各个知识点,典型例题,中考例题,易错题型,随堂训练知识点一 不等式的概念像 , , 等用不等号表示不等关系的式子,叫做不等式。常见的不等号有 。例1 用适当的符号表示下列关系:(1) a的3倍与6的差大于0;(2) x的平分不小于5;(3) m与n的和的平方不小于m与n的平方的和;(4) a与3的差是非负数。 知识点二 不等式的解法及不等式的解集(1) 不等式的解对于一个含有未知数的不等式,任何一个使这个不等式成立的未知数的数,都叫做这个不等式的解。若要判断某个未知数的值是否是不等式的解,可直接将该值代入不等式的左右两边看不等式是否成立,如果成立,则是,否则不是。例2 下列各数哪些是不等式 的解?
点击此处免费下载本资源
()优秀的教学 资源网站,本站所有资源免费下载,欢迎您下次再来。
每个老师需要在上课前弄好自己的教案课件,大家在细心筹备教案课件中。我们制定教案课件工作计划,才能在以后有序的工作!哪些范文是适合教案课件?下面是小编为大家整理的“不等式与不等式组”,大家不妨来参考。希望您能喜欢!
导学案第九章不等式与不等式组
学习目标
1、掌握本章中所学基本概念(不等式、不等式的解、不等式的解集、解不等式、不等式组)
2、掌握并灵活运用不等式的性质。按一定步骤解不等式。
3、会解由两个(或三个)一元一次不等式组成的不等式组,并会用数轴确定解集。
4、能运用数学问题解决生活中遇到的实际问题。提高我们使用数学工具的能力。
一、练一练
1.用不等式表示:
1)7与x的3倍的差是正数。
2)m的相反数与n的3倍的和不小于2。
3)a与b的积不可能大于5。
2.x取什么值时,式子2x-5的值
(1)大于0?(2)不大于0?
3.填空:
1)当x时式子-2x-8的值是正数。
2)若式子2x-1不大于3x-4则x的取值范围是。
3)组成三角形的三根棒中有两根棒长为2和5,则第三根棒长的取值范围是_________
4).如果方程的根是负数,则的取值范围是______
二、小试牛刀
1、解下列不等式,并把它们的解集在数轴上表示出来:
(1)5x﹢15>4x﹣1
3、按步骤求不等式组的解集
2(x+2)<x+5
3(x-2)+8>2x
三、迁移应用练
1、的解是负数,求k的取值范围。
2、某次知识竞赛共有30道选择题,称对一题得10分,若答错或不答一道题,则扣3分,要使总得分不少于70分则应该至少答对几道题?
3、把一篮苹果分给几个学生,若每人分4个,则剩余3个;若每人分6个,则最后一个学生最多分得2个,求学生人数和苹果数分别是多少?
4、采石场爆破时,点燃导火线后工人要在爆破前转移到500米外的安全区域,导火线的燃烧速度是1cm/s,工人转移的速度是5m/s,导火线要大于多少米?
课后补救强化练
1.若,则下列式子错误的是()
A.B.C.D.
2.如图表示了某个不等式的解集,该解集所含的整数解的个数是()
A.4B.5C.6D.7
3.若不等式组的解集,则a的取值范围为()为
Aa>0B.a=0C.a>4D.a=4
4.不等式组的解集是()
A.B.C.D.
5.不等式组的解集在数轴上表示正确的是()
6.如果不等式组有解,那么的取值范围是()
A.3BC.3D
7、已知不等式3x-a≤0的正整数解恰是1,2,3,则a的取值范围是?
.解不等式得X错误!未找到引用源。,因为有正整数解1,2,3
所以3错误!未找到引用源。则1错误!未找到引用源。
8、运用口诀,直接在数轴上表示出不等式组的解集
9、若不等式5(x-2)+8﹤6(x-1)+7的最小整数解是方程2x-ax=3的解,求4a-的值。
10、将若干只鸡放在若干个笼里,若每个笼里放4只鸡,则剩下一只鸡无笼可放;若每个笼里放5只鸡,则有一笼无鸡可放.那么至少有几只鸡?多少个笼?
11、实验学校为初一寄宿学生安排宿舍,若每间4人,则有20人无法安排,若每间8人,则有一间不空也不满,求宿舍间数和寄宿学生人数。
12、今年6月份,我市某果农收获荔枝30吨,香蕉13吨.现计划租用甲、乙两种货车共10辆将这批水果全部运往深圳,已知甲种货车可将荔枝4吨和香蕉1吨,乙种货车可将荔枝和香蕉各2吨.
(1)该果农安排甲、乙两种货车时有几种方案?请你帮助设计出来?
(2)若甲种货车每辆要付运输费2000元,乙种货车每辆要付运输1300元,则该果农应选择哪能种方案才能使运输费最少?最少运输费是多少?
教案课件是老师工作中的一部分,大家在着手准备教案课件了。将教案课件的工作计划制定好,这样我们接下来的工作才会更加好!你们知道适合教案课件的范文有哪些呢?下面的内容是小编为大家整理的初一数学下册《不等式与不等式组》知识点归纳,欢迎阅读,希望您能够喜欢并分享!
