88教案网

比例的基本性质

身为一位人名教师,我们要给学生一个优质的课堂。就必须编写一份较为完整的教案,这样有利于我们准确的把握教材中的重难点。从而在之后的上课教学中井然有序的进行,那么一份优秀的教案应该怎样写呢?以下是小编为大家收集的“比例的基本性质”,供您参考,希望能够帮助到大家。

在教学比例的基本性质时,首先让学生根据教材所提供的两组数据,独立写成比例,再联系比的前项和后项的知识激趣:我们学的比例中的四个数也有自己的名字,请自学第43页的内容。学生自学认识比例的各部分名称、认识内项和外项,完成后进行反馈,并充分应用学生书写的8组比例来强化内外项的知识。然后再进行激趣:比例中的内项和外项还有一个有趣的规律,请大家分别算出它们的内项和(差、积、商)与它们的外项和(差、积、商),看看你能发现了什么?再随便找几个比例,看看这些比例中有没有这个有趣的现象?引导学生计算出在比例中两个外项积和两个内项积,从而发现其中的规律,总结出比例的基本性质。下面通过把比例写成分数形式,让学生形象地看到两个外项积和两个内项积就是将比例中等号两端的分子和分母分别交叉相乘,积相等,最后得出比例的性质。让学生应用比例的性质验证自己写的比例成立不成立,使学生明白,验证比例式是否成立,除了求比值的方法,也可以用求两个外项积和两个内项积是否相等的方法。课上安排应用比例性质进行填空练习,进一步加深学生对比例性质的认识与掌握。

整个教学过程主要由设疑、探究、应用这样三个教学环节组成。在设疑这个环节中,我能从学生已有知识入手,精心寻找新旧知识的联接点,过渡自然流畅。采用问题解决式展开探究,让学生自己去发现新问题,探索新知识。探究是本课最重要的一个环节,在这个环节中主要引导学生怎样自己的努力去发现比例的秘密,归纳出规律性的结论。整个环节力求体现学生自主探索、独立思考、合作交流的学习过程,从中提高学生的数学学习的能力。教学设计中还特别注意发展学生的个性,如要求学生用自己的语言归纳比例的基本性质等。在应用这个环节中,强调及时应用及时反馈,重视在练习中发挥教师的指导作用,使练习的针对性更强,巩固练习在层次上由易难,在形式上由封闭走向开放,让学生的聪明才智、才能得到充分的发挥,真正主动学习,成为学习的主人。

小编推荐

分数的基本性质


一个优质课堂,就是老师在讲学生在答,讲的知识都能被学生吸收。通常大家都会准备一份教案来辅助教学。对教学过程进行预测和推演,从而更好地实现教学目标,那么教案怎样写才好呢?下面是小编为大家整理的“分数的基本性质”,欢迎您参考,希望对您有所助益。

这节课,戴老师教师教态自然、语言清晰、数学语言表述准确。着重培养了学生通过动手操作的活动来让学生主动探究分数的基本性质,掌握分数的基本性质在生活中的实际应用,同时培养了学生积极参与,团结合作,主动探索,引导观察鈫捬罢夜媛桑⑾止媛桑揖醯谜馐且惶贸渎盍Φ目翁茫艽俳娣⒄沟目翁茫逑中驴伪昀砟畹目翁茫又形业玫搅艘恍┫驶畹木楹陀幸娴钠羰尽>咛甯爬ㄒ韵录傅悖?/p>

一、教学思路清晰,目标明确,重难点突出

教师根据教学内容,因材施教地制定了教学思路。这节课以鈥湸瓷枨榫车既胄驴沃傅嘉剿鳎鼋萄悸非逦U饨诳未骼鲜ν怀雠嘌植僮鳎鞫骄康难盗罚ü萌磐蟮某ば沃秸垡徽诺摹⑼可然疃刺剿鞣质肿印⒎帜傅谋浠媛桑佣醚⑾止媛桑怀鲋啬训愕哪谌荩鼋萄ё龅较曷缘玫保啬训惆盐兆既贰U庋杓品涎炅涮氐愫腿现媛桑逑至艘匝魈宓难肮蹋嘌搜难澳芰Α?/p>

二、创设情境,重视操作活动,发挥主体作用

老师能创造机会,让学生各种感官参与学习,把学生推到主体地位。让学生获得丰富感性认识,使抽象知识具体化、形象化。引导学生比较观察三幅图的异同之处,分数的分子分母的变化过程,从而证实变化的规律,整个操作过程层次分明,通过折涂,学生动手、动脑、动口,人人参与学习过程,不是操作而操作,而是把操作,理解概念,让学生观察三个图形来说明概念,降低了难度。通过操作,让学生既学得高兴又充分理解知识。形象直观地推导了分数的基本性质的概念,这样概念形成过程十分清晰,充分培养了学生自主探索的能力,把被动地接受知识变为主动地获取知识,达到教学目的。

三、练习设计具有层次性,开放性

由浅入深由易到难的设计,既使学生牢固的掌握了所学的知识,巩固了本节课的基础知识,又训练了学生的思维。激发了学生的学习兴趣。

苏教版六年级下册《比例的基本性质》数学教案


苏教版六年级下册《比例的基本性质》数学教案

教学目标:

1、使学生认识比例的“项”以及“内项”和“外项”。

2、理解并掌握比例的基本性质,会应用比例的基本性质正确判断两个比能否组成比例。

3、通过自主学习,让学生经历探究的过程,体验成功的快乐。

教学重、难点:理解并掌握比例的基本性质;引导观察,自主探究发现比例的基本性质。

教学过程:

一、创设情境,教学比例的基本知识。

1、复习:

师:什么叫比例?下面每组中的两个比能否组成比例?出示:

1/3∶1/4和12∶9  1∶5和0.8∶4  7∶4和5∶3  80∶2和200∶5

学生根据比例的意义进行判断,教师结合回答板书:

1/3∶1/4=12∶9  7∶4≠5∶3 1∶5=0.8∶4  80∶2=200∶5

2、认识比例各部分的名称

(1)介绍“项”:组成比例的四个数,叫做比例的项。

(2)3 :5 = 18 :30 学生尝试起名。

师介绍:比例的两项叫做比例的外项,中间的两项叫做比例的内项。

3 :5 = 18 :30

内项

外项

(3)如果把比例写成分数的形式,你还能指出它的内、外项吗?

