吗?
从2000名学生的注册学号中,用电脑抽取能被5整除的100个学号,调查这些学号对应的学生;放学或上学时在校门口随机访问100名学生,等等。
这种总体中的每一个个体都有相等机会被抽到的抽样方法是一种简单随机抽样。
现在你能回答“要了解一罐八宝粥里各种成分的比例,你会怎么做?”这个问题了吗?
搅拌均匀后,舀一勺查看,用所得的结果估计这罐八宝粥成分的比例。
四、样本的处理
和全面调查一样,对收集的数据要进行整理。下面是某同学抽取样本容量为100的调查数据统计表。
抽样调查100名学生最喜爱节目的人数统计表
节目类型划记人数百分比
A新闻正
88%
B体育正正正正
2424%
C动画正正正正正正3030%
D娱乐正正正正正正正
3838%

从上表可以看出,样本中喜爱娱乐节目的学生最多,是38%,据此可以估计出,这个学校的学生中,喜欢娱乐节目的人最多,约为38%。类似地,由上表可以估计这个学校喜爱其他节目的学生人数的百分比。
表格中的数据也可以用条形统计图和扇形统计图来表示描述。

五、课堂练习:课本P140练习1、2、3。
六、课堂小结
1、个体、总体、样本、样本容量及抽样调查的概念;
2、抽取样本的要求:(1)抽取的样本容量要适当;(2)要尽量使每一个个体被抽取到的机会相等——简单随机抽样。
3、全面调查和抽样调查的优缺点是什么?
全面调查收集到的数据全面、准确,但一般花费多、耗时长,而且某些调查不宜用全面调查;抽样调查具有花费少、省时的特点,但没有全面调查准确,受样本选取的影响比较大。
作业:课本P141第3题w
第3课时10.1统计调查(三)
教学目标1、经历较复杂问题的处理过程,感受分层抽样的必要性,掌握分层抽样的方法;2、学会从样本中分析、归纳出较为正确的结论,增强用统计方法解决问题的意识。
教学重点:分层抽样的方法和样本的分析、归纳
教学难点:分层抽样方案的制定
教学过程
一、复习导入
什么是抽样调查?什么是简单随机抽样?
仔细观察我们身边周围,抽样调查的应用是十分普遍的。有些问题总体量不大,个体差异程度小,只需进行简单随机抽样就可以了,有些问题总体量大,个体差异程度较大,必须有更好的抽样方法才行。
二、分层抽样
问题3某地区有500万电视观众,要想了解他们对新闻、体育、动画、娱乐四类节目的喜爱情况。
(1)能不能用问题2中对学生的调查数据去估计整个地区电视观众的情况呢?为什么?
不能。一是样本容量太小;二是学生、成年人、老年人喜欢的电视节目往往有明显不同.
所以要了解整个地区观众的情况,需要在更大范围内抽取样本。
(2)如果抽取一个容量为1000的样本进行调查,你会怎样调查?
由于各年龄段对节目爱好有明显的不同,而同一个年龄段对节目的喜爱又存在共性,因此可以对青少年、成年人、老年人各人群分别独立进行简单随机抽样,使每个年龄段都能抽取一定的人数来代表所在的人群,然后汇总调查结果。
这里还有一个问题,每个年龄段抽取的人数怎么确定呢?
可以根据各年龄段实际人口的比例分配,以确保每一个年龄段都有相应比例的代表。
如果青少年、成年人、老年人的人数比例为2︰5︰3,那么各年龄段抽取的人数分别是多少?

