88教案网

匀变速直线运动的规律复习讲授

一名爱岗敬业的教师要充分考虑学生的理解性,作为教师就要在上课前做好适合自己的教案。教案可以让上课时的教学氛围非常活跃,帮助教师提前熟悉所教学的内容。写好一份优质的教案要怎么做呢?下面是小编精心为您整理的“匀变速直线运动的规律复习讲授”,但愿对您的学习工作带来帮助。

秦岭中学新课程高中物理导学案

课题第三章匀变速直线运动的规律总结(复习讲授课型)
教师归纳总结部分
本章重点

总结归纳一、:匀变速直线运动的基本规律(经典运动模型)
1、速度公式:
2、位移公式:
3、速度位移公式:
4、平均速度公式:
二、匀变速直线运动的常用三个推论:(适用所有匀变速运动)
(1)任意两个连续相等的时间间隔T内的位移之差是一个恒量,即
s2-s1=s3-s2……=Δs=aT2或sn+k-sn=kaT2
(2)在一段时间t内,中间时刻瞬时速度等于这段时间内的平均速度,即
(3))中间位置处的速度等于这段位移初、末速度的方均根,即
三、匀变速直线运动的特例推论6式:初速为零的匀加速直线运动的特征
1、从运动开始计时,t秒末、2t秒末、3t秒末、…、nt秒末的速度之比等于连续自然数之比:
v1∶v2∶v3∶…∶vn=1∶2∶3∶…∶n.
2、从运动开始计时,前t秒内、2t秒内、3t秒内、…、nt秒内通过的位移之比等于连续自然数的平方之比:s1∶s2∶s3∶…∶sn=12∶22∶32∶…∶n2.
3、从运动开使计时,任意连续相等的时间内通过的位移之比等于连续奇数之比:
s1∶s2∶s3∶…∶sn=1∶3∶5∶…∶(2n-1).
4、通过前1s、前2s、前3s…的所用时间之比等于连续的自然数的平方根之比:
t1∶t2∶t3∶…tn=∶∶∶…∶.
5、从运动开始计时,通过任意连续相等的位移所用的时间之比为相邻自然数的平方根之差的比:
t1∶t2∶t3∶…tn=∶∶∶…∶.
6、从运动开始通过的位移与达到的速度的平方成正比:s∝v2.
班级姓名小组上课时间:年月日[来
学生课后自主完成,课堂上讨论交流


1、某物体沿x轴运动,它的x坐标与时刻t的函数关系为:x=(4t+2t2)m,则它的初速度是m/s;加速度是m/s2。
解析:由题知,物体坐标变化的函数关系表明该运动为匀变速直线运动,比照位移公式:得出,v0=4m/s,a=4m/s2即为所求。
2、神州五号载人飞船的返回舱距地面10Km时开始启动降落伞装置,速度减至10m/s,并以这个速度在大气中降落。在距地面1.2m时,返回舱的四台缓冲发动机开始向下喷火,舱体再次减速。设最后减速过程中返回舱做匀减速运动,并且到达地面时恰好速度为零,求最后减速阶段的加速度。
解:由题知,舱体做末速度为零的匀加速运动,其位移s=1.2m。
由知
代值得a=-4.31m/s2即为所求。
3、某型号的舰载飞机在航空母舰的跑道上加速时,发动机产生的最大加速度为5m/s2,所需的起飞速度为50m/s,跑道长100m。通过计算判断,飞机能否靠自身的发动机从舰上起飞?为了使飞机在开始滑行时就有一定的初速度,航空母舰装有弹射装置。对于该型号的舰载飞机,弹射系统必须使它具有多大的初速度?若通过航空母舰自身的同向运动而获得正常起飞的速度,则航空母舰的速度为多大?
解:由题知,假定飞机由静止做匀加速运动至起飞速度50m/s,则
由知,代值得s=250m
因为s=250m>100m,所以飞机不能靠自身的发动机从舰上起飞。
假设通过弹射获得初速度v0后在做匀加速运动,则
由知
代值得v0=m/s=38.7m/s即为所求。
若通过航空母舰自身的同向运动而获得正常起飞的速度,则设母舰的速度为v0,
利用相对运动原理,知
5、汽车做匀变速直线运动在第一个4秒内位移为80m,第二个4秒内位移为64m,求:汽车做加速还是减速运动,加速度多大?汽车在12秒内的总位移是多少?


6、为了安全,在公路上行驶的汽车之间应保持必要的距离,已知某高速公路的最高限速v=120km/h,假设前方车辆突然停止,后方车司机从发现这一情况,经操纵刹车到汽车开始减速所经历的时间(即反应时间)t=0.50s,刹车具有的加速度大小为4m/s2,求该高速公路上汽车间的距离s至少应为多少?

7.汽车以10m/s的速度在平直的公路上匀速行驶,突然发现正前方有一辆自行车以4m/s的速度作同方向的匀速直线运动,此时司机立刻采取措施关闭油门时汽车做加速度大小为6m/s2的匀减速直线运动(已知司机的反应总时间为0.6s),则恰好没有撞上自行车,那么,司机采取措施前,汽车与自行车相距约多远?

8、一辆轿车和一辆公共汽车沿互相垂直的两条马路向同一十字路口行使,小轿车离十字路口16m,以初速度2m/s、加速度1m/s2向着路口做匀加速直线运动。公共汽车离路口12m时瞬时速度6m/s,为避免撞车,公共汽车开始制动让小轿车先通过路口,问公共汽车的加速度应满足什么条件才能保证安全?
M.JaB88.COm

9.汽车从静止开始以1m/s2的加速度前进,在车后S0为25m处与车同向的某人同时以6m/s的速度匀速追该车,他能否追上?若能追上求追上所用的时间,若追不上,求人车间最小距离。

10.一辆汽车在平直的公路上以20m/s的速度匀速行驶,其后1000m处的摩托车要在起动3分钟内追上汽车,若摩托车所能达到的最大速度为30m/s,则它的加速度至少为多大?