出示:3/5=18/30

(4)已经知道了比例各部分名称,接下来我们一起来研究比例是否也有什么规律或者性质,有兴趣吗?

师:刚才,你们是根据比例的意义先求出比值再作出判断的。老师不是这样想的,可很快就判断好了,想知道其中的秘密吗?告诉你们,老师是运用了比例的基本性质进行判断的。

二、教学例4

1、提问:你能根据图中的数据写出比例吗?

(1)引导学生写出尽可能多的比例。并逐一板书,同时说出它们的内项和外项。

(2)引导思考:仔细观察写出的这些比例式,你能否发现有没有什么相同的特点或规律呢?

2、学生先独立思考,再小组交流,探究规律。

(板书:两个外项的积等于两个内项的积。)

3、验证:是不是任意一个比例都有这样的规律?

⑴课件显示复习题(4组):

1/3∶1/4和12∶9;

1∶5和0.8∶4;

7∶4和5∶3;

80∶2和200∶5

学生验证。

⑵学生任意写一个比例并验证。

教师将学生所举比例故意写成分数形式,追问:哪两个是内项,哪两个是外项,让学生算出积并结合回答板书。通过交*连线使学生明确:在这样的比例中,比例的基本性质可以表达为:把等号两端的分子、分母交*相乘,结果相等。

师:老师也写了一个比例(板书:3∶2=5∶4),怎么两个外项的积不等于两个内项的积!你们发现的规律可能是有问题的。

引导学生得出:你举的例子从反面证明了我们发现的规律是正确的。因为3∶2和5∶4这两个比是不能组成比例的。只有在比例中,两个外项的积等于两个内项的积。

师:很有道理!同学们很会观察,很会猜想,很会验证,自己发现了比例的基本性质。

板书:在比例中,两个外项的积等于两个内项的积。这叫做比例的基本性质。

⑶如果用字母表示比例的四项,即a:b=c:d,那么这个规律可以表示成什么。

(4)完整板书:在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。

读书P44页,勾画

5、小结:刚才我们是怎样发现比例的基本性质的?(写了一些比例式,观察比较,发现规律,再验证)

6、比例的基本性质的应用

(1)比例的基本性质有什么应用?

(2)做“试一试”:出示“3.6 :1.8和0.5 :0.25”。

A、先假设这两个比能组成比例

:让学生自己根据比例的基本性质判断,如果能组成比例就写出这个比例式。提问:3.6 :1.8和0.5 :0.25能组成比例吗? 根据比例的基本性质,能判断两个比能不能组成比例吗?

b、说出写出的比例的内项和外项分别是几,再分别算出外项和内项的积。

C、根据比例的基本性质判断组成的比例是否正确。

三、综合练习:

1、完成练一练

(1)学生尝试练习。

(2)交流讨论。使学生明确:可以把四个数写成两个比,根据比值是否相等作出判断。也可将四个数分成两组,根据每组中两个数的乘积是否相等作出判断,其中运用比例的基本性质进行判断比较简便。

2、在(  )里填上合适的数。

1.5:3=( ):4

12:( )=( ):5

先让学生尝试填写,再交流明确思考方法。

3、补充一组灵活训练题:

A、如果让你根据“2×9=3×6”写出比例,你行吗?你能写出多少个呢?

B、你能用“3、4、5、8”这四个数组成比例吗?若能,请把组成的比例写出来。

C、你能从3、4、5、8中换掉一个数,使之能组成比例吗?

四、全课小结:

同学们真行!不仅探索发现了比例的基本性质,还能自觉地运用比例的基本性质,去判断两个比能否组成比例,去求比例中的未知项。

能告诉我比例的基本性质是什么吗?你觉得学了它有什么用处?

五、课堂作业。

1、做练习十第1、3题

2、独立完成2、4题

板书设计:

比例的基本性质

3 :5 = 18 :30

内项

外项

6:4=3:2 4:6=2:3  4:2=6:3 3:6=2:4

3×4=6×2

a:b=c:d ad=bc

在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。

人教版六年级下册《比例的意义和基本性质》数学教案


人教版六年级下册《比例的意义和基本性质》数学教案

教学目标:

1.知识与技能:认识比例,知道比例的的内项和外项,理解和掌握比例的基本性质,会判断两个比能否组成比例。

2.过程与方法:通过自主探究、合作交流、观察、比较,培养学生分析、比较、抽象和概括的能力,经历认识比例和比例的基本性质的过程。

3.情感态度与价值观:体会国旗中隐含的数学规律,丰富关于国旗的知识,培养学生爱国旗、爱祖国的情感。

教学重点:

理解比例的意义,探究比例的基本性质。

教学难点:

探究比例的基本性质和应用意义,会判断两个比能否组成比例。

教学过程:

一、创设情境,设疑激趣

同学们,国旗是中华人民共和国的象征。每当周一升国旗时,我们心中充满了对祖国的热爱和作为一个中国人的自豪。热爱国旗就是热爱祖国,国旗对我们这么重要,你们想不想更多地了解一些国旗的知识呢?你对国旗的大小有哪些了解?

学生思考回答(挖掘学生生活经验)

同学们知道的真多,说明同学们平时认真观察,是个有心人。

二、引导探究,自主建构

活动一:探究比例的意义

1.你了解到哪些关于国旗大小的知识?

学生交流,给学生充分的交流机会。

2.你们仔细观察,结合我们上节课学的比的相关知识,估计一下每种规格国旗长和宽或者宽和长之间是否存在什么规律?

(1)猜测

预设:生1、长和宽的比值相等;生2、宽和长的比值相等,

(2)小组验证

每个小组任选两种规格国旗,验证一下每种国旗长和宽之间存在的规律。

(3)展示交流小组验证结果,学生到黑板前板书得出结论。

预设:每种国旗的长和宽的比都是3:2,他们的比值相等。

每种国旗的宽和长的比是2:3,他们的比值相等。

教师小结:240:160与144:96的比值相等我们可以把比值相等的式子写成 240:160=144:96 或 240/160=144/96

我们把表示两个比相等的式子叫做比例,组成比例的四个数叫做比例的项,两端的两项叫做比例的(外项),中间的两项叫做比例的(内项)。括号中的可以让学生说一说。

你能说出一个比例吗?说一说你是怎么理解比例的?