青少年成年人老年人合计
抽取的人数2005003001000

先将总体分成几个年龄段(层),然后再在各年龄段(层)中进行简单随机抽样,这是一种分层抽样。
分层抽取的样本与这个地区所有观众的年龄结构基本相同,与在整个地区直接进行简单随机抽样相比,更具有代表性。
三、样本的分析:下表是用分层抽样进行调查并整理得到的数据。
人数年龄
节目类型段青少年成年人老年人合计百分比
A新闻1613712027327.3%
B体育501188225025%
C动画56572814114.3%
D娱乐781887033633.6%
合计2005003001000100%

请你自己画条形统计图和扇形统计图描述上表中的数据。
从上表中可以大致估计整个地区观众对四种节目的喜爱情况,你能谈谈吗?
此外,还可以估计各个年龄段中观众对某类节目喜爱的情况。
例如,估计各个年龄段中观众对动画类节目和娱乐类节目喜爱的情况。
能根据上表中的数据进行估计吗?为什么?不能。因为不同年龄层抽取的人数不相等。
那么根据什么来进行估计呢?
可根据不同年龄层中喜爱动画和娱乐类节目的百分比来估计。如表:

青少年成年人老年人
动画28%11.2%9.3%
娱乐39%37.6%23.3%
从表中你看到了什么?不同年龄段的观众对节目喜爱不尽相同。
用什么方式可以直观地反映这种变化呢?折线统计图。
下图是不同年龄段观众喜爱娱乐和动画类节目的折线统计图。
从上图中可以清楚地看到,随着年龄的增加,观众对动画类、娱乐类的喜爱程度逐渐下降。
四、课堂练习:课本P142第5题.
五、课堂小结
1、对于总体量大,个差异程度较大的问题,需要采取分层抽样的方法确定样本,这样可使样本更具有代表性。
2、对样本进行分析、归纳,得出的结论可以用来估计总体的情况,这就是统计的思想。
作业:

第4课时10.2直方图(一)
教学目标1、理解频数、频数分布的意义,学会制作频数分布表;2、学会画频数分布直方图和频数折线图。
教学重点:学会画频数分布直方图
教学难点:确定组距和组数
教学过程
一、导入新课
收集数据、整理数据、描述数据是统计的一般过程。我们学习了条形图、折线图、扇形图等描述数据的方法,今天我们学习另一种描述数据的统计图——直方图。
二、频数分布直方图
问题4为了参加全校各年级之间的广播体操比赛,七年级准备从63名同学中挑出身高相差不多的40名同学参加比赛。为此收集到这63名同学的身高(单位:㎝)如下:
158、158、160、168、159、159、151、158、159、168、158、154、158、154、169、158、158、158、159、167、170、153、160、160、159、159、160、149、163、163、162、172、161、153、156、162、162、163、157、162、162、161、157、157、164、155、156、165、166、156、154、166、164、165、156、157、153、165、159、157、155、164、156
选择身高在哪个范围的学生参加呢?
为了使选取的参赛选手身高比较整齐,需要知道数据(身高)的分布情况,即在哪些身高范围内的学生比较多。
为此我们把这些数据适当分组来进行整理。
1、计算最大值与最小值的差(极差)最小值是149,最大值是172,它们的差是23。
说明身高的变化范围是23㎝.
2、决定组距与组数
把所有的数据分成若干组,每个小组的两个端点之间的距离(组内数据的取值范围)称为组距。
作等距分组(各组的组距相同),取组距为3㎝(从最小值起每隔3㎝作为一组)。
将数据分成8组:149≤x<152,152≤x<155,…,170≤x<173.
注意:①根据问题的需要各组的组距可以相同或不同;②组距和组数的确定没有固定的标准,要凭借经验和所研究的具体问题来决定;③当数据在100个以内时,按照数据的多少,常分成5~12组,一般数据越多分的组数也越多。
3、频数分布表
对落在各个小组内的数据进行累计,得到各个小组内的数据的个数(叫做频数)。用表格整理可得频数分布表:
频数分布表
身高分组划记频数
149≤x<152
2
152≤x<155正一6
155≤x<158正正
12
158≤x<161正正正
19
161≤x<164正正10
164≤x<167正
8
167≤x<170
4
170≤x<173
2
从表格中你能看出应从哪个范围内选队员吗?
可以看出,身高在155≤x<158,158≤x<161,161≤x<164三个组的人数最多,一共有12+19+10=41人,因此,可以从身高在155~164㎝(不含164㎝)的学生中选队员。
4、画频数分布直方图
为了更直观形象地看出频数分布的情况,可以根据上表画出频数分布直方图。
上面小长方形的面积表示什么意义?
小长方形的面积=组距×=频数.
可见,频数分布直方图是以小长方形的面积来反映数据落在各个小组内的频数的多少。
等距分组时,各小长方形的面积(频数)与高的比是常数(组距)。因此,画等距分组的频数分布直方图时,为画图与看图方便,通常直接用小长方形的高表示频数。
这样,上面的频数分布图可画成下面的形式:
三、频数分布折线图
在频数分布直方图的基础上,我们还可以用频数折线图来描述频数的分布情况。
首先取直方图的每一个长方形上边的中点,然后在横轴上直方图的左右取两个频数为0的点,它们分别与直方图左右相距半个组距。
例如,在上面的直方图的左边取点(147.5,0),在直方图右边取点(174.5,0),将所取的这些点用线段依次连接起来,就得到频数分布折线图。
四、课堂小结
频数分布直方图是描述数据的又一方式,画频数分布直方图的关键是确定组距和组数,而这一点没有固定的标准,要凭借经验和所研究的具体问题来决定。频数分布折线图也是描述频数分布情况的一种方式。
作业:课本P150第1题
第5课时10.2直方图(二)
教学目标:掌握频数分布直方图和频数折线图的画法,并能用频数分布直方图解释数据中蕴含的信息,进一步体会统计图表在描述数据中的作用。
教学重点:画频数分布直方图
教学难点:解释数据中蕴含的信息
教学过程
一、复习导入
上节课我们学习了画频数分布图,回忆一下,画频数分布直方图有哪些步骤?怎样确定组距和组数?
二、例题
看下面的例子:
为了考察某种大麦穗长的分布情况,在一块试验田时抽取了100个麦穗,量得它们的长度如下表(单位:㎝):
6.56.46.75.85.95.95.24.05.44.6
5.85.56.06.55.16.55.35.95.55.8
6.25.45.05.06.86.05.05.76.05.5
6.86.06.35.55.06.35.26.07.06.4
6.45.85.95.76.86.66.06.45.77.4
6.05.46.56.06.85.86.36.06.35.6
5.36.45.76.76.25.66.06.76.76.0
5.56.26.15.36.26.86.64.75.75.7
5.85.37.06.06.05.95.46.05.26.0
6.35.76.86.14.55.66.36.05.86.3
列出样本的频数分布表,画出频数分布直方图。
解:1、计算最大值与最小值的差是多少?
最大值-最小值的差:7.4-4.0=3.4(㎝)
2、决定组距和组数:组距取多少时组数合适?
取组距0.3㎝,那么可分成12组,组数合适。
3、列频数分布表
分组划记频数
4.0≤x<4.3一1
4.3≤x<4.6一1
4.6≤x<4.9
2
4.9≤x<5.2正5
5.2≤x<5.5正正一11
5.≤x<5.8正正正15
5.8≤x<6.1正正正正正
28
6.1≤x<6.4正正
13
6.4≤x<6.7正正一11
6.7≤x<7.0正正10
7.0≤x<7.3
2
7.3≤x<7.6一1
合计100

4、画频数分布直方图
仔细观察上面的表和图,这组数据的分布规律是怎样的?
麦穗长度大部分落在5.2㎝至7.0㎝之间,其他区域较少。长度在5.8≤x<6.1范围内的麦穗个数最多,有28个,长度在4.0≤x<4.3,4.3≤x<4.6,4.6≤x<4.9,7.0≤x<7.3,7.3≤x<7.6范围内的麦穗个数很少,总共只有7个。
三、课堂练习
P149练习(1)你认为组距是多少比较合适?为什么?
5组,因为100个数据以内可以分5~12组,这里有48个数据,分5组或6组比较合适。
(2)画出直方图。
作业:P151第4、5题。

