88教案网

脂肪烃的来源学案

一位优秀的教师不打无准备之仗,会提前做好准备,准备好一份优秀的教案往往是必不可少的。教案可以让学生更好的消化课堂内容,帮助教师营造一个良好的教学氛围。教案的内容要写些什么更好呢?小编收集并整理了“脂肪烃的来源学案”,仅供参考,大家一起来看看吧。

课题10学案:脂肪烃的来源于石油化学工业(P43-45)
一、石油
1、组成元素:主要含有1、2元素
2、组成物质:主要由各种3烃、4烃和5烃所组成的混合物
3、物质状态:大部分是6态烃,同时溶有少量的7态烃、8态烃,没有固定的熔沸点.
二、石油的加工
(一)、分馏:
1.原理:利用各组分沸点不同进行分离
2.常压分馏与减压分馏的区别:
9
(二)、裂化
1.定义:以石油分馏产品为原料,在一定的条件下,把分子量较大、沸点较高的烃断裂为分子量较小、沸点较低的烃的过程。
如:
2.目的:提高10的产量和质量。
3.分类:11裂化和12裂化

4.思考:分馏汽油(直馏汽油)与裂化汽油有什么不同?能否用裂化汽油萃取溴水中的溴单质?
13
(三)、裂解(即深度裂化)
1.定义:以比裂化更高的温度,使石油分馏产物中的长链烃断裂成乙烯、丙烯等气态短链烃。
2.目的:为了获得更多的短链的14.
3.说明:石油裂解是生产15的主要方法.
m.JAB88.COm

相关推荐

脂肪烃学案


古人云,工欲善其事,必先利其器。高中教师要准备好教案,这是每个高中教师都不可缺少的。教案可以让学生们有一个良好的课堂环境,使高中教师有一个简单易懂的教学思路。怎么才能让高中教案写的更加全面呢?以下是小编收集整理的“脂肪烃学案”,希望能对您有所帮助,请收藏。

第二章烃和卤代烃
第一节脂肪烃第一课时学案

【学习目标】
1.了解烷烃、烯烃同系物的结构和性质2.理解烯烃的顺反异构
3.对比烷烃、烯烃同系物的结构和性质的相似性、递变性和差异性,从而培养学生的演绎思维、类比推理和迁移能力
【重点难点】
重点:掌握取代反应,加成反应,聚合反应的概念
难点:烯烃的顺反异构
【学法指导】讨论法,比较法,归纳法相结合
【知识链接】取代反应,加成反应
【问题探究】
一、烷烃(alkane)和烯烃(alkene)
1、结构特点和通式:
(1)烷烃:仅含C—C键和C—H键的饱和链烃。通式:(n≥1)
(2)烯烃:分子里含有一个的不饱和链烃叫做烯烃。通式:(n≥2)
2、物理性质
(1)物理性质随着分子中碳原子数的递增,呈规律性变化,沸点,相对密度;
(2)碳原子数相同时,支链越多,熔沸点。
(3)常温下的存在状态,也由气态(n≤4)逐渐过渡到液态(5≤n≤16)、固态(17≤n)。
(4)烃的密度比水,溶于水,溶于有机溶剂。
3、基本反应类型
(1)取代反应(substitutionreaction):
(2)加成反应(additionreaction):
(3)聚合反应(polymerizationreaction):
下面是我们学过的有机化学反应,写出其反应的化学方程式,并指明反应类型。
①乙烷和氯气反应生成一氯乙烷:

②乙烯和溴的反应:

③乙烯和水的反应:

④乙烯生成聚乙烯的反应

4.由于烷烃和烯烃的结构不同,使其在很多性质方面都存在较大差异。

二、烯烃的顺反异构
什么是烯烃的顺反异构?举例说明什么是顺式结构?什么是反式结构?

【例题解析】
例1对于CF2Cl2(商品名称是氟利昂—122),下列有关叙述不正确的是()
A、有两种同分异构体B、分子中有非极性键
C、只有一种结构无同分异构体D、是一种制冷剂
答案:A.B
解析:CCl2F2是四面体结构,只有一种结构,没有同分异构体存在。CCl2F2是极性分子,是一种常用的制冷剂。
例2下列五种烃①2-甲基丁烷②2,2-二甲基丙烷③戊烷④丙烷⑤丁烷,按沸点由高到低的顺序排列的是( )
A.①>②>③>④>⑤ B.②>③>⑤>④>①
C.③>①>②>⑤>④ D.④>⑤>②>①>③
答案:C
解析:分子中碳原子数越多,沸点越高,碳原子数相同时,支链越多,沸点越低
【基础练习】
1.下列事实、事件、事故中与甲烷无关的是()
A.天然气的主要成分B.石油催化裂化及裂解后的主要产物
C.“西气东输”中的气体D.煤矿中的瓦斯爆炸
2.下列烷烃的一氯取代物中没有同分异构体的是()
A.丙烷B.丁烷C.异丁烷D.新戊烷
3.乙烷中混有少量乙烯气体,欲除去乙烯可选用的试剂是()
A.氢氧化钠溶液B.酸性高锰酸钾溶液C.溴水D.碳酸钠溶液
4.下列物质中一定与丁烯互为同系物的是()
A.CH3-CH2-CH2-CH3B.CH2=CH-CH3
C.C5H10D.C2H4
5.与丙烯具有相同的碳、氢百分含量,但既不是同系物又不是同分异构体的是()
A.环丙烷B.环丁烷C.乙烯D.丙烷
6.下列反应属于加成反应的是()
A.由乙烯制乙醇B.由甲烷制四氯化碳
C.乙烯能使溴水褪色D.由乙醇制乙烯
7.下列有机化合物有顺反异构体的是()
A.CH3CH3B.CH2=CH2C.CH3CH=CH2D.CH3CH=CHCH3
8.烯烃在一定条件下发生氧化反应时C=C键发生断裂,RCH=CHR,可以氧化成RCHO和RCHO,在该条件下烯烃分别被氧化后产物可能有乙醛的是()
A.CH3CH=CH(CH2)2CH3B.CH2=CH(CH2)2CH3
C.CH3CH=CH-CH=CHCH3D.CH3CH2CH=CHCH2CH3
9.下列液体混合物可以用分液的方法分离的是()
A.苯和溴苯B.汽油和辛烷
C.己烷和水D.戊烷和庚烷
10.化学反应2CH3CH2OHCH3CH2OCH2CH3+H2O类型是()
A.取代反应B.酯化反应C.消去反应 D.聚合反应
11.有的油田开采的石油中溶有一种碳氢化合物——金刚烷,它的分子立体结构如图所示:

(1)由图可知其分子式为:____________,一氯代物有_______种。
(2)它是由_________个六元环构成的六体的笼状结构,其中有__________个碳原子为三个环共有。

【总结反思】通过本课学习、作业后你还有哪些没有搞懂的知识,请记录下来

【作业布置】

脂肪烃


第二章第一节脂肪烃
一。内容与解析
内容:乙烷、乙烯、乙炔分子结构的比较。乙炔的性质。乙炔的实验室制法和注意事项。炔烃的通式及变化规律。烷烯炔各类含碳(含氢)质量分数的变化规律。炔烃、烃的燃烧规律、计算和分子式的确定。苯的概述。苯的组成和结构。芳香烃和苯的同系物的概念。苯及其同系物的化学性质。苯和烷烃、烯烃、炔烃的代表物的分子结构的比较。有机物分子中原子共平面的确定方法。
解析:在学习乙烯和烯烃的基础上,教会学生应用类比的方法推测和验证乙炔或炔烃可能具有的性质,总结烷烃、烯烃、炔烃的基本结构和性质特点,为学好有机化学打下坚实基础。根据碳化钙与水反应的特点,教会学生水解反应的规律。了解苯是一种很好的有机溶剂,可作萃取剂。掌握甲烷、乙烯、乙炔、苯的分子结构特点。需重点掌握苯的卤代反应和硝化反应。
二。目标与解析
教学目标:1..了解乙炔的结构特征。2了解炔烃的结构特征、通式和主要的用途。3.掌握乙炔的化学性质。4.掌握的乙炔的实验制法。5了解氧炔焰作用。6.了解用乙炔制取聚氯乙烯的反应原理。8、使学生了解苯的组成和结构特征,掌握苯的主要性质。9、使学生了解芳香烃的概念。10、使学生了解甲苯、二甲苯的某些化学性质。
解析:本节的重点是实验室制乙炔的反应原理及实验装置,理解乙炔分子结构与性质的关系,理解饱和碳原子、不饱和碳原子与其它物质反应时的基本特点。
在学习本节内容时,要求学生从下列几个方面理解与掌握:苯及其同系物与其它烃分子的空间结构组成、同分异构现象和同分异构体。熟悉以苯、甲苯为原料的综合推断题。了解苯的两个取代反应实验。
三。问题诊断分析
一是要掌握乙炔的实验室制法及注意事项,二是再复习巩固加聚反应的特和规律。
四。教学支持条件
实验仪器和药品
五。教学过程
(一)、乙炔的分子结构
分子式为、结构式为、结构简式为、电子式为。乙炔是直线型分子,键角为,属非极性分子。
说明:乙炔中C=C中的三个键并不完全相同,其中两个键易断裂,另一个键难断裂,这决定了乙炔的化学性质比烷烃活泼。

(二)、乙炔的实验室制法
1、反应原理:CaC2+2H2O→Ca(OH)2+C2H2↑
2、药品:电石、水
3、仪器:铁架台(铁夹)、圆底烧杯、双孔橡皮塞、分液漏斗、导气管、水槽、集气瓶(或试管)等。
4、装置:使用“固体+液体→气体”的装置(如右图)。

5、收集:排水法。
说明:①电石和水反应剧烈,为控制反应速率,常用饱和食盐水代替水,用块状而不用粉末状
的CaC2,以减小慢反应速率。
②由于反应激烈,并产生大量泡沫,因此若用容积小的仪器(如:试管、广口瓶等)作反应器时,为防止泡沫堵塞导管,常在导气管口附近塞入少量棉花。若用容积大的仪器(如烧瓶、锥形瓶等)作反应器且反应物的量较少时,可不用棉花。
③电石中因含有少量硫化钙(CaS)、砷化钙(Ca3As2)、磷化钙(Ca3P2)等杂质,与水
作用时制得的乙炔常有特殊难闻的气味,这是由于同时生成了H2S、AsH3、PH3等气体之故。
④该反应不能在启普发生器中进行,因反应过于剧烈,不易控制,且反应放出热量较多,易炸裂反应器。
⑤金属碳化物与水反应规律:CaC2和ZnC2、Al4C3、Mg2C3、Li2C2等都属离子型碳化物,
它们一般都能与水反应,反应后生成该金属的氢氧化物和一种碳氢化合物,反应前后各元素的价态不发生变化。
如:Al4C3+12H2O→4Al(OH)3+3CH4↑
Mg2C3+4H2O→2Mg(OH)2+C3H4↑
(三)、乙炔的物理性质
乙炔俗称电石气,常温下为无色、无味的气体,密度比空气略小,微溶于水,易溶于有机溶剂。
(四)、乙炔的化学性质
1、氧化反应
1)易燃烧,
甲烷、乙烯、乙炔的燃烧对比
名称甲烷乙烯乙炔
含碳量75%85.7%92.3%
明亮度不明亮较明亮最明亮
烟量无烟稍有黑烟有浓烟
说明:由于乙炔的燃烧是放热反应,因而在点燃乙炔前须检验其纯度(可燃性气体在点燃前一般需要检验其纯度),以防可能发生爆炸。乙炔燃烧时放出大量的热,在O2中燃烧时产生的氧炔焰的温度可达3000℃以上,可用氧炔焰来焊接和切割金属。
2)使酸性KMnO4溶液褪色。此性质可用于乙炔和其它烷烃气体的鉴别。
2、加成反应——含CC有机物的共性,但加成是逐步进行的。
BrBr
CHCH+Br2→CH=CHCH=CH+Br2→CH—CH
BrBrBrBr
当Br2足量时常写成:CH三CH+2Br2→CHBr2CHBr2
同理:CHCH也可与其它卤素(X2)发生加成反应:
CHCH+X2→CHX=CHX,CHX=CHX+X2→CHX2CHX2
X2足量时,常写成:CHCH+2X2→CHX2CHX2
同理:CHCH+H2CH2=CH2CHCH+2H2CH3CH3
CHCH+HClCH2=CHClnCH2=CHCl[CH2-CHCl]n