怎么判断两个比是不是成比例?

试一试,判断下面哪组中的两个比可以组成比例。

2:3和6:9 4:2和28:40 5:2和10:4 20:5和1:4

活动二:探究比例的基本性质

1.利用学生列举的比例和判断题中的比例,大胆猜想一下,每个比例两个内项和两个外项之间会存在什么关系?

2.小组内验证猜测结果

3.展示验证猜测情况。得出结论,

预设:

“在比例里,两个外项相乘的积就等于两个内项相乘的得数”。

“在比例里,把两个外项乘起来,再把两个内项乘起来,它们的得数是一样的”。

教师归纳总结。

同学们说得对,在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。

板书:比例的基本性质。

谁能用分数形式表示以上比例?怎样求两个内项和两个外项的积呢?(分子和分母交叉相乘)

三、强化训练、应用拓展

同学们学习了比例的意义与性质,那么能利用它们解决实际问题吗?

1.判断下面哪组中的两个比可以组成比例?

(1) 6:9和 9:12

(2)1/2:1/5和5/8:1/4

(3)1.4:2 和 7:10

(4) 0.5:0 .2和10:4

2.判断。

(1)表示两个比相等的式子叫做比例 ( )

(2)0.6:1.6与3:4能组成比例 ( )

(3)如果4a=5b,那么a:b=4:5( )

3.填空

5:2=80:( )

2:7=( ):5

1.2:2.5=( ):4

在一个比例里,两个外项互为倒数,其中一个内项是6,另一个内项是( )。

在一个比例里,两个内项的积是12,其中一个外项是2.4,另一个外项是( )。

4.写出比值是5的两个比,并组成比例

5.根据3a=5b把能组成的比例写出来。

四、自主反思、深入体验

通过这节课的学习你有什么收获?

西师大版六年级下册《比例的基本性质》数学教案


西师大版六年级下册《比例的基本性质》数学教案

教学目标:

1.使学生进一步理解比例的意义,懂得比例各部分名称。

2.经历探索比例基本性质的过程,理解并掌握比例的基本性质。

3.能运用比例的基本性质判断两个比能否组成比例。

教学重点:

比例的基本质性。

教学难点:

发现并概括出比例的基本质性。

教具准备:

多媒体课件

教学过程:

一、旧知铺垫

1.什么叫做比例?

2.应用比例的意义,判断下面的比能否组成比例。

0.5:0.25和0.2:0.4 0.5 :0.2 和5:2

1/2:1/3 和6 : 4 0.2: 和1:4

二、探索新知

1.比例各部分名称。

(1)教师说明组成比例的四个数的名称。

板书

组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。

例如:2.4:1.6 = 60:40

内项:1.6 6o

外项:2.4 40

(2)学生认一认,说一说比例中的外项和内项。让学生再写出几个比例。

如:2.4 :1.6 = 60:40

外 内 内 外

项 项 项 项

2.比例的基本性质。

你能发现比例的外项和内项有什么关系吗?

(1) 学生独立探索其中的规律。

(2) 与同学交流你的发现。

(3) 汇报你的发现,全班交流。(师作适当的补充)

在比例里,两个内项的积等于两个外项的积。

板书

两个外项的积是2.4×40=96

两个内项的积是1.6×60=96

外项的积等于内项的积。

(4) 举例说明,检验发现。

0.6 :0.5=1.2: 1

两个外项的积是 0.6×1 =0.6

两个内项的积是0.5×1.2=0.6

外项的积等于内项的积。

如果把比例改成分数形式呢?

如:2.4/1.6 = 60/40

3.4×40=1.6×60

等号两边的分子和分母分别交叉相乘,所得的积相等。

(5) 学生归纳。

在比例里,两外外项的积等于两个内项的积,这叫做比例的基本性质。

4.填一填。

(1)1/2:1/5 =1/4:1/10

( )×( )=( )×( )

(2)0.8:1.2=4:6

( )×( )=( )×( )

(3)4×5=2×10

4:( )=( ):( )

5.做一做。

完成课本中的“做一做”。

6.课堂小结

(1) 说一说比例的基本性质。

(2) 你可以用什么方法来判断两个比能否组成比例(引导学生总结说出两种方法,重点让学生理解掌握比例的基本性质,到此,学生要学会用两种方法判断两个比能否组成比例;1.比值是否相等;2.内项之积是否等于内项之积。)

三、巩固练习

完成课文练习六第4~6题。

补充习题

一题多变化,动脑解决它

(1)在比例里,两个内项的积是18,

其中一个外项是2,另一个外项是()。

(2)如果5a=3b,那么, = ,

(3)a︰8=9︰b,那么,a×b=( )

教学反思:

比例的各部分名称通过学生自学,老师提问,完成的较好。让学生通过计算内项之积和外项之积发现比例的基本性质。然后大量的练习巩固新知。

人教版五年级下册《分数的基本性质》数学教案


为了使每堂课能够顺利的进展,要根据班级同学的具体情况编写教案。让同学们很好的吸收课堂上所讲的知识点,那么优秀的教案是怎么样的呢?为了让您在使用时更加简单方便,下面是小编整理的“人教版五年级下册《分数的基本性质》数学教案”,仅供参考,希望可以帮助到您。

人教版五年级下册《分数的基本性质》数学教案

教材分析:

《分数的基本性质》是义务教育课程标准实验教材人教版五年级下册第四单元的一个重要内容。该教学内容是以分数的意义、分数与除法的关系、整数除法中商不变的规律这些知识为基础的。分数的基本性质是建立在分数大小相等这一概念基础之上的。而两个分数的大小相等,并不意味着两个分数的分子、分母分别相同。分数的基本性质又是约分和通分的基础,而约分和通分则是分数四则混合运算的重要基础,因此,理解分数的基本性质显得尤为重要。

教学目标:

1.知识与能力: 经历分数基本性质的建构过程,归纳概括并掌握分数的基本性质,能运用分数的基本性质解决有关的数学问题。

2.过程与方法:培养学生观察、分析、比较、归纳、概括及动手实践的能力,进一步发展学生的思维。

3.情感、态度与价值观: 让学生体会数学来自生活实际的需要,感受数学与生活的联系,激发学生对数学的兴趣。

教学重点 :

探索、发现和掌握分数的基本性质,并能运用分数的基本性质解决问题。

教学难点 :

自主探究、归纳概括分数的基本性质。

教具准备:

课件

教学过程:

一、复习导入

1.说出下列各分数的意义,分数单位和它包含有几个这样的分数单位。

2.商不变规律。

(1)计算:120÷30 12÷3 40÷5 400÷50

(2)说一说,你有什么发现?

