88教案网

作为杰出的教学工作者,能够保证教课的顺利开展,作为高中教师就要早早地准备好适合的教案课件。教案可以让学生能够听懂教师所讲的内容,使高中教师有一个简单易懂的教学思路。你知道如何去写好一份优秀的高中教案呢?以下是小编为大家精心整理的“圆周运动”,仅供参考,欢迎大家阅读。

5.4圆周运动学案(人教版必修2)

1.描述圆周运动的物理量

物理量

物理意义

定义、公式、单位

线速度

描述物体沿圆周____方向运动的快慢程度

①物体沿圆周通过的____与时间的比值

②v=________

③单位:m/s

④方向:沿____________方向

角速度

描述物体绕圆心________的快慢

①连结运动质点和圆心的半径扫过的________与时间的比值

②ω=________

③单位:rad/s

周期

和转速

描述匀速圆周运动的______

①周期T:做匀速圆周运动的物体,转过____所用的时间,公式T=________,单位:____

②转速n:物体单位时间内所转过的____,单位:____、____2.当物体做匀速圆周运动时,线速度大小处处________,方向沿圆周________方向,是一种变速运动.

3.线速度和周期的关系式是________,角速度和周期的关系式是________,线速度和角速度的关系式是________,频率和周期的关系式是________.

4.在分析传动装置的各物理量之间的关系时,要先明确什么量是相等的,什么量是不等的,在通常情况下:

(1)同轴的各点角速度、转速、周期________,线速度与半径成________.

(2)在不考虑皮带打滑的情况下,皮带上各点与传动轮上各点线速度大小________,而角速度与半径成________.

5.下列关于匀速圆周运动的说法中,正确的是()

A.线速度不变B.角速度不变

C.加速度为零D.周期不变

6.关于匀速圆周运动的角速度和线速度,下列说法正确的是()

A.半径一定,角速度和线速度成反比

B.半径一定,角速度和线速度成正比

C.线速度一定,角速度和半径成反比

D.角速度一定,线速度和半径成正比

【概念规律练】

知识点一匀速圆周运动的概念

1.对于做匀速圆周运动的物体,下列说法中错误的是()

A.相等的时间内通过的路程相等

B.相等的时间内通过的弧长相等

C.相等的时间内运动的位移相同

D.相等的时间内转过的角度相等

知识点二描述圆周运动的物理量之间的关系

图1

2.如图1所示,圆环以直径AB为轴匀速转动,已知其半径R=0.5m,转动周期T=4s,

求环上P点和Q点的角速度和线速度.

知识点三传动装置问题的分析

3.如图2所示为某一皮带传动装置.主动轮的半径为r1,从动轮的半径为r2.已知主动

轮做顺时针转动,转速为n,转动过程中皮带不打滑.下列说法正确的是()

图2

A.从动轮做顺时针转动B.从动轮做逆时针转动

C.从动轮的转速为nD.从动轮的转速为n

4.如图3所示的皮带传动装置(传动皮带是绷紧的且运动中不打滑)中,主动轮O1的半

径为r1,从动轮O2有大小两轮且固定在同一个轴心O2上,半径分别为r3、r2,已知r3

=2r1,r2=1.5r1,A、B、C分别是三个轮边缘上的点,则当整个传动装置正常工作时,

A、B、C三点的线速度之比为________;角速度之比为________;周期之比为________.

图3

【方法技巧练】

圆周运动与其他运动结合的问题的分析技巧

5.

图4

如图4所示,半径为R的圆盘绕垂直于盘面的中心轴匀速转动,在其正上方h处沿OB

方向水平抛出一小球,要使球与盘只碰一次,且落点为B,则小球的初速度v=________,

圆盘转动的角速度ω=________.

6.如图5所示,

图5

有一直径为d的纸制圆筒,使它以角速度ω绕轴O匀速转动,然后使子弹沿直径穿过圆

筒.若子弹在圆筒旋转不到半周时,就在圆筒上先后留下a、b两个弹孔,已知aO、bO

的夹角为φ,求子弹的速度.

参考答案课前预习练jaB88.COm

1.切线①弧长②④圆弧的切线转动①角度②快慢程度①一周s②圈数r/sr/min

2.相等切线

3.v=ω=v=rωf=

4.(1)相等正比(2)相等反比

5.BD[匀速圆周运动的角速度是不变的,线速度的大小不变,但方向时刻变化,故匀速圆周运动的线速度是改变的,因而加速度不为零.]