CH2=CHCl+HCl

说明:①乙炔与卤素(X2)水溶液的反应常用于烷烃与炔烃的鉴别,也可用来除去混在气态烷烃中的气态炔烃。
②工业上常利用CHCH与HCl在特定条件下(150-160℃,HgCl2作催化剂)反应只生成CH2=CHCl,再用CH2=CHCl在适当的条件下通过加聚反应生成聚氯乙烯。
(五)、炔烃的通式及性质
1、炔烃:含CC的烃。
2、通式:CnH2n-2(n≥2)。最简单的炔烃为CHCH。
说明:有机物分子中,C、C间每多一个键(或C、C间每形成一个环),其分子中比相应的烷烃中少两个氢原子,这时有机物分子中增加了一个不饱和度。根据烃的结构简式,可求得烃分子的不饱和度(Ω)=碳原子环的数目+C=C数目+2倍CC的数目。若已知烃的分子式为CxHy,则该烃的不饱和度(Ω)=。若卤代烃的分子式为CxHyXz,则其不饱和度(Ω)=。若有机物分子式为:CxHyOz,则其不饱和度(Ω)=。(与z的多少无关)
例1、某有机物的结构简式:,则其分子式为。
分析:根据该结构简式中每个顶点与端点都表示碳原子,氢原子省略不写,及每个碳原子都必须满足四价的原则,可数出该物质中的碳原子数为11,氢原子数为16。但在数氢原子数的时候,很容易出错,因其结构中有环、也有C=C,不同碳原子上连接的氢原子数不一定相同。若利用不饱和度计算,可由其结构简式很容易得出Ω=4(含两个碳原子环,两个C=C),再利用Ω=,求得氢原子数y=16(∵x=11),即该有机物的分子式为C11H16。
例2、下列有机物的分子式只能表示一种结构的是()
A、C3H6B、C3H8C、C2H4D、C4H6
分析:由烃的分子式首先确定其不饱和度Ω。若Ω=0,则为烷烃,再考虑该烷烃有无同分异构体。若Ω=1,则其结构中可能含一个C=C或一个碳环(若含碳环,则烃分子中至少有3个碳原子)。若Ω=2,则其结构中可能含一个CC,或两个C=C(此时分子中至少含4个碳原子),或一个C=C同时还有一个碳环(此时分子中至少有3个碳原子)。据上面分析,本题正确选项应为B、C。
3、常见的炔烃:
乙炔;CHCH、丙炔;CH3CCH、1-丁炔:CH3CH2CCH、
1-戊炔:CH3CH2CH2CCH2-丁炔:CH3CCCH3
2-戊炔:CH3CCCH2CH3
说明:上述几种炔烃中:乙炔、丙炔、丁炔、戊炔之间是互为同系物的关系,而1-丁炔与2-丁炔、1-戊炔与2-戊炔则是互为同分异构体的关系。
4、物理性质:碳原子数小于5的炔烃常温时呈气态。一般地炔烃分子中碳原子数越多,其熔、沸点越高,相对密度越大。
5、化学反应
1)氧化反应
①可使酸性KMnO4溶液常温下褪色——不饱和有机物(含C=C或CC)的共性。
②燃烧——现象同CHCH相似:火焰明亮有黑烟。
应用:可利用燃烧时的不同现象区别烷烃、烯烃、炔烃气体。

完全燃烧时:CnH2n-2+O2nCO2+(n-1)H2O。

说明:据烷烃、烯烃、炔烃的通式:CnH2n+2、CnH2n、CnH2n-2,可得出它们分子中碳原子数增加后,分子中碳元素的质量分数c%的变化关系(如右上图)。由此可见,常见的烃中:炔烃的c%烯烃的c%烷烃的c%。所以这三类烃燃烧时,由于炔烃的c%较大,碳元素不能充分燃烧,黑烟最多;而烷烃的c%较小,一般都能较充分燃烧,几乎没有黑烟。
2)加成反应——这也是不饱和(含C=C或CC)有机物的共性
例3、某温度和压强下,将4g由3种炔烃(分子中只含一个CC)组成的混合气体与足量H2反应。充分加成后,生成4.4g3种对应的烷烃,则所得烷烃中一定有
A、异丁烷B、乙烷C、丙烷D、丁烷
分析:炔烃转化成烷烃时,炔烃与H2的物质的量之比为1:2,依题可知参加反应的H2的物质的量n(H2)=(4.4g-4.0g)/2gmol-1=0.2mol。所以参加反应的炔烃为0.1mol,则炔烃的平均分子量。由平均值法可知,3种炔烃中必有分子量小于40的炔烃,而分子量小于40的炔烃只有乙炔,由此可推知加成后所得烷烃中必含有乙烷。故本题正确选项为B。
例4、分子式为C7H12的某炔烃在一定条件下充分加氢后生成物为3—甲基己烷,则此有机物可能的结构简式是什么?
分析:由分子式可知,该炔烃中只含一个CC,其与H2充分加成时按1:2分子个数比反应。因此,本题可视为3—甲基己烷分子中每相邻的两个碳原子上各脱掉两个氢原子,并形成1个CC
键的可能性有几种。依CH3CH2CHCH2CH2CH3可知,这样的可能性有3种:1和2碳原子间,4和气碳原子间,5和6碳原子间。在这里须特别注意的是,由于3碳原子上只有1个氢原子,故它与其相邻的碳原子间不可能各脱两个氢原子,即原炔烃在该处不存在三键。故该有机物可能的结构简式是:CHC—CHCH2CH2CH3、CH3CH2CHCCCH3、CH3CH2CHCH2CCH。