11.甲乙两车从同一地点向同一方向做直线运动,其
速度图象如图:
⑴a甲=;a乙=。
⑵速度相等的时刻是:。
⑶前20s内,两车相距最远的时刻是:。
且最远距离为。
⑷两车相遇的时刻是:。

12.两物体从同一地点出发,据图判断下列说法正确的是:
A.甲乙两物体在第1s末,第4s末两次相遇。
B.两物体两次相遇的时刻分别是第2s末和第6s末。
C.两物体相距最远的时刻是2s末。
D.5.5s时甲在乙的前面。

补充1、一个小球从斜面顶端无初速下滑,接着又在水平面上匀减速运动,直至停止,它共运动了10s,斜面长4m,在水平面上运动的距离为6m。求:
⑴小球在运动过程中的最大速度。⑵小球在斜面和水平面上运动的加速度。

补充2、一列车队从同一地点先后开出n辆汽车在平直的公路上排成直线行驶,各车均由静止出发先做加速度为a的匀加速直线运动,达到同一速度v后改做匀速直线运动,欲使n辆车都匀速行驶时彼此距离均为s,则各辆车依次启动的时间间隔为(D)
(不计汽车的大小)A.2vaB.v2aC.s2vD.sv

我的
收获
小组
评价老师
评价

精选阅读

质匀变速直线运动的规律


高中物理《匀变速直线运动的规律》学案鲁科版必修1
静悟寄语:
1、一心向着目标前进的人,整个世界都得给他让路。
2、成功就在再坚持一下的努力之中。
3、奇迹,就在凝心聚力的静悟之中。
一、“静”什么?
1、环境“安静”:鸦雀无声,无人走动,无声说话、交流,无人随意出进。每一个人充分沉浸在难得的静谧之中。以享受维护安静环境为荣,以影响破坏安静环境为耻。
2、心态“安静”:心静自然“凉”,脑子自然清醒,精力自然集中,思路自然清晰。心静如水,超然物外,成为时间的主人,学习的主人。情绪稳定,效率较高。心不静,则心乱如麻,心神不定,心不在焉,如坐针毡,眼在此心在彼,貌似用功,实则骗人。
二、【高考常考查的知识点】
1.静力学的受力分析与共点力平衡(选择题)
此题定位为送分题目,一般安排为16题,即物理学科的第一题,要求学生具有规范的受力分析习惯,熟练运用静力学的基本规律,如胡克定律、滑动摩擦定律与静摩擦力的变化规律、力的合成与分解、正交分解法等,可涉及两个状态,但一般不涉及变化过程的动态分析,也不至于考查相似三角形法等非常规方法。不必考虑计算题
2.运动图象及其综合应用(选择题)
山东卷对物理图象的专门考查以运动图象为代表,立足于对物理图象的理解。可涉及物理图象的基本意义、利用运动图象的分析运动过程、用不同物理量关系图象描述同一运动过程等。以宁夏、海南为代表的利用运动图象考查追及、相遇问题尚未被山东采纳。专题设计为选择题,尽量多涉及不同的图象类型。
3.牛顿定律的直接应用(选择、计算题)
与自感一样,超重失重为Ⅰ级要求知识点,此题为非主干知识考查题,为最可能调整和变化的题目。
但对牛顿定律的考查不会削弱,而很可能更加宽泛和深入,可拓展为具体情境中力和运动关系的分析(选择)、直线、类平抛和圆周运动中牛顿第二定律的计算(计算题的一部分)。
此专题定位在牛顿定律的直接应用,针对基本规律的建立、定律物理内涵的理解及实际情境中规律的应用,可涉及瞬时分析、过程分析、动态分析、特殊装置、临界条件,以及模型抽象、对象转换、整体隔离、合成分解等方法问题。
4.第四专题万有引力与航天(选择、计算题)
此专题内容既相对宽泛又相对集中,宽泛指万有引力与航天的内容均可涉及,集中即一定是本章内容且集中在一道题目中。这部分内容也是必考内容,今年考试说明中本章知识点增加了“经典时空观和相对论时空观(Ⅰ)”,“环绕速度”由(Ⅱ)到(Ⅰ)。可以理解为深度减弱,广度增加,最大的可能仍是选择题,也不排除作为力学综合题出现的可能,复习时应适当照顾。需特别注意的是,一定要关注近一年内天文的新发现或航天领域的新成就,题目常以此类情境为载体。
5.功能关系:(选择、计算题)动能定理、机械能守恒、功能关系、能量守恒是必考内容,要结合动力学过程分析、功能分析,进行全过程、分过程列式。考查形式选择题、计算题
注意:必修1、2部分考察多为选择题,但在牛顿定律结合功能关系以及抛体运动和圆周运动部分综合的计算,出现在24题上,本题一般涉及多个过程,是中等难度的保分题。
6.静电场主要以考察电场线、电势、电势差、电势能、电容器、带电粒子的加速与偏转为主
7.恒定电流以考察电学实验为主,选择中也容易出电路的分析题
8.磁场以考察磁场对运动电荷和通电导线的作用为主,选择中易出一个题,在大题中容易出与电场及重力场相结合的题目。
9.电磁感应以选择题、计算题,主要考察导体棒的切割以及感生电动势,楞次定律,注意图像问题
10.交流电主要考察交流电的四值、图像,以及远距离输电变压器问题,通常以选择形式出现
11.热学3-3:油膜法、微观量计算,气体实验定律,热一律、压强微观解释、热二律是重点
10.选修3-5中动量守恒、动量变化量计算、原子结构中能级跃迁、原子核中质能方程、核反应方程是考察重点。
三、【静悟注意事项】
1.以查缺补漏为主要目的,以考纲知识点为主线复习
2.重点看课本、课后题、改错本、以前做过的相关题目
3.把不会的问题记下来,集中找时间找老师解决
4.必须边思考,边动笔。静悟最忌只动眼动嘴的学习方式,必须多动脑多动手,做到手不离笔,笔不离纸。
匀变速直线运动
【考试说明】
主题内容要求说明
质点的直线
运动参考系、质点
位移、速度和加速度
匀变速直线运动及其公式、图像Ⅰ