第6、7课时10.3从数据谈节水
教学目标:①使学生经历收集、整理、分析数据,得出结论的过程,从中体会节水的重要性.
②通过分析数据,得出结论,让学生体会用数据分析问题的过程,提出合理化建议,感受数学给生活带来的价值.③通过具体的数据,使学生了解节水的重要性.,进一步体会统计图表在描述数据中的作用。
教学重点:学会收集、分析数据,从中得出结论,并能针对有关问题,给出解决办法.
教学难点:如何找到合理解决缺水问题的办法.
教学过程
活动一:
阅读课本的“背景资料”,从中收集数据,画出统计图,并回答下列问题:
(1)地球上的水资源和淡水资源分布情况怎么样?
(2)我国农业和工业耗水量情况怎么样?
(3)我国不同年份城市生活用水的变化趋势怎么样?
(4)根据国外的经验,一个国家的用水量超过其可利用水资源的20%,就有可能发生“水危机”,依据这个标准,我国1990年是否曾出现“水危机”?
学生阅读资料,通过小组合作、讨论的形式完成活动一.
活动二:
收集全班同学各家人均月用水量,用频数分布直方图和频数折线图描述这些数据,并回答下列问题:
(1)家庭人均月用水量在哪个范围的家庭最多?这个范围的家庭占全班家庭的百分之几?
(2)家庭人均月用水量最多和最少的各有多少家庭?各占全班家庭的百分之几?
(3)全班同学家庭人均日用水量的平均数是多少?按生活基本日均需水量(BWR)50升的用水标准,这个平均数是否超过用水标准?
(4)如果每人每天节约用水10升,按13亿人口计算,一天可以节约多少吨水?按BWR标准计算,这些水可提供给1个人多少年的生活用水?
(5)你还可以得到哪些信息?
(教师巡视,指导各小组开展调查实验活动)
活动三,资料展示:(投影)我国水资源利用情况的有关资料,讨论工农业生产及生活中节约用水的好办法.
课堂小结1.当前水资源状况.2.节约水资源带来的价值.3.节约水资源的办法
作业
整理本节课内容,统计相关数据;查找有关“节约水资源”的课题报告;并分析课题报告的写法.

第8、9课时本章小结
一、知识结构

二、回顾与思考
1、统计调查的一般过程是什么?统计调查对我们有什么帮助?
统计调查一般包括收集数据、整理数据、描述数据和分析数据等过程;可以帮助我们更好地了解周围世界,对未知的事物作出合理的推断和预测。
2、全面调查和抽样调查是收集数据的两种方式。什么是全面调查?什么是抽样调查?它们各有什么优缺点?
考察全体对象的调查叫做全面调查。
只抽取一部分对象进行调查,然后根据调查数据推断全体对象的情况,这种方法是抽样调查。
全面调查收集到的数据全面、准确,但一般花费多、耗时长,而且某些具有破坏性的调查不宜用全面调查;抽样调查花费少、时间短,节省人力、物力、财力,破坏性小;结果往往不如全面调查准确,且样本选取不当,会增大估计总体的误差。
3、实际调查中常常采用抽样调查的方法获取数据。抽样调查的要求是什么?
(1)每个个体被抽到的机会相同;(2)样本容量要适当。
4、利用统计图表描述数据是统计分析的重要环节。对于收集到的数据加以整理,并用统计图表描述出来,这有什么作用?
帮助我们从数据中获得信息,得出结论。
5、如何画扇形图、频数分布直方图和频数分布折线图?各种统计图都有什么特点?
根据各部分所占的百分比计算出各部分所对应的圆心角,从而把一个圆分成几部分,标上百分比,写出名称,就得到了扇形统计图。
绘制频数分布直方图:①计算最大值与最小值的差;②决定组距和组数;
③列频数分布表④画频数分布直方图。
首先取直方图中每一个长方形上边的中点,然后在横轴上直方图的左右取两个频数为0的点,它们分别与直方图左右相距半个组距,将所取的这些点用线段依次连接起来,就得到频数折线图。
条形图能够显示每组中的具体数据;扇形图能够显示部分在总体中所占的百分比;折线图能够显示数据的变化趋势;频数分布直方图能够显示数据的分布情况。
三、例题导引
例1测得某市2月份1~10日最低气温随日期变化折线图如图所示。(1)最高气温为2℃的天数为天;(2)该市这10天气温变化趋势图;(3)写一条有关的结论:.
例1图