(被除数和除数都缩小或扩大相同的倍数,商不变。)

二、新课讲授

1.教学例1。

(1)动手操作:拿3张同样的正方形纸片,分别对折一次,两次,三次,平均分成2份,4份,8份,涂上颜色,分别用分数表示涂色部分。

提示:你发现了什么?板书: (为什么相等?)

(2)小组交流:观察它们的分子,分母各是按照什么规律变化的?

(3)汇报:随着学生汇报,老师板书。

(4)观察以上例子,你能得出什么结论?

分数的分子和分母同时乘或者除以相同的数(0除外),分数的大小不变。这叫做分数的基本性质。

提问:为什么0要除外?

小结:分子和分母如果都乘上0,则分数成为 ,而分数的分母不能为0;又因为0不能作除数,所以分数的分子和分母也不能同时除以0。

(5)提问:你能不能根据分数与除法的关系和商不变性质来说明分数的基本性质?

2.教学例2。出示题目

独立完成,集体订正,订正时说一说根据什么。

三、巩固练习

1.练习十四习题

第1题:按要求涂色,并比较它们的大小。

第2题:比较每组中的分数大小是否相等。

第3题:同位合作完成。

2.作业:练习十四4、5题,选作13题。

四、全课总结

这节课我们学了哪些知识?分数的基本性质是怎样的?

板书设计:

分数的基本性质

分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

苏教版五年级下册《分数的基本性质》数学教案


老师要承担起对每一位同学的教学责任,在开展教学工作之前。为了不消耗上课时间,就需要有一份完整的教学计划。从而在之后的上课教学中井然有序的进行,你知道怎样才制作一份学生爱听的教案吗?下面是小编精心收集整理,为您带来的《苏教版五年级下册《分数的基本性质》数学教案》,欢迎阅读,希望您能阅读并收藏。

苏教版五年级下册《分数的基本性质》数学教案

教学目标:

1.知识与能力: 经历分数基本性质的建构过程,归纳概括并掌握分数的基本性质,能运用分数的基本性质解决有关的数学问题。

2.过程与方法:培养学生观察、分析、比较、归纳、概括及动手实践的能力,进一步发展学生的思维。

3.情感、态度与价值观: 让学生体会数学来自生活实际的需要,感受数学与生活的联系,激发学生对数学的兴趣。

教学重点 :

探索、发现和掌握分数的基本性质,并能运用分数的基本性质解决问题。

教学难点 :

自主探究、归纳概括分数的基本性质。

教具准备:

课件

教学过程:

一、复习导入

1.说出下列各分数的意义,分数单位和它包含有几个这样的分数单位。

2.商不变规律。

(1)计算:120÷30 12÷3 40÷5 400÷50

(2)说一说,你有什么发现?

(被除数和除数都缩小或扩大相同的倍数,商不变。)

二、新课讲授

1.教学例1。

(1)动手操作:拿3张同样的正方形纸片,分别对折一次,两次,三次,平均分成2份,4份,8份,涂上颜色,分别用分数表示涂色部分。

提示:你发现了什么?板书: (为什么相等?)

(2)小组交流:观察它们的分子,分母各是按照什么规律变化的?

(3)汇报:随着学生汇报,老师板书。

(4)观察以上例子,你能得出什么结论?

分数的分子和分母同时乘或者除以相同的数(0除外),分数的大小不变。这叫做分数的基本性质。

提问:为什么0要除外?

小结:分子和分母如果都乘上0,则分数成为 ,而分数的分母不能为0;又因为0不能作除数,所以分数的分子和分母也不能同时除以0。

(5)提问:你能不能根据分数与除法的关系和商不变性质来说明分数的基本性质?

2.教学例2。出示题目

独立完成,集体订正,订正时说一说根据什么。

三、巩固练习

1.练习十四习题

第1题:按要求涂色,并比较它们的大小。

第2题:比较每组中的分数大小是否相等。

第3题:同位合作完成。

2.作业:练习十四4、5题,选作13题。

四、全课总结

这节课我们学了哪些知识?分数的基本性质是怎样的?

板书设计:

分数的基本性质

分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

小学六年级数学比的基本性质教案


教学内容:课本第50页例2;练一练;《作业本》第22页。

教学目标:

1、理解并掌握比的基本性质,知道“最简单的整数比”,会根据比的基本性质将比化成最简单的整数比。

2、培养学生自主迁移、自主构建知识的能力。

教学重点:比的基本性质和化简比

教学过程:

一、准备练习:

1、求下列各比的比值。

12:201:1:1.5:2.5

2、在()里填上适当的数。

⑴=()÷()=():()

⑵====

(第1题:分数与除法的关系;第2题:分数的基本性质)

3、复习比与除法、分数的关系。(完成上堂课的表格)

二、教学新课:

1、引入。

分数基本性质是怎样的?除法的商不变性质又怎么说?根据分数、除法和比的关系,你能猜出比的基本性质应该是怎样的呢?

(1)学生试着叙述。

(2)反馈小结。

分数基本性质、除法的商不变性质中的都有“0除外”,为什么?比的基本性质要不要也加上这个条件?应该怎么说才最完整呢?

2、看书验证自己的猜想。P50页。

3、什么是最简单的整数比?

(1)下面哪些是整数比?哪些整数比最简单?为什么?