【知识网络】
【考试说明解读】
1.参考系
⑴定义:在描述一个物体的运动时,选来作为标准的假定不动的物体,叫做参考系。
⑵运动学中的同一公式中涉及的各物理量应以同一参考系为标准。
2.质点
⑴定义:质点是指有质量而不考虑大小和形状的物体。
⑵质点是物理学中一个理想化模型,能否将物体看作质点,取决于所研究的具体问题,而不是取决于这一物体的大小、形状及质量,只有当所研究物体的大小和形状对所研究的问题没有影响或影响很小,可以将其形状和大小忽略时,才能将物体看作质点。
物体可视为质点的主要三种情形:
①物体只作平动时;
②物体的位移远远大于物体本身的尺度时;
③只研究物体的平动,而不考虑其转动效果时。
3.时间与时刻
⑴时刻:指某一瞬时,在时间轴上表示为某一点。
⑵时间:指两个时刻之间的间隔,在时间轴上表示为两点间线段的长度。
⑶时刻与物体运动过程中的某一位置相对应,时间与物体运动过程中的位移(或路程)相对应。
4.位移和路程
⑴位移:表示物体位置的变化,是一个矢量,物体的位移是指从初位置到末位置的有向线段,其大小就是此线段的长度,方向从初位置指向末位置。
⑵路程:路程等于运动轨迹的长度,是一个标量。只有在单方向的直线运动中,位移的大小才等于路程。
5.速度、平均速度、瞬时速度
⑴速度:是表示质点运动快慢的物理量,在匀速直线运动中它等于位移与发生这段位移所用时间的比值,速度是矢量,它的方向就是物体运动的方向。
⑵平均速度:物体所发生的位移跟发生这一位移所用时间的比值叫这段时间内的平均速度,即,平均速度是矢量,其方向就是相应位移的方向。公式=(V0+Vt)/2只对匀变速直线运动适用。
⑶瞬时速度:运动物体经过某一时刻(或某一位置)的速度,其方向就是物体经过某有一位置时的运动方向。
6.加速度
⑴加速度是描述物体速度变化快慢的物理量,是一个矢量,方向与速度变化的方向相同。
⑵做匀速直线运动的物体,速度的变化量与发生这一变化所需时间的比值叫加速度,即
⑶速度、速度变化、加速度的关系:
①方向关系:加速度的方向与速度变化的方向一定相同,加速度方向和速度方向没有必然的联系。
②大小关系:V、△V、a无必然的大小决定关系。
③只要加速度方向跟速度方向相同,无论加速度在减少还是在增大,物体的速度一定增大,若加速度减小,速度增大得越来越慢(仍然增大);只要加速度方向跟速度方向相反,物体的速度一定减小。
7、运动图象:s—t图象与v—t图象的比较
下图和下表是形状一样的图线在s—t图象与v—t图象中的比较.
s—t图v—t图
①表示物体匀速直线运动(斜率表示速度v)①表示物体匀加速直线运动(斜率表示加速度a)
②表示物体静止②表示物体做匀速直线运动
③表示物体向反方向做匀速直线运动;初位移为s0③表示物体做匀减速直线运动;初速度为v0
④t1时间内物体位移s1④t1时刻物体速度v1(图中阴影部分面积表示质点在0~t1时间内的位移)
补充:(1)s—t图中两图线相交说明两物体相遇,v—t图中两图线相交说明两物体在交点时的速度相等
(2)s—t图象与横轴交叉,表示物体从参考点的一边运动到另一边.v—t图线与横轴交叉,表示物体运动的速度反向.
(3)s—t图象是直线表示物体做匀速直线运动或静止.图象是曲线则表示物体做变速运动.v—t图线是直线表示物体做匀变速直线运动或匀速直线运动;图线是曲线表示物体做变加速运动.
(4)s—t图象斜率为正值,表示物体沿与规定正方向相同的方向运动.图象斜率为负值,表示物体沿与规定正方向相反的方向运动.v—t图线的斜率为正值,表示物体的加速度与规定正方向相同;图象的斜率为负值,表示物体的加速度与规定正方向相反.
【例题:07山东理综】如图所示,光滑轨道MO和ON底端对接且ON=2MO,M、N两点高度相同。小球自M点右静止自由滚下,忽略小球经过O点时的机械能损失,以v、s、a、EK分别表示小球的速度、位移、加速度和动能四个物理量的大小。下列图象中能正确反映小球自M点到N点运动过程的是
【例题:08山东理综】质量为1500kg的汽车在平直的公路上运动,v-t图象如图所示.由此可求(ABD)
A.前25s内汽车的平均速度
B.前l0s内汽车的加速度
C.前l0s内汽车所受的阻力
D.15~25s内合外力对汽车所做的功
8.匀变速直线运动的基本规律及推论:
基本规律:⑴Vt=V0+at,⑵s=V0t+at2/2
推论:⑴Vt2_VO2=2as
⑵(Vt/2表示时间t的中间时刻的瞬时速度)
⑶任意两个连续相等的时间间隔(T)内,位移之差是一恒量.即:
sⅡ-sⅠ=sⅢ-sⅡ=……=sN-sN-1=△s=aT2.
9.初速度为零的匀加速直线运动的特点:(设T为等分时间间隔):
⑴1T末、2T末、3T末……瞬时速度的比为:v1:v2:v3:……vn=1:2:3:……:n
⑵1T内、2T内、3T内……位移的比为:s1:s2:s3:……:sn=12:22:32:……:n2
⑶第一个T内、第二个T内、第三个T内……位移的比为:s1:sⅡ:sⅢ?……:sN=1:3:5:……:(2n-1)
⑷从静止开始通过连续相等的位移所用时间的比
t1:t2:t3:……:tn=
10、竖直上抛运动的两种研究方法
①分段法:上升阶段是匀减速直线运动,下落阶段是自由落体运动.
②整体法:从全程来看,加速度方向始终与初速度v0的方向相反,所以可把竖直上抛运动看成是一个匀变速直线运动,应用公式时,要特别注意v,h等矢量的正负号.一般选取向上为正方向,则上升过程中v为正值下降过程中v为负值,物体在抛出点以下时h为负值.
11、追及问题的处理方法
1.要通过两质点的速度比较进行分析,找到隐含条件.再结合两个运动的时间关系、位移关系建立相应的方程求解,也可以利用二次函数求极值,及应用图象法和相对运动知识求解
2.追击类问题的提示
1.匀加速运动追击匀速运动,当二者速度相同时相距最远.
2.匀速运动追击匀加速运动,当二者速度相同时追不上以后就永远追不上了.此时二者相距最近.
3.匀减速直线运动追匀速运动,当二者速度相同时相距最近,此时假设追不上,以后就永远追不上了.
4.匀速运动追匀减速直线运动,当二者速度相同时相距最远.
【例题:09海南】甲乙两车在一平直道路上同向运动,其图像如图所示,图中和的面积分别为和.初始时,甲车在乙车前方处.(ABC)
A.若,两车不会相遇B.若,两车相遇2次
C.若,两车相遇1次D.若,两车相遇1次