例2某校学生在“暑假社会实践”活动中组织学生进行社会调查,并组织评委对学生写的调查报告进行统计,绘制了统计图,请根据该图回答下列问题:(1)学生会抽取了多少份调查报告?(2)若等第A为优秀,则优秀率为多少?(3)学生会共收到调查报告1000份,请估计该校有多少份调查报告的等第为E?

例3初中学生的视力状况已受到全社会的广泛关注。某市有关部门对全市20万名初中学生视力状况进行了一次抽样调查,从中随机抽查了10所中学全体学生的视力情况,图(1)、图(2)是2004年抽样情况统计图。请你根据两图解答以下问题:(1)2004年这10所中学学生的总人数是多少?(2)2004年这10所中学学生的视力在4.35以上的人数占全市中学生总人数的百分比是多少?(3)2004年该市参加中考的学生达66000人,请你估计2004年该市这10所中学参加中考的学生共有多少人?

数据的收集整理与描述


一般给学生们上课之前,老师就早早地准备好了教案课件,到写教案课件的时候了。我们制定教案课件工作计划,才能更好地安排接下来的工作!你们清楚教案课件的范文有哪些呢?下面是小编精心为您整理的“数据的收集整理与描述”,仅供参考,欢迎大家阅读。

第十章数据的收集、整理与描述
本章教学目标:
1.了解通过全面调查和抽样调查收集数据的方法;会设计简单的调查问卷收集数据;能根据问题查找有关资料,获得数据信息。
2.通过抽样调查,初步感受抽样的必要性,体会用样本估计总体的思想。
3.了解频数及频数分布,掌握划记法,会用表格整理数据表示频数分布,体会表格在整理数据中的作用。
4.学会用简单频数分布直方图(等距分组)和折线图描述数据的方法,进一步体会统计图表在描述数据中的作用,会根据问题需要选择适当的统计图描述数据。
6.通过实际参与收集、整理、描述和分析数据的活动,经历统计的一般过程,感受统计在生活和生产中的作用,增强学习统计的兴趣,初步建立统计的观念,培养重视调查研究的良好习惯和科学态度。
具体内容和课时分配如下:
10.1统计调查约3课时
10.2直方图约2课时
10.3课题学习从数据谈节水约2课时
数学活动
小结约2课时