6.BCD[由v=ωr,知B、C、D正确.]

课堂探究练

1.C[匀速圆周运动在任意相等的时间内通过的弧长相等,通过的角度相等,但相等时间段内对应的位移方向不同,故C错.]

2.1.57rad/s1.57rad/s

0.39m/s0.68m/s

解析P点和Q点的角速度相同,其大小是

ω==rad/s=1.57rad/s

P点和Q点绕AB做圆周运动,其轨迹的圆心不同.P点和Q点的圆半径分别为

rP=R·sin30°=R,rQ=R·sin60°=R.

故其线速度分别为

vP=ω·rP≈0.39m/s,vQ=ω·rQ=0.68m/s.

点评解决此类题目首先要确定质点做圆周运动的轨迹所在的平面及圆心的位置,从而确定半径,然后由v、ω的定义式及v、ω、R的关系式来计算.

3.BC[主动轮顺时针转动时,皮带带动从动轮逆时针转动,A项错误,B项正确;由于两轮边缘线速度大小相同,根据v=2πrn,可得两轮转速与半径成反比,所以C项正确,D项错误.]

4.4∶4∶32∶1∶11∶2∶2

解析因同一轮子(或固定在同一轴心上的两轮)上各点的角速度都相等,皮带传动(皮带不打滑)中与皮带接触的轮缘上各点在相等时间内转过的圆弧长度相等,其线速度都相等.故本题中的B、C两点的角速度相等,即

ωB=ωC①

A、B两点的线速度相等,即vA=vB②

因A、B两点分别在半径为r1和r3的轮缘上,r3=2r1.

故由ω=及②式

可得角速度ωA=2ωB③

由①③式可得A、B、C三点角速度之比为

ωA∶ωB∶ωC=2∶1∶1④

因B、C分别在半径为r3、r2的轮缘上,

r2=r1=r3

故由v=rω及①式

可得线速度vB=vC⑤

由②⑤式可得A、B、C三点线速度之比为

vA∶vB∶vC=4∶4∶3⑥

由T=及④式可得A、B、C三点的周期之比为

TA∶TB∶TC=1∶2∶2.⑦

点评①同一圆盘上的各点角速度和周期相同.②皮带(皮带不打滑)或齿轮传动的两圆盘,与皮带相接触的点或两圆盘的接触点线速度相同.

5.R2nπ(n=1,2,3,…)

解析小球做平抛运动,在竖直方向上有h=gt2,则运动时间t=.

又因为水平位移为R,所以小球的初速度

v==R.

在时间t内圆盘转过的角度θ=n·2π(n=1,2,3,…)

又因为θ=ωt,则圆盘转动的角速度ω===2nπ(n=1,2,3,…)

方法总结由于圆周运动的周期性,解答时要注意各种解的可能性.与平抛运动的结合也是从时间上找突破口,兼顾位移关系.

6.

解析子弹从a穿入圆筒到从b穿出圆筒,圆筒旋转不到半周,故圆筒转过的角度为π-φ,则子弹穿过圆筒的时间为t=.

在这段时间内子弹的位移为圆筒的直径d,则子弹的速度为v==.

方法总结两种运动的结合,其结合点是时间,抓住时间的等量关系,此题就可迎刃而解.

相关推荐

圆周运动学案


俗话说,凡事预则立,不预则废。高中教师要准备好教案,这是教师工作中的一部分。教案可以让学生能够在课堂积极的参与互动,帮助高中教师有计划有步骤有质量的完成教学任务。那么怎么才能写出优秀的高中教案呢?小编经过搜集和处理,为您提供圆周运动学案,供您参考,希望能够帮助到大家。