6:1012:210.3:0.40.25:1

3:54:73:4:

(2)教师小结:

像3:5、4:7、3:4等这些整数比,比的前项和后项都是整数,而且这两个数是互质数,,我们称这样的比为“最简整数比”,化成最简整数比简称“化简比”。

4、教学例2。化简比。

(1)应用比的基本性质可以把比化成整数比。

自学课本P50、51例2、例3)

(2)小结:

①整数比化简的方法是把比的前项和后项同时都除以它们的最大公约数。

②分数比化简的方法是先把前、后项同时都乘以分母的最小公倍数。

(3)试一试。

三、巩固练习:练一练

四、小结:

今天你学会了什么?比和比值的区别怎样?(比值是一个数,可以用分数、小数、整数来表示;而比必须清楚的看出比的前项和后项,只能用比的形式表示。)

五、《作业本》第22页。

北京版五年级下册《分数的基本性质》数学教案


在上课时老师为了能够精准的讲出一道题的解决步骤。老师需要做好课前准备,编写一份教案。这样可以有效的提高课堂的教学效率,那有什么样的教案适合新手教师吗?请您阅读小编辑为您编辑整理的《北京版五年级下册《分数的基本性质》数学教案》,仅供参考,欢迎大家来阅读。

北京版五年级下册《分数的基本性质》数学教案

教学目标:

1、理解并掌握比的基本性质,知道“最简单的整数比”,会根据比的基本性质将比化成最简单的整数比。

2、培养学生自主迁移、自主构建知识的能力。

3、搞清求比值和化简比的区别与联系,建立事物间相互联系的观念,对学生进行辨证唯物主义的思想教育。

教学重点:比的基本性质和化简比

教学难点:求比值和化简比的区别和联系

教具:小黑板

一、故事引入

引言:同学们知道猴子最爱吃桃子,下面就来看一看一个猴王分桃的故事。猴王管辖的猴群分为三个组,一组有4只猴分得3个桃,二组有8只猴分得6个桃,三组有12只猴,分得9个桃。请问猴王的分配公平吗?

让学生思考:每只猴分得几个桃?桃与猴的比怎样?比值是多少?

教师根据学生的回答板书:

3÷4 6÷8 9÷12 3:4 6:8 9:12

=3/4 =6/8 =9/12 =3/4 =6/8 =9/12

1、三个除法算式有什么关系?

2、三个分数的值相等吗?

3、三个比相等吗?(相等)为什么?

4、猴王的分配公平吗?(公平)为什么?

是啊!猴王的分配是公平的,由于它的公平才被众猴推为猴王。

三、探讨规律

师:上面的三个比什么变了?什么没变?

生:比的前后项变了,比值没变。

师:比的前后项是如何变化的?变化有没有一定的规律可循?下面我们来共同寻找、共同探讨。

1、首先让学生从左往右观察前后项的变化:前项3→6(3→9、6→9),后项4→8(4→12、8→12)分别是怎么变化的?让学生通过“观察→思考→讨论”后回答,教师根据学生的回答板书:

3:4=(3×2):(4×2)=6:8

3:4=(3×3):(4×3)=9:12

6:8=(6×1.5):(8×1.5)=9:12

上面的变化谁能用一句概括性的语言表达出来,让学生讨论回答,教师板书:

2、然后从右往左观察前后项又是如何变化的:

9:12=(9÷3):(12÷3)=3:4

6:8=(6÷2):(8÷2)=3:4

9:12=(9÷1.5):(12÷1.5)=6:8

3、讨论:上面同乘以或除以的“数”是不是任何数都可以?

4、揭示课题:这就是我们今天学习的“比的基本性质”。

5、尝试:(1)、4:5的前项扩大2倍,要使比值不变,比的后项应该( )

(2)、如果3:2的后项变成15,要使比值不变,比的前项应该为( )

四、运用规律

3:4、6:9、8:12这三个比中,比的前后项为互质数的是哪个比?(3:4),像这种前后项为互质数的比叫最简整数才(简称最件简比)。(板书)

1、化简比。

出示例1:把下面各比化成最简单的整数比。

(1)14:21 (2)1/6:2/9 (3)0.25:1.2 30:10

让学生讨论14:21如何化简?

2、小结化简比的方法。

师:谁来说说整数比如何化简,分数比如何化简,小数比如何化简?化简比的方法是什么?

3、比较化简比和求比值的异同。

强调:比值是一个数,化简比仍是一个比。(板书)

五、强化认识

1、判断:①、1/2:1/4化简后得2( )

②、比的前项和后项同时乘以或除以相同的数,比值不变( )

③、两个数的比值是1/3,这两个数同时扩大5倍,它们的比值是1/3( ) ④、圆周率表示一个圆的周长和直径的比 ( )

2、填空。(小黑板出示)

(1)、3÷4=()/()=()÷()=21:()

(2)、两个的比值是5/6,这两个数的最简比是()。

3、甲数是乙数的50%,用比的角度来描述这两个数的关系。 4、А、Б两圆的重叠部分是圆А的1/7,也是圆Б的1/5,求А、Б两圆的面积比

六、总结全课

今天我们学习了什么?应用它可以解决什么问题?化简比和求比值是否一样?

苏教版六年级上册《比的基本性质》数学教案


苏教版六年级上册《比的基本性质》数学教案

第三单元 分数除法

第8课时 比的基本性质

教学内容:

课本第55页例9、例10和“练一练”,练习九第5-8题。

教学目标:

1、使学生理解和掌握比的基本性质,并会应用这个性质把比化成最简单的整数比。

2、通过教学培养学生的抽象概括能力,渗透转化的数学思想,并使

学生认识事物之间都是存在内在联系的。

教学重点:

理解比的基本性质。

教学难点:

正确应用比的基本性质化简比。

课前准备:

多媒体课件

教学过程:

一、复习导入

1、填空。

师:除法、分数和比之间有什么联系?

2、做复习题。

师:第一题你这样做根据的是什么?(商不变的性质)它的内容是什么?第二题呢?

3.导入课题。

我们以前学过商不变的性质和分数的基本性质,今天我们就在这些旧知识的基础上学习新的知识。下面,我们就一起研究研究。(板书课题:比的基本性质)

二、学习新课

1、教学例9比的基本性质。

(1)学生填表

(2)提问:联系商不变的性质和分数的基本性质这两个性质想一想:在比中又有什么规律可循?

(3)师生共同总结比的基本性质:

比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变.

(4)师:你觉得哪些词语比较重要?

0除外你怎样理解?

2、教学例10应用比的基本性质化简比。

我们以前学过最简分数,想一想:什么叫做最简分数?最简单的整数比就是比的前项、后项是互质数,像9∶8就是最简单的整数比。

出示:把下面各比化成最简单的整数比。

(1)12:18 (2) 5/6:3/4 (3)1.8:0.09

(1)让学生试做第(1)题。

师:你是怎么做的?6和12、18有着怎样的关系?