10.1统计调查(1)
教学目标:
1、了解通过全面调查收集数据的方法.
2、会设计简单的调查问卷,收集数据.
3、掌握划记法,会用表格整理数据;体会表格在整理数据中的作用.
4、体验统计与生活的联系,感受统计在生活和生产中的作用,养成用数据说话的习惯和实事求是的科学态度.
教学重点:参与从收集数据到描述数据的全过程,利用统计图合理的描述数据,体会统计对决策的作用。
教学难点:组织有效的统计活动,使学生在活动中学会合作、学业全交流、学会描述。
解决重难点的方法:1、通过具体案例使学生认识有关统计知识(如样本、总体、个体、频数等)和统计方法(如抽样调查等)。
2、引导学生感受渗透与体现于统计知识和方法之中的统计思想。
教学过程设计:
一.问题引入
问题:2008年奥运会即将在北京召开。问国际奥委会是如何决定的?
例:你最喜欢的季节是哪一个?在学校课程中你最喜欢的科目是什么?
二.授新
1.集数据,设计调查问卷。
2.整理数据。
三.描述数据
为了更直观地看出表中的信息,还可以画出条形图和扇形图来描述数据。
四.小结
在上面的活动中,全班同学是我们要考察的全体对象,对全体对象进行了调查。像这样考察全体对象的调查属于全面调查。(过程:收集数据、整理数据、描述数据)
①全面调查──考查全体对象的调查;②收集数据的方法──问卷调查;
③描述数据的方法──表格法、条形图、扇形图。
五.练习:王聪一家三口随旅游团去九寨沟旅游,王聪把这次
旅游的费用支出情况制成了如下的统计图:
①你能说出王聪一家这次旅游的费用支出情况吗?哪方面的费用支出最高?
②若他们共花费人民币8600元,则在食宿上用去多少元?往返的路费又是多少元?
六.作业:

10.1统计调查(2)
教学目标:
1、通过具体的统计活动感受数据收集、整理、描述、分析的过程。
2、通过查阅资料获得数据,并能解决简单的问题。
教学重点:通过实例感受统计的必要性,进一步认识数据收集、整理、描述、分析的具体方法。
教学难点:合理运用全面调查法来解决实阿问题。
解决重难点的方法:
1、教学中要注意让所有学生都能参与到统计的活动中去,在活动的过程中建立统计观念。
2、鼓励学生积极合作、充分交流,促进学生学习方式的改变。
教学过程设计:
一、创设问题情境,激发学生学习的热情。
二、师生互动
1、学生代表收集到的数据向全班同学展示,说明数据的方法。
2、由其他组员补充说明还有没有另外整理数据的方法?哪种方法更好
三、描述数据
1、各组讨论由数据及统计图表所反馈的信息及获取信息的依据。
2、感受其他小组对数据描述的情况。
3、你对别人的发言有何补充?有何更好的设想或建议?
4、教师肯定和选择学生的展示成果,与学生共同分享成功喜悦
四、收获感想
1、分组讨论,学生畅想本节课的收获、感想。
2、代表发言。
五、布置作业:

10.1统计调查(3)
教学目标:
1、让学生经历数据的收集、整理和分析的模拟历程,从中了解抽样调查、样本与总体等统计概念.
2、通过课堂上学生的讨论,初步感受抽样调查的必要性和可行性,初步体会用样本来估计总体的思想.
3、鼓励学生自主探索、合作交流,意识到与同伴交流合作的重要性.
教学重点:抽样、样本、总体等概念以及用样本反映总体的思想。
教学难点:样本特征的观察与归纳
解决重难点的方法:
1、注意借助案例让学生感受统计结果对决策的意义和作用,建立统计观
2、让学生联亲身经历统计活动的基本过程,在收集、整理、描述和分析数据的统计活动中,逐步学会用数据说话,自觉地想到用统计的方法来解决一些问题。
教学过程:
一、引入
同学们,“近视”这种现象我们经常看到,也常发生在我们身边,近视会给我们生活、学习带来很多不便,我们能举例说说吗?
二、提出问题
为了了解情况某地区中小学生的视力情况,提出保护视力的建议,该地区准备对中小学生进行视力调查.那么如何调查呢?
1.学生思考、讨论开展调查的方式?
2.讨论(一):仅仅是从小学学校抽取部分同学作为调查的对象,妥当吗?初中学段、高中学段呢?
3.讨论(二):(1)导致学生们近视的因素有哪些?
(2)根据影响近视的因素,在设计调查问卷中应包括哪些问题?
(3)请设计出一份调查问卷.
三、解决问题
1.你能根据所制的统计表与统计图,估计一下该地区中小学的视力情况吗?
2.学习样本、总体、抽样、调查等概念.
3.小组活动:你能再举出抽样调查的实例吗?
四、课堂练习
利用调查问卷对本班同学进行调查,集中视力不良同学的问卷,并用表格整理相关数据,针对形成视力不良的原因,请提出一些保护视力的合理性建议。
五、小结
1.统计调查的两种常用方法.2.具体调查的常用方法.
3.抽样调查的重要性、必要性.4.学习中讨论的重要性.
5.表格与统计图在数据处理与分析中的作用.
六、作业:

10.2直方图(1)
教学目标:
1、了解频数及频数分布,掌握划记法,会用表格整理数据表示频数分布,体会表格在整理数据中的作用。
2、鼓励学生自主探索、合作交流,意识到与同伴交流合作的重要性.
教学重点:组距和组数、频数及频数分布表
教学难点:决定组距和组数
解决重难点的方法:
1、从解决实际问题的需要出发,根据频数分布直方图的特点和作用,学习制作这种统计图的方法。
2、结合具体问题,使学生在具体情境中感知频数、频数分布等概念。
教学过程:
一.问题引入
典型案例“选取广播操参赛者”来介绍直方图
二.授新
1、极差的概念:最大值与最小值的差
2.组距和组数。
3、列频数分布表。
4、画频数分布直方图。
三、课堂练习
四、小结
画频数分布直方图的一般步骤:
1、计算极差:最大值与最小值的差。
2.决定组距和组数。
3、列出频数分布表。
4、画频数分布直方图。
五、作业:

10.2直方图(2)
教学目标:
1、学会用简单频数分布直方图(等距分组)和折线图描述数据的方法,进一步体会统计图表在描述数据中的作用,会根据问题需要选择适当的统计图描述数据。
2、通过实际参与收集、整理、描述和分析数据的活动,经历统计的一般过程感受统计在生活和生产中的作用,增强学习统计的兴趣,初步建立统计的观念培养重视调查研究的良好习惯和科学态度。
教学重点:频数分布直方图、频数折线图
教学难点:频数分布直方图的绘制
解决重难点的方法:
1、在统计过程中学习统计,改进学生的学习方式。
2、突出数据处理的基本过程,注意统计思想的渗透与体现。
教学过程:
一.复习上节课知识
画频数分布直方图的一般步骤有哪些?
二.授新
讲解教材166页例题
三、课堂练习
四、小结
1、频数分布直方图和折线图是描述数据的主要内容,一般直方图是用矩形面积表示频数的,而对于等距分组的情形,为看图与画图方便可以改为用矩形的高表示频数。
2、怎样利用直方图来描述数据。
五、作业:

数据的收集、整理与描述(小结)
一、背景与意义分析
统计主要研究现实生活中的数据,它通过收集、整理、描述和分析数据来帮助人们对事物的发展作出合理的判断,能够利用数据信息和对数据进行处理已成为信息时代每一位公民必备的素质。通过对本章全面调查和抽样调查的学习,学生可基本掌握收集和整理数据的方法。
二、学习与导学目标
1知识积累与疏导:通过复习小结,进一步领悟到现实生活中通过数据处理,对未知的事情作出合理的推断的事实。
2技能掌握与指导:通过复习,进一步明确数据处理的一般过程。
3智能提高与训导:在与他人交流合作的过程中学会设计调查问卷。
4情感修炼与提高:积极创设情境,参与调查、整理数据,体会社会调查的艰辛与乐趣。
5观念确认与引导:体会从实践中来到实践中去的辨证思想。
三、障碍与生成关注
调查问卷的设计及根据调查总结的报告给出合理的预测。
四、学程与导程活动
活动一回顾本章内容,绘制知识结构图
数据处理的一般过程:

制表绘图

文章来源:http://m.jab88.com/j/49770.html

更多

最新更新

更多