六、苯的结构
分子式:C6H6,结构式:可简写为:或。分子构型:某分子中所有

的C、H原子都处于同一平面上(具有平面正方边形结构),苯分子中不存在一般的C=C键。苯环中所有的碳原子间的键完全相同,是一种介于C—C和C=C之间的独特的键,键间的夹角为120°。苯和甲烷、乙烯、乙炔都属于非极性分子。
七、苯的物理性质
苯是无色、带有特殊气味的液体,不溶于水,密度比水小,熔、沸点较低,且苯有毒。
说明:由于苯的熔点较低,只有5.5℃,因此有关苯的实验若需加热,一般用水浴加热,而不用酒精灯直接加热。苯是致癌物质,主要损害人的中枢神经和肝功能,尤其是危及血液和造血器官,易引起白血病和感染败血症等疾病。
三、苯的化学性质——由于苯分子中C、C原子间的键介于C=C和C—C之间,其结构上既类似于饱和烃,又类似于烯烃,因此苯兼具有饱和烃和不饱和烃的性质。但苯的性质比不饱和烃稳定,具体表现在苯较易发生取代反应(但比烷烃的取代反应要困难些,因苯的取代反应一般需催化剂或加热等条件),较难发生加成反应,难以发生氧化反应(除燃烧外)。
1、不能使酸性KMnO4溶液褪色,也不能使溴水褪色——说明苯具有类似饱和烃的性质,即通常情况下较稳定。
说明:苯和溴水混合后,由于苯的密度比水小,且不溶于水,而溴在水中的溶解度较小,且易溶于有机溶剂(如苯等),这样混合液振荡后,本来无色的上层——有机苯层,较变为橙红色,而本来黄色的下层——无机水层,则转变为无色。
2、取代反应
1)卤代反应——苯环上的氢原子被卤原子(X)取代

+Br2—Br+HBr
对于其它卤素(X2、如Cl2、I2),可用通式表示:

+X2—X+HX

说明:①X2须用纯的单质,不能用卤素(X2)的水溶液。
②苯的卤代反应产物一般只考虑其—取代的产物,而不同于烷烃的卤代反应产物——多种多元卤代烃同时共存。
③苯环上一个氢原子被取代时,仍需一个卤素(X2)分子,同时生成1个HX分子,和烷烃的取代反应的这一特点相同。
④溴苯是一种无色油状液体,密度比水大,且不溶于水。
⑤该反应中常会看到液面上有大量白雾出现,这是由于生成的HBr不溶于该体系中的液体,而挥发到空气中形成了酸雾。
2)硝化反应——苯环上的氢原子被硝基(—NO2)所取代。

+HNO3—NO2+H2O
(硝基苯)
说明:①反应中的用的HNO3、H2SO4都是浓溶液,不用稀溶液。
②浓H2SO4的作用:催化剂、吸水剂。
③该反应的温度一般用55~60℃,不能太高、太低。用温度太低,反应速率较小,而温度太高时,苯易于挥发,且浓HNO3易分解,同时还易发生更多的副反应。
④硝基苯是一种带有苦杏仁味的、无色油状液体,密度比水大,且不溶于水。
⑤硝基苯在写结构简式时,硝基(—NO2)中应是氮原子与苯环上的碳原子相连,而不能写
成氧原子与碳原子相连。
⑥注意比较“—NO2”、“NO2-”、“NO2”三种表示形式的异同。相同点:都由一个氮原子和两个氧原子构成。不同点:“—NO2”表示硝基,是一种中性基团,不能单独稳定存在,短线“—”与氮原子相连。也可写成“O2N—”。“NO2-”表示亚硝酸根离子,是带一个单位负电荷的阴离子,也不能单独稳定存在,短线“—”只能写在基团“NO2”的右上角。“NO2”表示二氧化氮气体分子,是一种中性物质,可以单独稳定存在,在其周围不能标出短线“—”。
3)磺化反应——苯环上的氢原子被硫酸分子里的磺酸基(—SO3H)所代替。

+2SO4(浓)—SO3H+H2O
(苯磺酸)
说明:①苯磺酸是一种一元强酸。
②该反应的逆向强度较大,一般用“”表示,而其它有机反应常用“→”表示。
③苯磺酸在写结构简式时,磺酸基(—SO3H)中应是硫原子与苯环上的碳原子相连,而
不能写成其它原子(O或H)与碳原子相连
④注意比较“—SO3H”与“HSO3-”两种表示形式的异同。相同点:都由一个硫原子、三个氧原子及一个氢原子构成。不同点:“—SO3H”表示磺酸基,是一种中性基团,不能单独稳定存在,短线“—”只能与硫原子相连,也可写成“HO3S—”。而“HSO3-”表示亚硫酸根离子,是带一个单位的负电荷的阴离子,也不能单独稳定存在,短线“—”只能写在基团“HSO3”的右上角。
3、加成反应——说明苯具有不饱和烃(烯烃)的性质,此时苯可看作含三个C=C考虑,即苯与H2完全加成时其物质的量之比为1:3。
+3H2(环己烷)