引导学生小结出整数比化简的方法:(演示课件出示)用比的前后项分别除以它们的最大公约数,使比的前后项是互质数。

(2)化简第(2)题。

师:这个比的前、后项是什么数?(分数)我们已经会化简整数比了,那么你能不能利用比的基本性质把分数比先化成整数比呢?

(3)引导学生小结出分数比化简的方法:(演示课件出示)比的前、后项同时乘以它们的分母的最小公倍数,就可以把分数比转化成整数比,进而化简成最简单的整数比。

(4)化简第(3)题。

师:想一想如何化简小数比呢?

让学生独立在书上化简,指名板演

师:那么应用比的基本性质把整数比、小数比、分数比化成最简单的整数比的方法是什么?

三、巩固练习

1、把“练一练”第1题填完整。

2、“练一练”第2题。

指名板演,其余练习,完成后集体核对。

3、做练习九第7、8题。

4、出示选择

(1)1千米∶20米=( )

A 1∶20 B 1000∶20 C 5∶1

(2)做同一种零件,甲2小时做7个,乙3小时做10个,甲、乙二人的工效比是( )

A 20∶21 B 21∶20 C 7∶10

四、课堂总结

师:通过今天的学习,你又学习了哪些知识?什么是比的基本性质?应用比的基本性质如何把整数比、分数比、小数比化成最简单的整数比?

五、布置作业

练习九第5、6题。

教学反思:

人教版六年级上册《比的基本性质》数学教案


众所周知,一位优秀的老师离不开一份优质的教案。通常大家都会准备一份教案来辅助教学。从而在之后的上课教学中井然有序的进行,那你们知道有哪些优秀的小学教案吗?以下是小编为大家精心整理的“人教版六年级上册《比的基本性质》数学教案”,仅供参考,希望可以帮助到您。

人教版六年级上册《比的基本性质》数学教案

第4单元 比

第2课时 比的基本性质

【教学内容】

教材50、51页及练习十一的4-8题

【教学目标】

知识与技能:

1.理解比的基本性质.

2.正确应用比的基本性质化简比.

过程与方法:

培养抽象概括能力;

情感、态度与价值观;

渗透转化的数学思想。

【教学重难点】

重点:理解比的基本性质,正确的化简比。

难点:正确应用比的基本性质化简比。

【导学过程】

⊙复习铺垫

1.什么叫两个数的比?(两个数的比表示两个数相除)

2.比与分数、除法有什么关系?(引导学生明确:比相当于分数、相当于除法;比的前项相当于……可以结合算式或表格回答)

3.商不变的性质和分数的基本性质各是什么?[商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变]

设计意图:回顾比的意义和商不变的性质以及分数的基本性质,理清比与分数、除法的关系,为探究比的基本性质做好铺垫。

⊙探究新知

1.导入新课。

(1)课件出示:

(2)这三个分数的大小相等吗?为什么?(相等,因为它们的分数值都是0.75)

(3)还有其他方法可以证明它们的大小相等吗?怎样证明?(有,根据分数的基本性质, 和 都可以化成 ,所以它们的大小相等;根据分数和除法的关系以及商不变的性质也可以证明这三个分数的大小相等)

(4)在除法中有商不变的性质,在分数中有分数的基本性质,那么在比中是否也有类似的性质呢?这节课我们就来探究一下比的基本性质。(板书课题)

2.探究比的基本性质。

(1)把 改写成比的形式。(引导学生汇报并用课件展示: =3∶4; =6∶8; =12∶16)

(2)探讨这三个比之间的关系,用算式表示出来,并说明理由。(3∶4=6∶8=12∶16,比值都是0.75)

(3)观察、比较、发现。

观察每个比的前项和后项的变化过程及规律。(结合学生的汇报,用课件展示相关内容)

6÷8=(6×2)÷(8×2)=12÷16

↓ ↓ ↓

规律:比的前项和后项同时乘相同的数,比值不变。

6∶8=(6÷2)∶(8÷2)= 3∶ 4

↓ ↓ ↓

6÷8=(6÷2)÷(8÷2)=3 ÷ 4

规律:比的前项和后项同时除以相同的数,比值不变。

(4)归纳总结。

①试用一句话概括上面三个比的变化规律。(比的前项和后项同时乘或除以相同的数,比值不变)

②讨论:同时乘或除以的相同的数可以是0吗?为什么?(不可以是0,因为除以0没有意义)

③归纳总结比的基本性质。

比的前项和后项同时乘或除以相同的数(0除外),比值不变。

设计意图:先提出问题,调动学生思考问题的积极性,再由提出的问题,引发横向思维,建立各知识点间的联系,最后通过观察、比较、思考、发现,逐渐完善比的基本性质,帮助学生养成比较完善的思维习惯。

3.应用比的基本性质。

(1)探究整数比的化简方法。

①PPT课件出示教材50页例1(1)小题:“神舟”五号搭载了两面联合国旗,一面长15 cm,宽10 cm,另一面长180 cm,宽120 cm,这两面联合国旗长和宽的最简单的整数比分别是多少?

②明确什么是最简单的整数比。[前项和后项是互质数(只有公因数1)的比叫最简单的整数比]

③探究15∶10和180∶120的化简方法。

除以前项和后项的最大公因数:

15∶10

=(15÷5)∶(10÷5)

=3∶2

180∶120

=(180÷60)∶(120÷60)

=3∶2

小结:化简整数比,可以把比的前项和后项同时除以它们的最大公因数。(板书:整数比的化简)

(2)探究分数比和小数比的化简方法。

①PPT课件出示教材51页例1(2)小题:把下面各比化成最简单的整数比。

0.75∶2

②探究分数比的化简方法。(引导学生说出:要根据比的基本性质,把它的前项和后项同时乘它们分母的最小公倍数18,才能化成最简单的整数比)

A.用乘最小公倍数的方法B.用求比值的方法

=3∶4 =3∶4

③探究小数比的化简方法。(引导学生说出:要根据比的基本性质,把它的前项和后项同时乘相同的数,使它们转化成整数比。如果这时还不是最简单的整数比,要再除以前项和后项的最大公因数,化成最简单的整数比)

先化成整数比,再化简。

0.75∶2

=(0.75×100)∶(2×100)

=75∶200

=(75÷25)∶(200÷25)

=3∶8

小结:用求比值的方法化简分数比时,要注意化简比与求比值的不同,无论是分数比的化简还是小数比的化简,化简比的结果仍要写成比的形式,而不能写成小数或整数的形式。(板书:分数比的化简,小数比的化简)

(3)总结。

化简比的依据是比的基本性质,化简比的方法不是唯一的,要注意的是,化简后仍是比的形式。

设计意图:在弄清比的基本性质的基础上,引导学生探索各类比的化简方法,结合实例,总结出各类比的化简方法,培养学生的概括能力。

⊙巩固练习

1.判断。

(1)比的前项和后项同时乘或除以相同的数,比值不变。()

(2)4∶0.25化简后的结果是16。()

(3)从学校走到图书馆,小明用了8分钟,小红用了10分钟,小明和小红的速度比是4∶5。()

2.填空。

16∶200=()∶()=()∶()=

()∶()=()∶()=()∶()。

(独立尝试后交流,汇报时说明理由,第2题答案不唯一,只要和16∶200的比值相等就是正确的)

3.完成教材51页“做一做”。

⊙课堂总结

本节课你有什么收获?