A组
一、选择题
1.如果把地球近似地看成一个球体,在北京和广州各放一个随地球自转做匀速圆周运动的物体,则这两个物体具有相同大小的是()
A.线速度B.角速度C.加速度D.周期
2.关于铁道转弯处内外铁轨间的高度关系,下列说法中正确的是()
A.内、外轨一样高以防列车倾倒造成翻车事故
B.外轨比内轨略高,这样可以使列车顺利转弯,减小车轮与铁轨的间挤压
C.因为列车转弯处有向内倾倒的可能,故一般使内轨高于外轨,以防列车翻倒
D.以上说法均不对
3.时钟上分针的端点到转轴的距离是时针端点到转轴的距离的1.5倍,则()
A.分针的角速度是时针角速度的1.5倍
B.分针的角速度是时针角速度的60倍
C.分针端点的线速度是时针端点的线速度的18倍
D.分针端点的线速度是时针端点的线速度的90倍
4.由于地球自转,位于赤道上的物体1与位于北纬60°的物体2相比较()
A.它们的线速度大小之比v1:v2=2:1
B.它们的角速度大小之比ω1:ω2=2:1
C.它们的向心加速度大小之比a1:a2=2:1
D.它们的向心加速度大小之比a1:a2=4:1
5.某圆拱桥的最高点所能承受的最大压力为4.5×104N,桥的半径为16m,一辆质量为5.0t的汽车要想通过此桥,它过最高点的速度不得小于()
A.16m/sB.17.4m/sC.12.6m/sD.4m/s
6.汽车在水平地面上转弯,地面对车的摩擦力已达到最大值。当汽车的速率加大到原来的二倍时,若使车在地面转弯时仍不打滑,汽车的转弯半径应()
A.增大到原来的二倍B.减小到原来的一半
C.增大到原来的四倍D.减小到原来的四分之一
7.在长绳的一端系一个质量为m的小球,绳的长度为L,能够承受的最大拉力为7mg。用绳拉着小球在竖直面内做圆周运动,小球到达最低点的最大速率应为()
A.B.C.D.
8.杂技表演中的水流星,能使水碗中的水在竖直平面内做圆周运动,欲使水碗运动到最高点处而水不流出,应满足的条件是()
A.B.
C.D.(n为转速)

二、填空题
9.如图所示的皮带传动装置中,左边是主动轮,右边是一个轮轴,RA:RC=1:2,RA:RB=2:3。假设在传动过程中皮带不打滑,则皮带轮边缘上的A、B、C三点的角速度之比是________;线速度之比是________;向心加速度之比是________。
10.雨伞绕竖直轴以角速度ω匀速转动,设雨伞伞面是水平的,距地面高为h,伞面的半径为R,落在伞面上的雨滴缓慢地流到边缘,雨滴从伞面边缘飞出后落到地面上形成一个大圆圈,则雨滴形成的圆的半径是________。

三、计算题
11.一架飞机在竖直平面内以200m/s的速度做半径为500m的匀速圆周运动,一个质量为50kg的飞行员在最高点和最低点受到的座椅的压力各是多少大?

12.如图所示,长度为L=1.0m的绳,系一小球在竖直面内做圆周运动,小球的质量为M=5kg,小球半径不计,小球在通过最低点时的速度大小为v=20m/s,试求:
(1)小球在最低点所受绳的拉力;
(2)小球在最低点的向心加速度。

13.内壁光滑,两端封闭的试管长5cm,内有质量为1g的小球,试管一端装在水平转轴O上,在竖直面内绕O做匀速转动。已知转动过程中,试管底部受到小球压力的最大值是最小值的3倍,求转动的角速度。
B组

1.如图所示,一个内壁光滑的圆锥筒的轴线垂直于水平面,圆锥筒固定不动,两个质量相同的小球A和B紧贴着内壁分别在图中所示的水平面内做匀速圆周运动,则()
A.球A的线速度必定大于球B的线速度
B.球A的角速度必定小于球B的角速度
C.球A的运动周期必定小于球B的运动周期
D.球A对筒壁的压力必定大于球B对筒壁的压力
2.质量为m的小球用长为L的细绳悬挂于O点,在O点正下方处有一钉子A,把小球拉起到细绳成水平位置后释放,在悬绳碰到钉子的瞬间()
A.小球的线速度突然增大
B.小球的角速度突然增大
C.小球的向心加速度突然增大
D.悬绳的拉力突然增大
3.如图所示,在光滑的水平面上放一个原长为L的轻质弹簧,它的一端固定,另一端系一个小球。当小球在该平面上做半径为2L的匀速圆周运动时,速率为v;当小球作半径为3L的匀速圆周运动时,速率为v。设弹簧总处于弹性限度内,则v:v等于
A.:B.2:3C.1:3D.1:
4.在某变速箱中有甲、乙、丙三个齿轮,如图所示,其半径分别为r1、r2、r3,若甲轮的角速度为ω1,则丙轮的角速度为()
A.B.
C.D.
5.一个质量为m的小球固定在一根轻杆的一端,在竖直平面内做匀速圆周运动。当小球过最高点时,杆受到的压力,则当小球过最低点时,杆受到的为________力(填“压力”或“拉力”),大小为_____________。
6.在匀速转动的水平圆盘边缘处放着一个质量为0.1kg的小金属块,圆盘的半径为20cm,金属块和圆盘间的摩擦因数为0.2。为不使金属块从圆盘上掉下来,圆盘转动的最大角速度为________rad/s。
7.如图,细线的一端固定,另一端系着小球,小球在如图所示的平面内做匀速圆周运动,细线与竖直方向的夹角为θ,细线长为l,小球的质量为m。求小球的角速度和细线所受拉力大小。