说明:①苯的加成反应在中学里常见的就是苯与H2的加成,而不考虑苯与其它物质的加成。
②苯与H2的加成比烯烃的加成要困难些,因其苯环上C、C间的键不具有典型C=C的特性。
4、氧化反应——仅指燃烧
现象:火焰明亮,有浓烟(与C2H2燃烧的现象相似)
2C6H6+15O212CO2+6H2O
说明:①苯与乙炔分子的最简式相同:CH,即它们C、H元素的质量分数都相同,因而燃烧的现象相同。
②应用:该燃烧的现象可区别苯与己烷等烷烃液体。
③有关烃中若计算得到的C、H原子数比为1:1时,常首先考虑到乙炔或苯这两种情况。
八、苯的用途
苯是一种重要的化工原料,它广泛用于合成纤维、合成橡胶、塑料、农药、医药、染料和香料等,也是常用的有机溶剂。
九、苯的同系物
1、概念:苯环上的氢原子的被烷基(CnH2n+1—)取代后的产物。
2、通式:CnH2n-6(n≥6)
说明:烃分子符合CnH2n-6通式时,一般只考虑其为苯的同系物,而不考虑其它结构。
3、命名:一般从取代基的名称及取代基的位置考虑。
—CH3—甲苯(C7H8)—C2H5—乙苯(C8H10)
——邻—二甲苯(C8H10)CH3
CH3—间一二甲苯(C8H10)
H3C——CH3——对一二甲苯(C8H10)

说明:①与表示的是同一种物质,而不是同分异构体。
②分子式为C8H10的苯的同系物共用四种结构。
4、同分异构体——分子式符合CnH2n-6的苯的同系物在写其同分异构体时,先确定苯环结构,再把余下的基团先当作一个取代基,再当作两个取代基(此时从邻、间对三种情况考虑),然后当作三个取代基考虑,依此递推下去。如分子式C9H12的苯的同系物的同分异构体有:

说明:同分异构体中,一般地分子结构越对称,分子的极性越小,其沸点越低。如三种二甲苯的沸点:邻—二甲苯间—二甲苯对一二甲苯。
5、化学性质——由于苯环和侧链的相互影响,苯的同系物的化学性质与苯既有不同之处,也有相同之处。
1)不能使溴水褪色——与苯相似,只发生萃取作用。
2)氧化反应
A、能使酸性KMnO4溶液褪色——这是由于苯环对侧链的影响,使侧链较易被氧化:

(中学里一般不考虑R的结构)
说明:①该性质可区别苯与苯的同系物。
②不能使溴水褪色而能使酸性KMnO4溶褪色的烃,常见的只有苯的同系物这种类型。
③利用该性质可除去苯中的苯的同系物的杂质。如除去苯中的甲苯杂质,可采取先向样品中加入足量的KMnO4溶液,振荡后,再加入足量的NaOH溶液中和生成的,最后用分液漏斗分离出的上层即为苯。
B)燃烧—现象:产生带浓烟的火焰。
2CnH2n-6+(3n-3)O22nCO2+2(n-3)H2O

3)取代反应:+X2

A、卤代反应
说明:①苯的同系物的卤代反应与条件有关。在光照条件下,一般是苯环侧链上的氢原子被取代,产物主要为多元卤代烃的混合物。而在某些催化剂的作用下,一般是苯环上的氢原子被取代,产物主要是一元取代。
②二甲苯苯环上的某一种卤素的一取代物共有6种结构,其中邻—二甲苯的一取代物有两种结构,间—二甲苯的一取代物有3种结构,对—二甲苯的一取代物只有一种结构。
B、硝化反应:

+3HNO3+3H2O

(2,4,6—三硝基甲苯,又名:TNT)
说明:①甲苯与HNO3的硝化反应,主要产物为三取代,而苯的硝化反应,产物主要是一取代。
②注意苯环上三个硝基(—NO2)的位置及写法。三个硝基(—NO2)均处于彼此的间位上,且都是氮原子与苯环上的碳原子相连。
③TNT是一种淡黄色的晶体,不溶于水。它是一种烈性炸药,常用于国际开矿,筑路、兴修水利等。
例1、下列物质中,一定能使酸性KMnO4溶液和溴水都因发生化学反应而褪色的是()

A、B、C、D、C6H12

分析:本题看起来是考查苯和平共处苯的同系物的性质,实际上是一道全面考察已学各类烃性质中的共同甘共苦点。列表小结如下:
试剂类型
是否反应
烃种类KMnO4(H+)溴水液溴
氧化加成取代
烷烃××光
稀、炔烃√√——
苯××FeBr3
苯的同系物√×FeBr3,苯环,光,侧链
注:“×”代表不反应,“√”代表反应。
只有稀烃、炔烃才能使酸性KMnO4溶液和溴水都因发生化学反应而褪色。苯乙烯分子中含侧链乙稀基(—CH=CH2),故反应。而C6H12虽符合烯烃的通式,但并不一定是烯烃,也可能结构中含碳环。故本题答案为B。
例2、将下列各种液体分别与溴水混合并振荡。不能发生反应,但静置后溶液分液,且溴水层几乎无色的是()
A、CCl4B、戊烯C、苯D、酒精
分析:戊烯可与溴水发生加成反应。酒精易溶于水不会发生分层。而CCl4、苯均不溶于水,且二者均能提取溴水中的溴,使溴水成无色。故本题答案为A、C。
例3、下列各组物质中,可以用分液漏斗分离的是()
A、液溴和溴苯B、溴苯和苯
C、硝基苯和水D、苯和硝基苯
分析:溴为非极性分子易溶于有机溶剂(如苯、溴苯等),而溴苯、硝基苯等也易溶于有机溶剂。只有硝基苯与水不互溶,可用分液漏斗分离。故本题答案为C。
例4、用式量为43的烷基取代甲苯苯环上的1个氢原子,所得芳香烃产物的数目为()
A、3B、4C、5D、6
分析:烷基的通式为CnH2n+1—,则12n+2n+1=43,n=3,故该烷基的化学式为C3H7—,它有两种可能的结构:CH3CH2CH2—和(CH3)2CH—,它们可分别取代苯环上与甲基处于邻、间、对位上的氢原子,因此所得的芳烃产物的数目为2×3=6。故本题的答案为:D。
六。目标检测
阅读《优化设计》P24-30的内容,完成P30的《随堂练习》。
七。配餐作业
完成《优化设计》P93-95的习题。