⊙布置作业

教材53页4、5题。

板书设计

比的基本性质

比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

西师大版五年级下册《分数的基本性质》数学教案


一个优质课堂,就是老师在讲学生在答,讲的知识都能被学生吸收。所以老师在写教案时要不断修改才能产出一份最优质的教案。为学生带来更好的听课体验,从而提高听课效率。你们见过哪些优秀教师的小学教案吗?下面是小编精心整理的“西师大版五年级下册《分数的基本性质》数学教案”,供大家参考,希望能帮助到有需要的朋友。

西师大版五年级下册《分数的基本性质》数学教案

教学目标:

1.知识与能力: 经历分数基本性质的建构过程,归纳概括并掌握分数的基本性质,能运用分数的基本性质解决有关的数学问题。

2.过程与方法:培养学生观察、分析、比较、归纳、概括及动手实践的能力,进一步发展学生的思维。

3.情感、态度与价值观: 让学生体会数学来自生活实际的需要,感受数学与生活的联系,激发学生对数学的兴趣。

教学重点 :

探索、发现和掌握分数的基本性质,并能运用分数的基本性质解决问题。

教学难点 :

自主探究、归纳概括分数的基本性质。

教具准备:

课件

教学过程:

一、复习导入

1.说出下列各分数的意义,分数单位和它包含有几个这样的分数单位。

2.商不变规律。

(1)计算:120÷30 12÷3 40÷5 400÷50

(2)说一说,你有什么发现?

(被除数和除数都缩小或扩大相同的倍数,商不变。)

二、新课讲授

1.教学例1。

(1)动手操作:拿3张同样的正方形纸片,分别对折一次,两次,三次,平均分成2份,4份,8份,涂上颜色,分别用分数表示涂色部分。

提示:你发现了什么?板书: (为什么相等?)

(2)小组交流:观察它们的分子,分母各是按照什么规律变化的?

(3)汇报:随着学生汇报,老师板书。

(4)观察以上例子,你能得出什么结论?

分数的分子和分母同时乘或者除以相同的数(0除外),分数的大小不变。这叫做分数的基本性质。

提问:为什么0要除外?

小结:分子和分母如果都乘上0,则分数成为 ,而分数的分母不能为0;又因为0不能作除数,所以分数的分子和分母也不能同时除以0。

(5)提问:你能不能根据分数与除法的关系和商不变性质来说明分数的基本性质?

2.教学例2。出示题目

独立完成,集体订正,订正时说一说根据什么。

三、巩固练习

1.练习十四习题

第1题:按要求涂色,并比较它们的大小。

第2题:比较每组中的分数大小是否相等。

第3题:同位合作完成。

2.作业:练习十四4、5题,选作13题。

四、全课总结

这节课我们学了哪些知识?分数的基本性质是怎样的?

板书设计:

分数的基本性质

分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

六下数学第六单元《分数、小数基本性质,倍数和因数》教案


作为杰出的教学工作者,为了教学顺利的展开。每位老师都会提前准备一份教案,以便于提高讲课效率。这样不仅拉进了学生与自己的距离,还让学生学到了知识,那么老师怎样写才会喜欢听课呢?下面是由小编为大家整理的六下数学第六单元《分数、小数基本性质,倍数和因数》教案,仅供参考,欢迎大家阅读。

教学内容:

教材第73页例4、5、6,做一做,练习十四第4---9题

教学目标:

1、对数的整除的有关概念进行系统整理,能区分易混易错(奇数、偶数、质数、合数、因数、倍数、倒数、真分数、假分数)的概念,使学生初步形成认知结构。能熟练地进行小数、分数与百分数的互化。

2、加强知识的灵活性、综合性的运用,提高学生对数的认识。

3、发展学生的模型思想,体会转化、函数、极限等数学思想方法。

教学重点:

使学生比较系统地对整数、小数、分数、百分数和负数的灵活运用。通过对易混知识的系统整理,使学生形成认知结构。

教学难点:

对数整除的相关概念的区分。

教具准备:

多媒体课件

教学过程:

一、创设情境,系统整理形成认知结构。

(一)创设情境,整理自然数、整数、整除、因数、倍数的概念。

1、创设情境,整理自然数、整数的概念,明确研究范围。

(1)学生自主报出自己出生年月。

(2)问:①你们刚才说的数都是什么数?

②研究数的整除时,是在什么数的范围内研究的?

(3)师:0是自然数,因为它也表示物体的个数,0个,因此,它既是自然数,也是整数。但我们在研究数的整除时,一般不包括0。

2、借助算式,整理因数、倍数的概念。

(1)出示算式

①182=9②2.46=0.4③308=

④305=6⑤816=0.5⑥120.3=40

(2)提出要求:把算式填在集合图中。

(3)提问:结合算式说一说因数、倍数的概念

(4)小结

①一个数的因数,一个数的倍数的特点

②结合集合图,说一说整除与除尽的关系

3、借助算式整理能被2、3、5整除的数的特征及奇数、偶数的概念。

(1)借助算式整理特征

①结合305=6说一说能被2、3、5整除,能被2和5整除,能被2和3整除,能被3和5整除的特征。

②练习:用0、1、8三个数组成数

a.能同时被2、5、3整除的最大三位数

b.能同时被2、5、3整除的最小三位数

c.从这三个数中任选数组成新数,看看这个数还能同时被谁整除

(2)回忆奇数、偶数的概念。

①问:能被2整除的数又叫什么数?