高考物理复习:匀变速直线运动的规律


第二课时匀变速直线运动的规律

【教学要求】
1.掌握匀变速直线运动及其公式;
2.理解运动图象(x-t图、v-t图)的物理意义并会进行应用。
【知识再现】
一.匀变速直线运动的基本规律及重要推论
(1)匀变速直线运动的基本规律通常是指所谓的位移公式和速度公式
S=v0t+1/2at2
vt=v0+at
(2)在匀变速直线运动的基本规律中,通常以初速度v0的方向为参考正方向,即v0>0;此时加速度的方向将反映出匀变速直线运动的不同类型:
①若a0,指的是匀加速直线运动;
②若a=0,指的是匀速直线运动;
③若a0,指的是匀减速直线运动。
(3)匀变速直线运动的基本规律在具体运用时,常可变换成如下推论形式
推论1:vt2-v02=2as
推论2:
推论3:△S=a△T2
推论4:
推论5:
推论6:当v0=0时,有
S1:S2:S3:……=12:22:32:……
SⅠ:SⅡ:SⅢ:……=1:3:5:……
v1:v2:v3:……=1:2:3:……
t1:t2:t3:……=1:(-1):(-):……

二.匀变速直线运动的v-t图
用图像表达物理规律,具有形象,直观的特点。对于匀变速直线运动来说,其速度随时间变化的v~t图线如图1所示,对于该图线,应把握的有如下三个要点。
(1)纵轴上的截距其物理意义是运动物体的初速度v0;
(2)图线的斜率其物理意义是运动物体的加速度a;
(3)图线下的“面积”其物理意义是运动物体在相应的时间内所发生的位移s。

知识点一如何理解匀变速直线运动的规律
在匀变速直线运动的公式中,只沙及五个物理量:初速度vo、末速度vt、加速度a、位移x和时间t.其中vo和a能决定物体的运动性质(指做匀加速运动、匀减速运动),所以称为特征量。
描述匀变速运动的几个公式并不只适用于单向的匀变速直线运动,对往返的匀变速直线运动同样适用.可将运动的全过程作为一个整体直接应用公式计算,从而避免了分段计算带来的麻烦.
【应用1】质量为m=2kg的物体,受到F=4N的水平恒力作用,先在光滑水平面上由静止开始运动,经4s后进入动摩擦因数为0.4的粗糙水平面上,g取10m/s2,求该物体从静止开始运动l0s内的位移是多少?
导示:物体在光滑水平面上的加速度为a1=F/m=2m/s2,第4s末的速度v1=alt=8m/s;
4s内的位移,
物体进入粗糙水平面后的加速度为
如果认为物体做减速运动的时间为t2=6s,那么以此求得在减速运动的6s内的位移为,
此位移的计算结果是错误的.物体从进入粗糙水平面到停止,所需的时间为
所以=16m
物体在10s内的位移为s=sl+s2=16m+16m=32m.
该类问题的分析要注意以下技巧:
1.关键词语:“10s内的位移”→位移分成前4s和后6s两段。
2.隐含条件:①“光滑水平面”→做匀加速运动;②“由静止开始运动”→初速度为零;③“粗糙水平面”→可能做匀减速运动;④“l0s内”→含三个物理过程:匀加速、匀减速、停止.干扰因素:“l0s内的位移”→后6s中含有陷阱,物体有可能在6s前就已停止运动
3.临界状态:“l0s内”→两个临界状态:4s末和8s末.

知识点二匀变速直线运动公式的选择
由于该部分内容,公式较多,有基本规律,有重要推论,有很多特点,解题时选择公式的技巧就是根据条件的特征,求什么,与哪些公式相接近,就选哪些公式.
【应用2】(无锡市08届高三基础测试)物体在斜面顶端由静止匀加速下滑,最初4s内经过的路程为s1,最后4s内经过的路程为s2,且s2-s1=8m,s1:s2=1:2,求:
(1)物体的加速度;
(2)斜面的全长。
导示:(1)由s2-s1=8m;s1:s2=1:2
可得S1=8m,S2=16m
最初4s,物体从0开始匀加速直线运动,所以S1=at2/2,将S1=8m,带入即可求解得a=1m/s2
(2)同样最后4s的平均速度为V=S2/t=4m/s,匀加速直线运动一段时间的平均速度等于这段时间的中间时刻的瞬时速度,那么最后时刻的速度Vt=V+at’=6m/s(式中t’=2s)
根据Vt2-V02=2aL得斜面长L=18m。
从本题来看,灵活选用运动学公式是解决问题的关键,这种问题往往有多种方法,同学们可以试一试,看看还有其他哪些方法。

类型一图象的应用
物理图象可以更直观地描述物理过程,研究图象时首先明确所给的图象表达的物理规律,即认清纵、横坐标所表示的物理量,其次要注意理解图象中的“点”、“线”、“斜率”、“截距”、“面积”等的物理意义。
【例1】(扬州市08届高三物理期中模拟试卷)两个完全相同的物块a、b质量为m=0.8kg,在水平面上以相同的初速度从同一位置开始运动,图中的两条直线表示物体受到水平拉力F作用和不受拉力作用的υ-t图象,求:
(1)物块b所受拉力F的大小;
(2)8s末a、b间的距离。
(3)若在8s末将作用在其中一个物体上的水平拉力F换到另外一物体上,则何时它们相距最远?最远距离为多少?
导示:(1)设a、b两物块的加速度分别为a1、a2,
由υ-t图可得:①