脂肪烃的性质


俗话说,磨刀不误砍柴工。高中教师要准备好教案,这是老师职责的一部分。教案可以让上课时的教学氛围非常活跃,帮助高中教师提前熟悉所教学的内容。那么怎么才能写出优秀的高中教案呢?下面是小编为大家整理的“脂肪烃的性质”,但愿对您的学习工作带来帮助。

课题9学案:脂肪烃的性质(P40-43)
一、烃的分类
按是否含苯环可分为1烃和2烃.
其中脂肪烃又可分为3烃和4烃.
二、脂肪烃的物理性质
1.5个碳原子的烃常温常压下为气态;
2.同类烃溶沸点随碳原子数增大而6;
3.分子式相同的烃,支链数越多,熔沸点越7.
三、各种脂肪烃的结构特点
烷烃烯烃炔烃二烯烃
代表物的分子式
组成通式
结构特点

四、脂肪烃的化学性质
1.取代反应
1)定义:有机物分子中某些原子或原子团被其它原子或原子团替代的反应
例:
2)常见类型:卤代反应、酯化反应、硝化反应、水解反应等
3)烷烃的特征反应是取代反应.
2.热分解
例:
3.氧化反应
(1)被酸性高锰酸钾氧化
8烃不能使酸性高锰酸钾溶液褪色,9和10能使酸性高锰酸钾溶液褪色,
所以可以用酸性高锰酸钾溶液鉴别气态11和12。
(2)燃烧反应
烃完全燃烧的通式:13
4.加成反应
1)条件:存在不饱和键
2)定义:有机物分子中未饱和的碳原子跟其它原子或原子团直接结合生成别的物质的反应。
3)举例:
A.烯烃——乙烯如:乙烯与氢气、溴、水、氯化氢加成

B.炔烃——乙炔如:乙炔与溴或与氢气的加成
C.烯烃的不对称加成反应:
写出丙烯与HBr发生加成反应的化学方程式

规律:14
D.二烯烃的竞争加成
例:等物质的量的1,3-丁二烯和溴单质分别在-80℃和60℃的加成反应

5.加聚反应
(1).含义:不饱和键的有机物分子通过加成反应得到高分子化合物的反应.
(2).实例:聚乙烯、聚氯乙烯等

(3).反应机理:连续加成
附:关于加聚反应
1.单体:
2.链节:
3.聚合度:

高二化学复习学案:脂肪烃


高二化学复习学案:脂肪烃

高一学的甲烷CH4、乙烯C2H4等都是脂肪烃。像甲烷这样只含C—C单键的叫饱和脂肪烃(饱和烃,烷烃),乙烯等含有C=C双键、或碳碳三键的叫不饱和脂肪烃(不饱和烃,烯烃或炔烃)。化学中的同义词很多,含义完全相同,不必细究其区别。
烃:烃类、碳氢化合物
脂肪烃:不含苯环的烃,包括烷烃、烯烃、炔烃三种。烷烃即饱和脂肪烃,烯烃、炔烃是不饱和脂肪烃。
链烃、脂环烃:含有环的脂肪烃称为脂环烃,无环的脂肪烃称为链烃。教材若不特殊说明,均指链烃。
饱和烃:饱和脂肪烃,烷烃
不饱和烃:不饱和脂肪烃,不饱和烃,包括烯烃、炔烃。含C=C双键为烯烃,含碳碳三键为炔烃。
一、烷烃
烷烃的通式为CnH2n+2(n=1),最简单的烷烃是甲烷。烷烃中C—C间均是单键,含多少个碳原子,就称为××烷,10个碳原子以内,以甲、乙、丙、丁……壬、癸命名,从含11个碳原子开始,以中文的数字来命名。
1.1烷烃的一些物理性质(色、味、态、密、溶等)
有机物物理性质:结构相似的有机物,随相对分子质量增加,分子间相互作用力逐渐增大——
状态:逐渐从气态→液态→固态。常温常压下,含4个碳原子以内的脂肪烃为气体,含5-10几碳原子的为液体,并逐渐呈现为固体。
密度:逐渐增大,从含5个碳原子的戊烷、戊烯的0.6X开始逐渐增大,但是均小于1,密度小于水。
溶解度:逐渐减小(在水中)
熔点:逐渐升高
沸点:逐渐升高。含5个碳原子的戊烷的沸点是36°C,18烷的沸点是300多度;1-戊烯的沸点是30°C,1-庚烯的沸点是93.6°C,等等。
1.2甲烷的性质
甲烷在常温下是无色、无味的气体,密度比空气小(标准状况下,0.717g/mL),难溶于水,能够燃烧。
注意:气体密度都与空气比较。空气的加权平均分子质量是28.6,相对分子质量小于28.6的气体比空气轻,常见的有氦气(填充氦气球)、甲烷(天然气)、氨气、乙烯、乙炔(电石气)等几种。
高二化学路有机化合物的分类学案高二化学路有机化合物的分类学案