8.如图所示,支架质量为M,始终静止在水平地面上。转轴O上悬挂一个质量为m的小球,细绳长度为L。
(1)小球从悬绳处于水平时无初速度释放。求小球运动到最低点时地面对支架的支持力多大?
(2)若使小球在竖直面上做圆周运动,到达最高点时恰使支架对地面无压力,那么小球在最高点时的速度多大?

9.如图所示的装置可以测量弹簧枪发射子弹的出口速度。在一根水平轴MN上相隔L安装两个平行的薄圆盘,它们可以绕水平轴MN一起匀速运动。弹簧枪紧贴左盘沿水平方向在水平轴MN的正上方射出一颗子弹,子弹穿过两个薄圆盘,并在圆盘上留下两个小孔A和B。若测得两个小孔距轴心的距离分别为RA和RB,它们所在的半径按转动方向由B到A的夹角为φ(φ为锐角)。由此去计算弹簧枪发射的子弹的出口速度以及圆盘绕MN轴匀速转动的角速度分别是多少?

圆周运动检测题参考答案
1.3:2:3;1:1:2;3:2:62.BD3.C4.AC5.227
6.D7.3.168.C9.D10.ABCD11.BCD12.拉,
13.20rad/s14.3500N,4500N15.D16.R
17.,(2kp+f)k=0、1、2
18.N=3mg+Mg,

2.1圆周运动


2.1圆周运动

一、课标要求

(一)知识与技能

1.了解物体做圆周运动的特征

2.理解线速度、角速度和周期的概念,知道它们是描述物体做匀速圆周运动快慢的物理量,会用它们的公式进行计算。

3.理解线速度、角速度、周期之间的关系:水滴做平抛运动的水平射程为x=v0t=ω·r.如图所示为俯视图,表示水滴从a点甩离伞面,落在地面上的b点;O是转动轴(圆心),可见水滴落在地面上形成的圆的半径为R=.【说明】这是一个涉及匀速圆周运动和平抛运动的综合性题目,正确解答该题的关键有三点:一是知道水滴离开伞缘时的速度方向与伞缘相切,且线速度的大小与伞缘的线速度大小相同;二是认识到水滴离开伞缘后做平抛运动;三是正确画出示意图,将三维空间的运动情况简化为平面图形.画示意图往往能帮助形成清晰的物理情景,若能养成画示意图的良好习惯,对于提高解题能力是十分有益的.

生活中的圆周运动


总课题曲线运动总课时第10课时
课题生活中的圆周运动课型新授课



标知识与技能
1.能定性分析火车转弯外轨比内轨高的原因
2.能定量分析汽车过拱形桥最高点与凹形桥最低点的压力问题
3.知道航天器中的失重的本质
4知道离心运动及产生的条件,了解离心运动的应用和防止
过程与方法
1.通过对匀速圆周运动的实例分析,渗透理论联系实际的观点,提高学生分析和解决问题的能力.
2.通过匀速圆周运动的规律也可以在变速圆周运动中使用,渗透特殊性和一般性之间的辩证关系,提高学生的分析能力.
3.通过对离心现象的实例分析,提高学生综合应用知识解决问题的能力.
情感、态度与价值观
1.通过对几个实例的分析,使学生明确具体问题必须具体分析,理解物理与生活的联系,学会用合理、科学的方法处理问题..
教学
重点1.理解向心力是一种效果力.
2.在具体问题中能找到是谁提供向心力的,并结合牛顿运动定律求解有关问题.
教学
难点1.具体问题中向心力的来源.
2.关于对临界问题的讨论和分析.
3.对变速圆周运动的理解和处理.
学法
指导自主阅读、合作探究、精讲精练、
教学
准备
教学
设想预习导学→学生初步了解本节内容→合作探究→突出重点,突破难点→典型例题分析→巩固知识→达标提升
教学过程
师生互动补充内容或错题订正
任务一预习导学
(认真阅读教材p23-p25,独立完成下列问题)
一、车辆转弯问题的研究
1、火车转弯:
(1)内外轨高度相同时,转弯所需的向心力由_____________力提供。
(2)外轨高度高于内轨,火车按设计速度行驶时,火车转弯所需的向心力由________________提供。
如图示知h,L,转弯半径R,车轮对内外轨都无压力,质量为m的火车运行的速率应该多大?