对a、b两物块由牛顿第二定律得:-f=ma1③,F-f=ma2④
由①-④式可得:F=1.8N(2分)
(2)设a、b两物块8s内的位移分别为s1、s2,由图象得:
所以s2-s1=60m
(3)再经16/3s它们相距最远,最远距离为92m。

类型二追及相遇问题
相遇是指两物体分别从相距S的两地相向运动到同一位置,它的特点是:两物体运动的距离之和等于S;追及是指两物体同向运动而达到同一位置。找出两者的时间关系、位移关系是解决追及问题的关键,同时追及物与被追及物的速度恰好相等时临界条件,往往是解决问题的重要条件。
【例2】(常州中学08届高三第二阶段调研)甲、乙两运动员在训练交接棒的过程中发现:甲经短距离加速后能保持9m/s的速度跑完全程;乙从起跑后到接棒前的运动是匀加速的。为了确定乙起跑的时机,需在接力区前适当的位置设置标记。在某次练习中,甲在接力区前S0=13.5m处作了标记,并以V=9m/s的速度跑到此标记时向乙发出起跑口令。乙在接力区的前端听到口令时起跑,并恰好在速度达到与甲相同时被甲追上,完成交接棒。已知接力区的长度为L=20m。求:
(1)此次练习中乙在接棒前的加速度a;
(2)在完成交接棒时乙离接力区末端的距离。
导示:画出运动示意图如图示:
(1)设经过时间t,甲追上乙,则根据题意有vt-vt/2=13.5
将v=9代入得到:t=3s,
再有v=at;解得:a=3m/s2
(2)在追上乙的时候,乙走的距离为s,则:s=at2/2
代入数据得到s=13.5m
所以,乙离接力区末端的距离为:
△s=20-13.5=6.5m

分析时要注意:
(1)两物体是否同时开始运动,两物体运动至相遇时运动时间可建立某种关系;两物体各做什么形式的运动;由两者的时间关系,根据两者的运动形式建立S=S1+S2方程;建立利用位移图象或速度图象分析
(2)匀减速物体追及同向匀速物体时,恰能追上或恰好追不上的临界条件为:即将靠近时,追及者速度等于被追及者的速度;初速度为零的匀加速直线运动的物体追赶同向匀速直线运动的物体时,追上之前距离最大的条件:为两者速度相等。

类型三评价分析题
【例3】汽车正以v1=10m/s的速度在平直公路上行驶,突然发现正前方有一辆自行车以v2=10m/s的速度作同方向的匀速直线运动,汽车立即关闭油门作加速度大小为a=0.6m/s2的匀减速运动,汽车恰好没有碰上自行车,求关闭油门时汽车与自行车的距离。
某同学是这样解的:
汽车的关闭油门后的滑行时间和滑行距离分别为:;
在相同时间内,自行车的前进的距离为:
关闭油门时汽车与自行车的距离为:
……………………
你认为这位同学的解法是否合理?若合理,请完成计算;若不合理,请说明理由,并用你自己的方法算出正确结果.
导示:答“不合理”;
理由:能满足题设的汽车恰好不碰上自行车的临界条件是:当汽车减速到与自行车速度相等时,它们恰好相遇,而不是汽车减速到0时相遇。
正确解法:
汽车减速到与自行车速度相等时,所用时间为:
在此时间内,汽车滑行距离为:
自行车的前进的距离为:
关闭油门时汽车与自行车的距离为:

分析本题的关键是抓住汽车与自行车恰好没有碰撞的条件:两者速度相等,根据位移和速度等关系建立方程。

1.一质点沿直线ox做加速运动,它离开O点的距离随时间t的变化关系为x=5+2t3,其中x的单位是m,t的单位是s,它的速度v随时间t的变化关系是v=6t2。设该质点在t=0到t=2s间的平均速度为v1,t=2s到t=3s间的平均速度为v2,则()
A.v1=12m/s,v2=39m/s
B.v1=8m/s,v2=13m/s
C.v1=12m/s,v2=19.5m/s
D.v1=8m/s,v2=38m/s

2.(南京一中08届高三第一次月考试卷)一物体做加速直线运动,依次通过A、B、C三点,AB=BC.物体在AB段加速度为a1,在BC段加速度为a2,且物体在B点的速度为,则下列关系正确的是()
A.a1a2B.a1=a2
C.a1a2D.不能确定

3.(2007年物理海南卷)8.两辆游戏赛车、在两条平行的直车道上行驶。时两车都在同一计时线处,此时比赛开始。它们在四次比赛中的图如图所示。哪些图对应的比赛中,有一辆赛车追上了另一辆()

4.最近某报报道徐州到南京的省道上,有一辆汽车和自行车追尾相撞事件,情况是这样的:当时汽车正以v0=36km/h速度向前行使,司机发现正前方60m处有一以v=14.4km/h的速度与汽车同方向匀速行驶的自行车,司机以a=0.25m/s2的加速度开始刹车,经过40s停下;请你判断一下停下前是否发生车祸?此新闻是真是假。某同学解法如下:
解:在40s内汽车前进的位移为:………①
40s内自行车前进的位移:…………②
两车发生车祸的条件是S1S2+60m
由①②得出S1—S2=40m60m
所以该同学从中得出不可能发生车祸。由此判断此新闻是假的。你认为该同学判断是否正确,请分析之。

5.如图所示,公路上一辆汽车以v1=10m/s的速度匀速行驶,汽车行至A点时,一人为搭车,从距公路30m的C处开始以v2=3m/s的速度正对公路匀速跑去,司机见状途中刹车,汽车做匀减速运动,结果人到达B点时,车也恰好停在B点。已知AB=80m,问:汽车在距A多远处开始刹车,刹车后汽车的加速度有多大?

答案:1.D2.C3.AC
4.不正确5.2.5m/s2

匀变速直线运动规律的应用


老师会对课本中的主要教学内容整理到教案课件中,大家开始动笔写自己的教案课件了。是时候对自己教案课件工作做个新的规划了,这样接下来工作才会更上一层楼!你们了解多少教案课件范文呢?下面是小编精心收集整理,为您带来的《匀变速直线运动规律的应用》,欢迎大家与身边的朋友分享吧!