图2、甲烷CH4分子的正四面体结构图3、乙烯C2H4分子的平面结构
红球——C原子绿球——C原子
蓝球——H原子白球——H原子
甲烷可以发生氧化反应和取代反应:
(1)氧化反应(燃烧):甲烷可以在空气或氧气中完全燃烧生成CO2和水,同时放出大量热。
(2)取代反应:在光照条件下,甲烷可以与卤素发生取代反应,生成多卤代甲烷的混合物。
烷烃都可以发生这两类反应。
1.3反应类型
无机物反应有四种基本类型、两大类反应,四种类型是化合、分解、置换和复分解反应,两大类是氧化还原、非氧化还原反应,这比较适合于无机物。
对于有机物,这四种基本类型就力不从心了,例如烃类燃烧的反应,就无法归结于以上四种反应类型。
燃烧
CH4+3O2=====2CO2+3H2O
以上四种反应类型不怎么适合于有机物,所以引进了“取代反应”、“加成反应”、“聚合反应(加聚反应和缩聚反应)”的概念,氧化还原反应简称为“氧化反应”。有机物反应“副反应多、反应速率慢并可能需要催化剂、产物复杂”的三大特点逐渐显露出来。
取代反应
烷烃能发生取代反应,例如乙烷与氯气生成CH3—CH2Cl(分子中的碳碳骨架不变,只是某个原子被取代)
[转载]高二化学·脂肪烃学案
乙烷氯气一氯乙烷氯化氢
反应特点:在光照提供能量的条件下,乙烷分子的一个C—H键、氯分子的Cl—Cl分别断裂,一个Cl原子进入到乙烷分子中,剩下的一个Cl原子接收了乙烷掉下来的那个H原子,形成了一氯乙烷、氯化氢两种新的分子,这就是取代反应的本质。
取代反应一般不会停下来,生成的一氯乙烷会继续与氯气发生取代反应,产物是多种氯代烃的混合物。
再次强调:烷烃中的碳原子都是SP3杂化,“正四面体”结构,各个化学键的键角都接近109°28,空间很舒展,其他分子接近的机会较少,要想反应就必须拉断化学键,能量必不可少。
烷烃SP3杂化的正四面体结构、烯烃的SP2杂化的平面结构、炔烃SP杂化的线型结构都是阅读内容,高考基本不涉及,但是月考、期考少不了,所以不要放弃。
二、烯烃
烯烃是分子中含碳碳双键的脂肪烃,普通烯烃含有一个碳碳双键。若含两个碳碳双键叫×二烯(例如,丁二烯),含多个碳碳双键叫×某烯(例如,己三烯)。(为什么强调是脂肪烃,因为要与苯等芳香烃有区别)
烯烃通式CnH2n(n=2),最简单的烯烃是乙烯C2H4,结构简式CH2=CH2。乙烯分子中的六个原子均在一个平面中(图3)。(丙烯CH3—CH=CH2九个原子是否在一个平面中?)
石蜡油在炽热的碎瓷片作用下可以生成乙烯等烯烃。
2.1乙烯及烯烃的性质
在常温下乙烯是无色、略带鱼腥味的气体,容易燃烧,在空气燃烧火焰明亮并伴随有黑烟。
乙烯可以发生氧化反应(燃烧)、加成反应、聚合反应。
(1)氧化反应(燃烧):乙烯可以在空气或氧气中燃烧,生成二氧化碳和水,并放出大量热,这也是所有烃、绝大多数有机物都可以发生的反应。
(2)氧化反应:乙烯可使酸性高锰酸钾(紫色)褪色,产物不讨论,这是鉴别甲烷和乙烯的特征反应。
(3)加成反应
烯烃由于存在碳碳双键,化学性质比烷烃活泼。乙烯可以与一些小分子发生加成反应,这些小分子包括氢气、卤素(Cl2、Br2等)、水、卤化氢(HCl、BrCl)等。
烯烃和炔烃容易发生加成反应,例如乙烯与溴生成CH2Br—CH2Br(在四氯化碳溶液中反应,溴的溶液性好)的加成反应(有不饱和键被打开,小分子分别链接到不饱和键的两个碳上,碳碳骨架发生了变化)
[转载]高二化学·脂肪烃学案
乙烯溴1,2-二溴乙烷
反应特点:Br原子最外层七个电子,吸电子形成“八点子”稳定结构的能力强,所以从C=C双键侧面接近乙烯分子,抓住没有与H原子城建的那两个电子,生成新的化合物,好像是“化合反应”,其实叫做加成反应。
这个反应非常容易进行。
注意:1)碳碳不饱和键处的两个碳原子都是SP2杂化的“平面结构”,碳原子形成三个化学键,键角都是120°,上下平面空挡较大,给了其他分子接近并“加成”的机会。2)反应是在四氯化碳溶液中进行。
(4)聚合反应(分为加聚、缩聚两种)
乙烯还可以发生另外一类反应,聚合反应。这也是烯烃、炔烃等不饱和烃的通性。
不饱和烃可以发生聚合反应,例如乙烯生成聚乙烯(碳碳不饱和键打开,分子之间键合,相互链接成长链)。
[转载]高二化学·脂肪烃学案
乙烯聚乙烯
反应特点:在催化剂作用下,第一个乙烯分子的碳碳双键断裂,进攻第二个乙烯分子,依次首尾相连,形成长链,有点像“连锁反应”。
2.2二烯烃的加成反应
分子中含两个碳碳双键的烯烃叫做二烯烃,例如1,3-丁二烯,1,5-己二烯等。如果两个碳碳双键是相邻的,会呈现出异乎寻常的化学性质。(这部分是阅读内容,可能期考不考,但是2010年高考涉及到了)
1,3-丁二烯的两个碳碳双键相邻,二者互相影响,其加成反应会沿着两条路线进行,因而有两种产物。第一条反应路线:
[转载]高二化学·脂肪烃学案
1,3-丁二烯3,4-二氯-1-丁烯
这条路线是容易理解的,一个碳碳双键打开,氯分子加成到两个碳上。第二条路线:
[转载]高二化学·脂肪烃学案