初一数学下册《不等式与不等式组》知识点归纳
一、目标与要求
1.感受生活中存在着大量的不等关系,了解不等式和一元一次不等式的意义,通过解决简单的实际问题,使学生自发地寻找不等式的解,会把不等式的解集正确地表示到数轴上;
2.经历由具体实例建立不等模型的过程,经历探究不等式解与解集的不同意义的过程,渗透数形结合思想;
3.通过对不等式、不等式解与解集的探究,引导学生在独立思考的基础上积极参与对数学问题的讨论,培养他们的合作交流意识;让学生充分体会到生活中处处有数学,并能将它们应用到生活的各个领域。
二、知识框架
三、重点
理解并掌握不等式的性质;
正确运用不等式的性质;
建立方程解决实际问题,会解ax+b=cx+d类型的一元一次方程;
寻找实际问题中的不等关系,建立数学模型;
一元一次不等式组的解集和解法。
四、难点
一元一次不等式组解集的理解;
弄清列不等式解决实际问题的思想方法,用去括号法解一元一次不等式;
正确理解不等式、不等式解与解集的意义,把不等式的解集正确地表示到数轴上。
五、知识点、概念总结
1.不等式:用符号,,≤,≥表示大小关系的式子叫做不等式。
2.不等式分类:不等式分为严格不等式与非严格不等式。
一般地,用纯粹的大于号、小于号,连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号)≥,≤连接的不等式称为非严格不等式,或称广义不等式。
3.不等式的解:使不等式成立的未知数的值,叫做不等式的解。
4.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。
5.不等式解集的表示方法:
(1)用不等式表示:一般的,一个含未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式表达出来,例如:x-1≤2的解集是x≤3
(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地说明不等式有无限多个解,用数轴表示不等式的解集要注意两点:一是定边界线;二是定方向。
6.解不等式可遵循的一些同解原理
(1)不等式F(x)G(x)与不等式G(x)F(x)同解。
(2)如果不等式F(x)G(x)的定义域被解析式H(x)的定义域所包含,那么不等式F(x)G(x)与不等式H(x)+F(x)
(3)如果不等式F(x)G(x)的定义域被解析式H(x)的定义域所包含,并且H(x)0,那么不等式F(x)G(x)与不等式H(x)F(x)0,那么不等式F(x)G(x)与不等式H(x)F(x)H(x)G(x)同解。
7.不等式的性质:
(1)如果xy,那么yy;(对称性)
(2)如果xy,yz;那么xz;(传递性)
(3)如果xy,而z为任意实数或整式,那么x+zy+z;(加法则)
(4)如果xy,z0,那么xzyz;如果xy,z0,那么xz
(5)如果xy,z0,那么x÷zy÷z;如果xy,z0,那么x÷z
(6)如果xy,mn,那么x+my+n(充分不必要条件)
(7)如果xy0,mn0,那么xmyn
(8)如果xy0,那么x的n次幂y的n次幂(n为正数)
8.一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。
9.解一元一次不等式的一般顺序:
(1)去分母(运用不等式性质2、3)
(2)去括号
(3)移项(运用不等式性质1)
(4)合并同类项
(5)将未知数的系数化为1(运用不等式性质2、3)
(6)有些时候需要在数轴上表示不等式的解集
10.一元一次不等式与一次函数的综合运用:
一般先求出函数表达式,再化简不等式求解。
11.一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成
了一个一元一次不等式组。
12.解一元一次不等式组的步骤:
(1)求出每个不等式的解集;
(2)求出每个不等式的解集的公共部分;(一般利用数轴)
(3)用代数符号语言来表示公共部分。(也可以说成是下结论)
13.解不等式的诀窍
(1)大于大于取大的(大大大);
例如:X-1,X2,不等式组的解集是X2
(2)小于小于取小的(小小小);
例如:X-4,X-6,不等式组的解集是X-6
(3)大于小于交叉取中间;
(4)无公共部分分开无解了;
14.解不等式组的口诀
(1)同大取大
例如,x2,x3,不等式组的解集是X3
(2)同小取小
例如,x2,x3,不等式组的解集是X2
(3)大小小大中间找
例如,x2,x1,不等式组的解集是1
(4)大大小小不用找
例如,x2,x3,不等式组无解
15.应用不等式组解决实际问题的步骤
(1)审清题意
(2)设未知数,根据所设未知数列出不等式组
(3)解不等式组
(4)由不等式组的解确立实际问题的解
(5)作答
16.用不等式组解决实际问题:其公共解不一定就为实际问题的解,所以需结合生活实际具体分析,最后确定结果。
四、经典例题
例1当x时,代数代2-3x的值是正数。
例2一元一次不等式组的解集是()
例3已知方程组的解为负数,求k的取值范围。
例4某种植物适宜生长在温度为18℃~20℃的山区,已知山区海拔每升高100米,气温下降0。5℃,现在测出山脚下的平均气温为22℃,问该植物种在山的哪一部分为宜?(假设山脚海拔为0米)
例5某园林的门票每张10元,一次使用,考虑到人们的不同需求,也为了吸引更多的游客,该园林除保留原来的售票方法外,还推出了一种“购买个人年票”的售票方法(个人年票从购买日起,可供持票者使用一年)。年票分A、B、C三类:A类年票每张120元,持票者进入园林时,无需再用门票;B类年票每张60元,持票者进入该园林时,需再购买门票,每次2元;C类年票每张40元,持票者进入该园林时,需再购买门票,每次3元。
(1)如果你只选择一种购买门票的方式,并且你计划在一年中用80元花在该园林的门票上,试通过计算,找出可进入该园林的次数最多的购票方式。
(2)求一年中进入该园林至少超过多少次时,购买A类年票比较合算。
文章来源:http://m.jab88.com/j/41996.html
更多