思考与交流1、如果超速行驶会怎么样?如果减速行驶呢?
2、各种车辆在公路上行驶,向心力怎样提供?
二、拱形桥
问题情境:质量为m的汽车在拱形桥上以速度t/行驶,若桥面的圆弧半径为只,试画出受力分析图,分析汽车通过桥的最高点时对桥的压力.
(请学生独立画出汽车的受力图,推导出汽车对桥面的压力.)
引导:请同学们进一步考虑当汽车对桥的压力刚好减为零时,汽车的速度有多大.当汽车的速度大于这个速度时,会发生什么现象?

合作交流:下面再一起共同分析汽车通过凹形桥最低点时,汽车对桥的压力比汽车的重力大些还是小些?

三、航天器中的失重现象
从刚才研究的一道例题可以看出,当汽车通过拱形桥凸形桥面顶点时,如果车速达到一定大小,则可使汽车对桥面的压力为零.如果我们把地球想象为特大的“拱形桥”,则情形如何呢?会不会出现这样的情况;速度达到一定程度时,地面对车的支持力是零?这时驾驶员与座椅之间的压力是多少?驾驶员躯体各部分之间的压力是多少?他这时可能有什么感觉?
(学生独立分析以上提出的问题,并在练习本上画出受力分析图,尝试解答.)

引导:假设宇宙飞船质量为M,它在地球表面附近绕地球傲匀逮圆周运动,其轨道半径近似等于地球半径R,航天员质量为m,宇宙飞船和航天员受到的地球引力近似等于他们在地面上的重力.试求座舱对宇航员的支持力.此时飞船的速度多大?通过求解.你可以得出什么结论?

四、离心运动
引导:做圆周运动的物体一旦失去向心力的作用,它会怎样运动呢?如果物体受的合力不足以提供向心力,它会怎样运动呢?发表你的见解并说明原因.
合作交流:请同学们结合生活实际,举出物体做离心运动的例子.在这些例子中,离心运动是有益的还是有害的?你能说出这些例子中离心运动是怎样发生的吗?
任务二例题分析

例:一辆质量m=2.0t的小轿车,驶过半径R=90m的一段圆弧形桥面,重力加速度g=10m/s2.求:
(1)若桥面为凹形,汽车以20m/s的速度通过桥面最低点时,对桥面压力是多大?
(2)若桥面为凸形,汽车以l0m/s的速度通过桥面最高点时,对桥面压力是多大?
(3)汽车以多大速度通过凸形桥面顶点时,对桥面刚好没有压力

任务三达标提升
1.火车在转弯行驶时,需要靠铁轨的支持力提供向心力。下列关于火车转弯的说法中正确的是()
A.在转弯处使外轨略高于内轨B.在转弯处使内轨略高于外轨
C.在转弯处使内轨、外轨在同一水平高度
D.在转弯处火车受到的支持力竖直向上
2.汽车以—定速率通过拱桥时,下列说法中正确的是()
A.在最高点汽车对桥的压力大于汽车的重力
B.在最高点汽车对桥的压力等于汽车的重力
C.在最高点汽车对桥的压力小于汽车的重力
D.汽车以恒定的速率过桥时,汽车所受的合力为零
3.关于铁道转弯处内外铁轨间有高度差,下列说法中正确的是()
A.可以使火车顺利转弯,减少车轮与铁轨间的摩擦
B.火车转弯时,火车的速度越小,车轮对内侧的铁轨测侧向压力越小
C.火车转弯时,火车的速度越大,车轮对外侧的铁轨测侧向压力越大
D.外铁轨略高于内铁轨,使得火车转弯时,由重力和支持力的合力提供了部分向心力
4.如图1所示,在高速公路的拐弯处,路面筑得外高内低,即当车向左拐弯时,司机右侧的路面比左侧的要高一些,路面与水平面间的夹角为θ。设拐弯路段是半径为R的圆弧,要使车速为v时车轮与路面之间的横向(即垂直于前进方向)摩擦力等于0,θ应等于()
A.B.
C.D.
5.在下列情况中,汽车对凸形桥顶部的压力最小的是()
A.以较小的速度驶过半径较大的桥;
B.以较小的速度驶过半径较小的桥;
C.以较大的速度驶过半径较大的桥:
D.以较大的速度驶过半径较小的桥.
6.一辆汽车匀速通过一座圆形拱桥后,接着又匀速通过圆弧形凹地.设圆弧半径相等,汽车通过桥顶A时,对桥面的压力NA为车重的一半,汽车在弧形地最低点B时,对地面的压力为NB,则NA:NB为.
7.如图所示,长度为L=1.0m的绳,系一小球在竖直面内做圆周运动,小球的质量为M=5kg,小球半径不计,小球在通过最低点的速度大小为v=20m/s,试求:
(1)小球在最低点所受绳的拉力
(2)小球在最低的向心加速度