教学目标

知识目标

1、通过例题的讨论学习匀变速直线运动的推论公式及。

2、了解初速度为零的匀加速直线运动的规律。

3、进一步体会匀变速直线运动公式中矢量方向的表示方法。

能力目标

1、培养学生分析运动问题的能力以及应用数学知识处理物理问题的能力

教学建议

教材分析

教材通过例题1自然的引出推论公式,即位移和速度关系,通过思考与讨论对两个基本公式和推论公式做了小结,启发学生总结一般匀变速直线运动问题涉及到五个物理量,由于只有两个独立的方程式,因此只有在已知其中三个量的情况下,才能求解其余两个未知量,引导同学思考和总结初速度为零的匀加速直线运动的特殊规律.教材通过例题2,实际上给出了对于匀变速直线运动的平均速度特点,强调由两个基本公式入手推导出有用的推论的思想,培养学生分析运动问题的能力和应用用数学处理物理问题的能力.

教法建议

通过例题或练习题的讨论,让学生自己分析题目,画出运动过程草图,动手推导公式,教师适时地加以引导和总结,配合适当的课件,加强学生的认识.在推导位移公式时直接给出的,在这里应向学生说明,实质上它也是匀变速直线运动的两个基本公式的推论.

教学设计方案

教学重点:推论公式的得出及应用.

教学难点:初速度为零的匀变速直线运动的比例关系.

主要设计:

一、例题1的处理:

1、让学生阅读题目后,画运动过程草图,标出已知条件,,as,待求量.

2、请同学分析解题思路,可以鼓励学生以不同方法求解,如“先由位移公式求出时间,再利用速度公式求”等.

3、教师启发:上面的解法,用到两个基本公式,有两个未知量t和,而本题不要求求出时间t,能否有更简单的方法呢?可以启发学生两个基本公式的消去,能得到什么结论呢?

4、让学生自己推导,得到,即位移和速度的关系,并且思考:什么条件下用这个公式更方便?

5、用得到的推论解例题

二、思考与讨论的处理

1、(1)(2)(3)三个公式中共包括几个物理量?各个公式在什么条件下使用更方便?

2、用三个公式解题时,至少已知几个物理量?为什么?[(知三求二)因为三个公式中只有(1)(2)两个是基本公式,是独立的方程,(3)为推论公式,所以最多只能求解两个未知量]

3、如果物体的初速度等于零,以上三个公式是怎样的?请同学自己写出:

三、例题2的处理

1、让学生阅读题目后,画运动过程草题,标出已知量、、,待求量为.

2、放手让同学去解:可能有的同学用公式(3)和(1)联立先解出a再求出t;也可能有的同学利用前面学过的,利用求得结果;都应给予肯定,也可能有的同学受例1的启发,发现本题没让求加速度a,想到用基本公式(1)(2)联立消去a,得到.

3、得到后,告诉学生,把它与对比知,对于匀变速直线运动,也可以当作一个推论公式应用,此公式也可由,将位移公式代入.利用求得.(请同学自己推证一下)

4、用或解例2.

四、讨论典型例题(见后)

五、讨论教材练习七第(5)题.

1、请同学根据提示,自己证明.

2、展示课件,下载:初速度为零的匀加速直线运动(见媒体资料)

3、根据课件,展开讨论:

(1)1秒末,2秒末,3秒末……速度比等于什么?

(2)1秒内,2秒内,3秒内……位移之比等于什么?

(3)第1秒内,第2秒内,第3秒内……位移之比等于什么?

(4)第1秒内,第2秒内,第3秒内……平均速度之比等于什么?

(5)第1个1米,第2个1米,第3个1米内……所用时间之比等于什么?

探究活动

根据本节所学知识,请你想办法测出自行车刹车时的初速度及加速度,需要什么测量仪器?如何测量?如何计算?实际做一做.


匀变速直线运动规律及应用


作为杰出的教学工作者,能够保证教课的顺利开展,高中教师要准备好教案,这是教师工作中的一部分。教案可以让学生更好的消化课堂内容,让高中教师能够快速的解决各种教学问题。我们要如何写好一份值得称赞的高中教案呢?为此,小编从网络上为大家精心整理了《匀变速直线运动规律及应用》,仅供参考,希望能为您提供参考!

第2课时匀变速直线运动规律及应用

1.一个小石块从空中a点自由落下,先后经过b点和c点,不计空气阻力.已知它经过b点时的速度为v,经过c点时的速度为3v,则ab段与ac段位移之比为()

A.1∶3B.1∶5C.1∶8D.1∶9

解析:经过b点时的位移为hab=v22g,经过c点时的位移为hac=(3v)22g,所以hab∶hac=1∶9,故选D.

答案:D

2.静止置于水平地面的一物体质量为m=57kg,与水平地面间的动摩擦因数为0.43,在F=287N的水平拉力作用下做匀变速直线运动,则由此可知物体在运动过程中第5个7秒内的位移与第11个3秒内的位移比为()

A.2∶1B.1∶2C.7∶3D.3∶7

解析:第5个7秒内的位移为x1=12a×352-12a×282,第11个3秒内的位移为x2=12a×332-12a×302,所以x1x2=352-282332-302=73.

答案:C

3.

图1-2-5

(2009江苏,7)如图1-2-5所示,以8m/s匀速行驶的汽车即将通过路口,绿灯还有2s将熄灭,此时汽车距离停车线18m.该车加速时最大加速度大小为2m/s2,减速时最大加速度大小为5m/s2.此路段允许行驶的最大速度为12.5m/s.下列说法中正确的有

()

A.如果立即做匀加速运动,在绿灯熄灭前汽车可能通过停车线

B.如果立即做匀加速运动,在绿灯熄灭前通过停车线汽车一定超速

C.如果立即做匀减速运动,在绿灯熄灭前汽车一定不能通过停车线

D.如果距停车线5m处减速,汽车能停在停车线处

解析:在加速阶段若一直加速则2s末的速度为12m/s,2s内的位移为x=8+122×2m=20m,则在绿灯熄灭前汽车可能通过停车线,A正确.汽车一直减速在绿灯熄灭前通过的距离小于16m,则不能通过停车线,如距离停车线5m处减速,汽车运动的最小距离为6.4m,不能停在停车线处.A、C正确.