不能被2整除的数又叫什么数?

②练习:读出黑板上算式中的奇数、偶数。

4、借助情境,整理质数、合数、质因数、分解质因数的概念。

(1)提出要求:用黑板上算式中的数,按要求填图。

只有两个约数有两个以上的约数

(2)提问:两幅图中的数各有什么特点?叫什么数?

(3)强化练习

①学号是奇数的同学请起立;

②学号是偶数的同学请起立;

③问:同学们都站起来了,说明什么?

④学号是质数的同学请坐;

⑤学号是合数的同学请坐;

⑥问:你怎么还站着?(1号)说明什么?

(4)利用选择整理质因数、分解质因数的概念。

①出示:下面四个答案中,哪个是把30分解质因数?

30=235130=65235=3030=235

②什么叫分解质因数?

③问:其它为什么不是分解质因数?

④问:2、3、5是30的什么数?

5、利用填图整理公倍数、公因数、最大公因数、最小公倍数、互质。

(1)出示

①1,2,4②4③24④24,48,72

(2)按要求填

(3)问:重叠部分应填什么数?你选哪个?

(4)问:24是8和12的什么?4呢?

(5)第④组后面为什么有省略号?第①组后面为什么没有?

(6)问:如果两个数的最大公约数是1,这两个数就叫做?

(7)举例:什么是互质数?

(二)结合板书,整理概念,形成网络图。(完成板书)

二、分层练习,巩固知识。(投影出示)

1、判断

(1)所有的奇数都是质数。()

(2)自然数不是质数,就是合数。()

2、填空

三个连续的奇数和是183,其中最小的一个奇数是()

两个质数的乘积是94,这两个质数的和是()

在三个连续的自然数中,合数的个数最少有()

3、解决实际问题

洪山小学五年级有100人,今年4月30日体育节,要选部分学生参加队列表演,要求分4人一组,6人一组或者8人一组,都能恰好分完。参加队列表演的学生最多能选多少人?

三、小数、分数、百分数的互化

1、练习引入

在、3.3、33.3%、0.四个数中,最大的是();0.、0.5、5.4%、、0.54按从小到大的顺序排列为()。

提问:如何进行大小比较?

2、学生汇报方法,并引入:分数、小数、百分数间可以进行互相转化。转化方法是什么?(请自己试着总结)

3、总结:板书

四、知识应用

(1)把35%的%去掉,原数就()。

(2)在五折,0.56,0.55,这几个数中,最大的是(),最小的是()。

(3)如果>>,那么在()内可以填的自然数有()。

(4)小数2.995精确到0.01,正确的答案是()。

(5)一个三位小数用四舍五入法取近似值是8.30,这个三位数最大的是(),最小的是()。

五、课后检测题目

(1)一个多位数,省略万位后面的的尾数约是6万,估计这个多位数在省略前最大可能是(),最小可能是()。

(2)一堆糖果,如果平均分给4个小朋友,还剩3块;如果平均分给5个小朋友,还缺1块;如果平均分给6个小朋友,还缺1块,这堆糖果至少有多少块?

板书设计:

数的认识(二)

分数的基本性质

分数、小数的基本性质

小数的基本性质

数的认识什么是倍数?什么是因数?

2、3、5倍数的特征

倍数和因数什么是质数?什么是合数?

公因数与公倍数。

课后反思:

本节课的教学内容是让学生重温小学阶段有关分数、小数的基本性质、数的整除的有关知识进行系统整理。在教学中,以学生为主体,教师为主导,训练为主线。先让学生回忆,配合相关的练习题,让学生进行训练,加深学生的理解

正比例、反比例的复习


相信很多老师都希望自己的课堂上同学们能够积极的与自己互动。有的老师会在很久之前就精心制作一份教学计划。这样可以让同学们很容易的听懂所讲的内容,那么优秀的教案是怎么样的呢?下面是小编为大家整理的“正比例、反比例的复习”,仅供参考,希望能为您提供参考!

教学时,先让学生回忆正比例意义、反比例意义,说一说如何判定两种量成什么关系?然后出示教材中的两个购买方便面的表,观察数据,同桌互相说一说数量的变化情况,并判断两个表中的两个量分别成什么比例。接着提出议一议的三个问题:当总价一定时,单价和数量成什么关系?当数量一定时,总价和单价成什么关系?当单价一定时,总价和数量成什么关系?讨论总价、数量、单价这几个量在某一个量一定的情况下,其他两个量成什么比例关系?并说出判断的理由。在学生对议一议的三个问题回答完后,教师可以引导学生展开深入的讨论,找出正比例和反比例的异同点。

归纳出两者的相同点:

①正比例和反比例都反映的是两种相关联的量之间的关系;

②都是一种量随另一种量的变化而变化。然后引导学生从不同角度找出正比例和反比例的区别,一方面可引导学生根据正、反比例的意义区别:在正比例中,两个相对应的数的比的比值一定,在反比例中则是两个相对应数的乘积一定。另一方面还可以引导学生根据正、反比例中两个相对应的量的变化趋势去揭示其区别:在正比例中,一个数扩大或缩小几倍,另一个数也跟着扩大(或缩小)相同的倍数;在反比例中,一个数扩大(或缩小)几倍,另一个数反而缩小(或扩大)相同的倍数。也可以简单总结为:两种相关联的量,同大同小,比值一定,成正比例;一大一小,乘积一定,成反比例。对怎样判断两种量成正比例或成反比例的问题,教学时可以鼓励学生总结自己判断时所采用的方法,先让学生在小组内总结与交流,然后可进行全班交流。议一议的第2题,教学时注意引导学生根据正比例和反比例的意义去判断,通过判断促进学生对正、反比例意义的理解。最后介绍正比例、反比例的字母表达式。如果用字母x和y表示两种相关联的量,用k表示一定的量,正比例、反比例的关系可以分别用下面的式子表示。正比例:yx=k,反比例:xy=k。教师还可以和学生说明:其实用什么字母表示三种量都可以,表示的意义都相同。一般在表示固定规律的时候,我们可以把字母规定下来。方便将来的学习和与人交流。

《比例的基本性质》一文就此结束,希望能帮助您在小学教学中起到作用,如还需更多,请关注我们的“小学比例教案”专题。

文章来源:http://m.jab88.com/j/2852.html

更多

最新更新

更多