1,3-丁二烯1,4-二氯-2-丁烯
有些不可思议啊!这个是大学才涉及到内容,现在压缩到中学的阅读内容里边了,在高考时候涉及到这类反应,会有提示,到时候你别觉得突兀就行!
2.3烯烃的顺反异构体
分子中含有碳碳双键的脂肪烃,叫做烯烃。烯烃的通式为CnH2n(n=1),最简单的烯烃是乙烯,复习一下乙烯的性质。
在前面讲过了有机物的三种同分异构体:1)骨架不同的同分异构体(最常见);2)不饱和键位置不同的位置异构体;3)官能团不同的同分异构体。本节课讲第四种同分异构体——碳碳双键所连的原子(团)不同的位置异构体。
乙烯、丙烯、1-丁烯没有顺反异构体,从2-丁烯开始,会产生顺反异构体,最常见的就是2-丁烯,结构简式为CH3—CH=CH—CH3。它们的两种顺反异构体的名字分别叫做顺-2-丁烯,反-2-丁烯。
[转载]高二化学·脂肪烃学案
极性强弱
分子间作用力强弱
首先看物理性质。
这明显是两种物质:顺-2-丁烯分子中的两个甲基在碳碳双键的同一侧,其熔点低、沸点高、密度大,说明容易以液态的形式存在,分子之间的作用力强——原因在于分子的极性强,事实的确如此!
反-2-丁烯分子中的两个甲基在碳碳双键的两侧,对称性极好,非极性,分子间的作用力小,不容易以液体形式存在,因此熔点高(熔化难一些)、沸点低(蒸发容易一些)、密度小一些。
三、炔烃
分子中含有碳碳三键的脂肪烃叫做炔烃,炔烃的通式是CnH2n-2(n=2)。炔烃的化学性质与烯烃类似,但是比烯烃更活泼。最简单的炔烃是乙炔C2H2。
乙炔分子中的两个碳原子是SP杂化,最外层两个电子直接成键,剩余两个电子分布在垂直于成键的空间,因此乙炔分子是线型结构,四个原子在一条直线上。乙炔的结构式H—C≡C—H,结构简式HC≡CH。
3.1乙炔的性质
常温下,乙炔是无色、无味的气体,微溶于水(与乙烯比较,乙烯难溶于水),易溶于有机溶剂。
3.2乙炔的实验室制取
生活中的乙炔焊枪所用的乙炔来自于电石与水的反应,因此带有电石味。
CaC2+2H2O==Ca(OH)2+C2H2↑——反应进行得非常剧烈,所以经常不用水而用食盐水
3.3乙炔的反应
炔烃的化学性质与烯烃的反应非常相似,只是比烯烃更活泼。
乙炔也可以发生氧化反应、加成反应和聚合反应。
(1)氧化反应(燃烧)
类似于烷烃、烯烃,炔烃也可以在空气或氧气中燃烧,生成二氧化碳和水。乙炔在空气中燃烧,会冒出更多的黑烟,是由于乙炔含碳量太高,燃烧不充分,有碳颗粒产生的缘故。
(2)氧化反应
类似于乙烯,乙炔也能够使溴的四氯化碳溶液褪色,使酸性高锰酸钾溶液褪色,产物不研究,这两个反应作为鉴别乙炔与甲烷的特征反应。乙炔的这两个反应比乙烯的反应更容易,更迅速。
(3)加成反应
乙炔分子中含有C≡C,因此可以与氢气、卤素、水、卤化氢等小分子发生两次加成反应。以乙炔与溴的加成反应为例,第一步反应
[转载]高二化学·脂肪烃学案
乙炔
反应还可以继续进行
[转载]高二化学·脂肪烃学案
1,2-二溴乙烯
生活上一种重要建材PVC(聚氯乙烯)的原料氯乙烯,就是乙炔与氯化氢在160°C、催化剂作用下生产的。
[转载]高二化学·脂肪烃学案
四、脂肪烃的来源及应用
三大化石燃料是脂肪烃的主要来源,依次是石油、煤、天然气。石油含有1-50几个碳原子的链烷烃、环烷烃,通过常压分馏、减压分馏、催化裂化、催化裂解、催化重整等五个步骤,可以得到日常生产生活所需要的各种产品。
4.1石油
(1)分馏
分馏,是蒸馏的一种方式,可以按照各组分的沸点,一次被蒸馏物分成若干个组分。石油分馏分为常压和减压两种工艺,常压分馏可以依次得到石油气、汽油、煤油、柴油等,减压分馏得到润滑油、石蜡等相对分子质量较大的烷烃。
(2)裂化和裂解
催化裂化,是将相对分子质量较大的烷烃分子打碎,生产汽、煤、柴油等的工艺。催化裂解,是将各组分的分子继续打碎,生产乙烯、丙烯、丁烯等有机小分子的工艺。教材里没有详细区别两种工艺的区别。
(3)催化重整
在催化剂作用下,让各种脂肪烃分子重新组合成某些用途更大的脂肪烃、芳香烃分子的工艺。
4.2天然气
用常压分馏、减压分馏、催化裂化、催化裂解等方法,将石油打碎的最轻的产品就是天然气,其中80%-90%是甲烷(体积),这是一种比较清洁的燃料和化工原料。
4.3煤
煤中可以提取到煤焦油,含有各种芳香烃。但是煤资源相对于石油更匮乏,用煤制取烃类一是安全问题,二是环境污染问题,已经不是近年来发展的重点。
生活中常见的能源,家庭厨房目前使用的有三种:
天然气:或者称为管道气,主要成分是甲烷。
液化石油气(LPG):是含3-4个碳原子的烷烃、烯烃的混合物,含有丙烷、丁烷、丙烯、丁烯等。
煤气:煤气化后的产物,主要成分CO,剧毒,也是煤矿中易爆炸的“瓦斯”,非常危险,已逐渐被淘汰。
还有一种生活中常见的脂肪烃——丁烷气:气体打火机中填充的压缩气体,是正丁烷(沸点-0.5°C)和异丁烷(沸点-11.7°C)的混合物。

文章来源:http://m.jab88.com/j/34930.html

更多

最新更新

更多