答案:AC

4.在四川汶川抗震救灾中,一名质量为60kg、训练有素的武警战士从直升机上通过一根竖直的质量为20kg的长绳由静止开始滑下,速度很小可认为等于零.在离地面18m高处,武警战士感到时间紧迫,想以最短的时间滑到地面,开始加速.已知该武警战士落地的速度不能大于6m/s,以最大压力作用于长绳可产生的最大加速度为5m/s2;长绳的下端恰好着地,当地的重力加速度为g=10m/s2.求武警战士下滑的最短时间和加速下滑的距离.

解析:设武警战士加速下滑的距离为h1,减速下滑的距离为(H-h1),加速阶段的末速度等于减速阶段的初速度为vmax,由题意和匀变速运动的规律有:v2max=2gh1v2max=2a(H-h1)+v2

由上式解得h1=2aH+v22(g+a)=2×5×18+622×(10+5)m=7.2m

武警战士的最大速度为vmax=2gh1=2×10×7.2m/s=12m/s

加速时间:t1=vmaxg=1210s=1.2s

减速时间:t2=vmax-va=12-65s=1.2s

下滑的最短时间t=t1+t2=1.2s+1.2s=2.4s

答案:2.4s7.2m

5.

图1-2-6

(20xx湖南十校联考)如图1-2-6所示,离地面足够高处有一竖直的空管,质量为2kg,管长为24m,M、N为空管的上、下两端,空管受到F=16N竖直向上的拉力作用,由静止开始竖直向下做加速运动,同时在M处一个大小不计的小球沿管的轴线竖直上抛,小球只受重力,取g=10m/s2.求:

(1)若小球上抛的初速度为10m/s,则其经过多长时间从管的N端穿出;

(2)若此空管的N端距离地面64m高,欲使在空管到达地面时小球必须落到管内,在其他条件不变的前提下,求小球的初速度大小的范围.

解析:(1)对管由牛顿第二定律得mg-F=ma①

代入数据得a=2m/s2

设经过t时间从N端穿出

对管:h=12at2②

对球:-(24+h)=v0t-12gt2③

由②③得:2t2-5t-12=0,解得:t=4s,t′=-1.5s(舍去).

(2)-64=v0t1-12gt21④

64=12at21⑤

-88=v′0t1-12gt21⑥

由④⑤得:v0=32m/s,由⑤⑥得:v0′=29m/s,所以29m/sv032m/s.

答案:(1)4s(2)29m/sv032m/s

1.从足够高处释放一石子甲,经0.5s,从同一位置再释放另一石子乙,不计空气阻力,则在两石子落地前,下列说法中正确的是()

A.它们间的距离与乙石子运动的时间成正比

B.甲石子落地后,经0.5s乙石子还在空中运动

C.它们在空中运动的时间相同

D.它们在空中运动的时间与其质量无关

解析:两石子做自由落体运动,设t时刻甲下落的高度为h1=12gt2,则乙下落的高度为h1=12g(t-0.5)2,它们之间的距离h1-h2=12g(t-0.25)=12g[(t-0.5)+0.25]与乙石子运动的时间(t-0.5)不成正比,A错误;由于两石子下落的高度相同,因此下落的时间相同,甲石子落地后,经0.5s乙石子刚好落地,B错误,C正确;由于不计空气阻力,由t=2hg可知,两石子在空中运动的时间与质量无关,D正确.

答案:CD

2.在水平面上有a、b两点,相距20cm,一质点在一恒定的合外力作用下沿a向b做直线运动,经过0.2s的时间先后通过a、b两点,则该质点通过a、b中点时的速度大小为()

A.若力的方向由a向b,则大于1m/s,若力的方向由b向a,则小于1m/s

B.若力的方向由a向b,则小于1m/s;若力的方向由b向a,则大于1m/s

C.无论力的方向如何,均大于1m/s

D.无论力的方向如何,均小于1m/s

解析:无论力的方向如何,0.2s中间时刻的瞬时速度均为vt2=0.20.2m/s=1m/s,经分析可知,质点无论是匀加速还是匀减速,a、b中间时刻的瞬时速度均小于a、b中点时的速度,所以选项C正确.

答案:C

3.

图1-2-7

2009年3月29日,中国女子冰壶队首次夺得世界冠军,如图1-2-7所示,一冰壶以速度v垂直进入三个矩形区域做匀减速运动,且刚要离开第三个矩形区域时速度恰好为零,则冰壶依次进入每个矩形区域时的速度之比和穿过每个矩形区域所用的时间之比分别是()

A.v1∶v2∶v3=3∶2∶1B.v1∶v2∶v3=3∶2∶1

C.t1∶t2∶t3=1∶2∶3D.t1∶t2∶t3=(3-2)∶(2-1)∶1

解析:因为冰壶做匀减速运动,且末速度为零,故可以看做反向匀加速直线运动来研究.初速度为零的匀加速直线运动中连续三段相等位移的时间之比为1∶(2-1)∶(3-2),故所求时间之比为(3-2)∶(2-1)∶1,所以选项C错,D正确;由v=at可得初速度为零的匀加速直线运动中的速度之比为1∶2∶3,则所求的速度之比为3∶2∶1,故选项A错,B正确,所以正确选项为BD.

答案:BD

4.两物体分别从不同高度自由下落,同时落地,第一个物体下落时间为t,第二个物体下落时间为t/2,当第二个物体开始下落时,两物体相距()

A.gt2B.3gt2/8C.3gt2/4D.gt2/4

解析:当第二个物体开始下落时,第一个物体已下落t2时间,此时离地高度h1=12gt2-12gt22,第二个物体下落时的高度h2=12gt22,则待求距离Δh=h1-h2=gt24.

答案:D

5.四个小球在离地面不同高度处,同时从静止释放,不计空气阻力,从某一时刻起每隔相等的时间间隔,小球依次碰到地面.则刚刚开始运动时各小球相对地面的位置可能是下图中的()

答案:C

6.一个质点正在做匀加速直线运动,用固定的照相机对该质点进行闪光照相,闪光时间间隔为1s.分析照片得到的数据,发现质点在第1次、第2次闪光的时间间隔内移动了2m;在第3次、第4次闪光的时间间隔内移动了8m,由此不可求得()

A.第1次闪光时质点的速度

B.质点运动的加速度

C.从第2次闪光到第3次闪光这段时间内质点的位移

D.质点运动的初速度

解析:如上图所示,x3-x1=2aT2,可求得a,而v1=x1T-aT2可求.

x2=x1+aT2=x1+x3-x12=x1+x32也可求,

因不知第一次闪光时已运动的时间和位移,故初速度v0不可求.