匀速圆周运动


教学目标

知识目标
1、认识匀速圆周运动的概念.
2、理解线速度、角速度和周期的概念,掌握这几个物理量之间的关系并会进行计算.

能力目标
培养学生建立模型的能力及分析综合能力.

情感目标
激发学生学习兴趣,培养学生积极参与的意识.

教学建议

教材分析
教材首先明确要研究圆周运动中的最简单的情况,匀速圆周运动,接着从描述匀速圆周运动的快慢的角度引入线速度、角速度的概念及周期、频率、转速等概念,最后推导出线速度、角速度、周期间的关系,中间有一个思考与讨论做为铺垫.

教法建议
关于线速度、角速度、周期等概念的教学建议是:通过生活实例(齿轮转动或皮带传动装置)或多媒体资料,让学生切实感受到做圆周运动的物体有运动快慢与转动快慢及周期之别,有必要引入相关的物理量加以描述.学习线速度的概念,可以根据匀速圆周运动的概念(结合课件)引导学生认识弧长与时间比值保持不变的特点,进而引出线速度的大小与方向.同时应向学生指出线速度就是物体做匀速圆周运动的瞬时速度.学习角速度和周期的概念时,应向学生说明这两个概念是根据匀速圆周运动的特点和描述运动的需要而引入的.即物体做匀速圆周运动时,每通过一段弧长都与转过一定的圆心角相对应,因而物体沿圆周转动的快慢也可以用转过的圆心角与时间t比值来描述,由此引入角速度的概念.又根据匀速圆周运动具有周期性的特点,物体沿圆周转动的快慢还可以用转动一圈所用时间的长短来描述,为此引入了周期的概念.讲述角速度的概念时,不要求向学生强调角速度的矢量性.在讲述概念的同时,要让学生体会到匀速圆周运动的特点:线速度的大小、角速度、周期和频率保持不变的圆周运动.
关于“线速度、角速度和周期间的关系”的教学建议是:结合课件引导学生认识到这几个物理量在对圆周运动的描述上虽有所不同,但它们之间是有联系的,并引导学生从如下思路理解它们之间的关系:

--方案
匀速圆周运动

教学重点:线速度、角速度、周期的概念

教学难点:各量之间的关系及其应用

主要设计:

一、描述匀速圆周运动的有关物理量.

(一)让学生举一些物体做圆周运动的实例.

(二)展示课件1、齿轮传动装置

课件2、皮带传动装置

为引入概念提供感性认识,引起思考和讨论

(三)展示课件3:质点做匀速圆周运动

可暂停.可读出运行的时间,对应的弧长,转过的圆心角,进而给出线速度、角速度、周期、频率、转速等概念.

二、线速度、角速度、周期间的关系:

(一)重新展示课件

1、齿轮传动装置.让学生体会到有些不同的点线速度大小相同,但角速度、周期不同,有些不同的点角速度、周期相同,但线速度大小不同;进而此导同学去分析它们之间的关系:

探究活动
观察与测量:请研究一下自行车飞轮与中轴轮盘通过链条的连接关系:测量一下各自的半径,并思考验证两轮的角速度关系,边缘点的线速度大小关系;有条件的话研究一下“变速自行车”的变速原理.


文章来源:http://m.jab88.com/j/22494.html

更多

最新更新

更多