答案:D

7.一滑块以某一速度从斜面底端滑到顶端时,其速度恰好减为零.若设斜面全长L,滑块通过最初34L所需时间为t,则滑块从斜面底端到顶端所用时间为()

A.43tB.53tC.32tD.2t

解析:假设存在逆过程,即为初速度是零的匀加速直线运动,将全过程分为位移均为L/4的四个阶段,根据匀变速直线运动规律,其时间之比为1∶(2-1)∶(3-2)∶(2-3),根据题意可列方程:(2-1)+(3-2)+(2-3)1+(2-1)+(3-2)+(2-3)=tt′,t′=2t.

答案:D

8.将一小物体以初速度v0竖直上抛,若物体所受的空气阻力的大小不变,则小物体到达最高点的最后一秒和离开最高点的第一秒时间内通过的路程为x1和x2,速度的变化量为Δv1和Δv2的大小关系为()

A.x1x2B.x1x2C.Δv1Δv2D.Δv1Δv2

解析:上升的加速度a1大于下落的加速度a2,根据逆向转换的方法,上升的最后一秒可以看成以加速度a1从零下降的第一秒,故有:Δv1=a1t,x1=12a1t2;而以加速度a2下降的第一秒内有:Δv2=a2t,x2=12a2t2,因a1a2,所以x1x2,Δv1Δv2,即A、C正确.

答案:AC

9.

图1-2-8

如图1-2-8所示,在光滑的斜面上放置3个相同的小球(可视为质点),小球1、2、3距斜面底端A点的距离分别为x1、x2、x3,现将它们分别从静止释放,到达A点的时间分别为t1、t2、t3,斜面的倾角为θ.则下列说法正确的是()

A.x1t1=x2t2=x3t3B.x1t1>x2t2>x3t3

C.x1t21=x2t22=x3t23D.若θ增大,则s1t21的值减小

解析:三个小球在光滑斜面上下滑时的加速度均为a=gsinθ,由x=12at2知xt2=12a,因此x1t21=x2t22=x3t23.当θ增大,a增大,xt2的值增大,C对,D错.v=xt,且v=v2,由物体到达底端的速度v2=2ax知v1>v2>v3,因此v1>v2>v3,即x1t1>x2t2>x3t3,A错,B对.

答案:BC

10.

图1-2-9

(20xx湖北部分重点中学月考)如图1-2-9所示水平传送带A、B两端点相距x=7m,起初以v0=2m/s的速度顺时针运转.今将一小物块(可视为质点)无初速度地轻放至A点处,同时传送带以a0=2m/s2的加速度加速运转,已知小物块与传送带间的动摩擦因数为0.4,求:小物块由A端运动至B端所经历的时间.

解析:小物块刚放上传送带时,由牛顿第二定律:μmg=ma,得:a=4m/s2

小物块历时t1后与传送带速度相同,则:at1=v0+a0t1,得:t1=1s

此过程中小物块的位移为:x1=at21/2,得:x1=2mx=7m

故小物块此时尚未到达B点,且此后的过程中由于a0μg,所以小物块将和传送带以共同的加速度运动,设又历时t2到达B点,则:x-x1=at1t2+a0t22/2得:t2=1s

小物块从A到B历时:t=t1+t2=2s.

答案:2s

11.

图1-2-10

“10米折返跑”的成绩反应了人体的灵敏素质,如图1-2-10所示.测定时,在平直跑道上,受试者以站立式起跑姿势站在起点终点线前,当听到“跑”的口令后,全力跑向正前方10米处的折返线,测试员同时开始计时,受试者到达折返线处时,用手触摸折返线处的物体(如木箱),再转身跑向起点终点线,当胸部到达起点终点线的垂直面时,测试员停表,所用时间即为“10米折返跑”的成绩.设受试者起跑的加速度为4m/s2,运动过程中的最大速度为4m/s,快到达折返线处时需减速到零,减速的加速度为8m/s2,返回时达到最大速度后不需减速,保持最大速度冲线.求该受试者“10米折返跑”的成绩为多少秒?

解析:对受试者,由起点终点线向折返线运动的过程中

加速阶段:t1=vma1=1s,x1=12vmt1=2m

减速阶段:t3=vma2=0.5s;x3=12vmt3=1m

匀速阶段:t2=l-(x1+x3)vm=1.75s

由折返线向起点终点线运动的过程中

加速阶段:t4=vma1=1s,x4=12vmt4=2m

匀速阶段:t5=l-x4vm=2s

受试者“10米折返跑”的成绩为:t=t1+t2+…+t5=6.25s.

答案:6.25s

12.

图1-2-11

如图1-2-11所示,一辆上表面光滑的平板小车长L=2m,车上左侧有一挡板,紧靠挡板处有一可看成质点的小球.开始时,小车与小球一起在水平面上向右做匀速运动,速度大小为v0=5m/s.某时刻小车开始刹车,加速度a=4m/s2.经过一段时间,小球从小车右端滑出并落到地面上.求:

(1)从刹车开始到小球离开小车所用的时间;

(2)小球离开小车后,又运动了t1=0.5s落地.小球落地时落点离小车右端多远?

解析:(1)刹车后小车做匀减速运动,小球继续做匀速运动,设经过时间t,小球离开小车,经判断知此时小车没有停止运动,则x球=v0t①

x车=v0t-12at2②

x球-x车=L③

代入数据可解得:t=1s④

(2)经判断小球离开小车又经t1=0.5s落地时,小车已经停止运动.设从刹车到小球落地,小车和小球总位移分别为x1、x2,则:x1=v202a⑤

x2=v0(t+t1)⑥

设小球落地时,落点离小车右端的距离为Δx,则:Δx=x2-(L+x1)⑦

解得:Δx=2.375m.⑧

答案:(1)1s(2)2.375m

文章来源:http://m.jab88.com/j/39133.html

更多

最新更新

更多