不等式的解法举例教学目标
(1)能熟练运用不等式的基本性质来解不等式;
(2)在巩固一元一次不等式和一元一次不等式组、一元二次不等式的解法基础上,把握分式不等式、高次不等式的解法;
(3)能将较复杂的绝对值不等式转化为简单的绝对值不等式、一元二次不等式(组)来解;
(4)通过解不等式,要向学生渗透转化、数形结合、换元、分类讨论等数学思想;
(5)通过解各种类型的不等式,培养学生的观察、比较及概括能力,培养学生的勇于探索、敢于创新的精神,培养学生的学习爱好.
教学建议
一、知识结构
本节内容是在高一研究了一元一次不等式,一元二次不等式,简单的绝对值不等式及分式不等式的解法基础上,进一步深入研究较为复杂的绝对值不等式及分式不等式的解法.求解的基本思路是运用不等式的性质和有关定理、法则,将这些不等式等价转化为一次不等式(组)或二次不等式的求解,具体地说就是含有绝对值符号的不等式去掉绝对值符号,无理不等式有理化,分式不等式整式化,高次不等式一次化.其基本模式为:
;
;
;
二、重点、难点分析
本节的重点和一个难点是不等式的等价转化.解不等式与解方程有类似之处,但其二者的区别更要加以重视.解方程所产生的增根是可以通过检验加以排除的,由于不等式的解集一般都是无限集,假如产生了增根却是无法检验加以排除的,所以解不等式的过程一定要保证同解,所涉及的变换一定是等价变换.在学生学习过程中另一个难点是不等式的求解.这个不等式其实是一个不等式组的简化形式,当为一元一次式时,可直接解这个不等式组,但当为一元二次式时,就必须将其改写成两个一元二次不等式的形式,分别求解在求交集.
三、教学建议
(1)在学习新课之前一定要复习旧知识,包括一元二次不等式的解法,简单的绝对值不等式的解法,简单的分式不等式的解法,不等式的性质,实数运算的符号法则等.非凡是对于基础比较差的学生,这一环节不可忽视.
(2)在研究不等式的解法之前,应先复习解不等式组的基本思路以及不等式的解法,然后提出如何求不等式的解集,启发学生运用换元思想将替换成,从而转化一元二次不等式组的求解.
(3)在教学中一定让学生充分讨论,明确不等式组“”中的两个不等式的解集间的交并关系,“”两个不等式的解集间的交并关系.
(4)建议表述解不等式的过程中运用符号“”.
(5)建议在研究分式不等式的解法之前,先研究简单高次不等式(一端为0,另一端是若干个一次因式乘积形式的整式)的解法.可由学生讨论不同解法,师生共同比较诸法的优劣,最后落实到区间法.
(6)分式不等式与高次不等式的等价原因,可以认为是不等式两端同乘以正数,不等号不改变方向所得;也可以认为是与符号相同所得.
(7)分式不等式求解时不能盲目地去分母,但当分母恒为正数(如分母是)时,应将其去掉,从而使不等式化简.
(8)建议补充简单的无理不等式的解法,其中为一次式.教学中先由学生研究探索得到求解的基本思路及方法,再由教师概括总结,得出结论后一定要强调不等号的方向对的影响,即保证了,而却不能保证这一点,所以要分和两种情况进行讨论.
(9)求解不等式不仅要重视思路的理解,更要重视表述的规范,作为教师应给学生做出示范,学生通过模拟把握书写格式,这样才有可能保证运算的合理性与结果的准确性.
教学设计示例
分式不等式的解法
教学目标
1.把握分式不等式向整式不等式的转化;
2.进一步熟悉并把握数轴标根法;
3.把握分式不等式基本解法.
教学重点难点
重点是分式不等式解法
难点是分式不等式向整式不等式的转化
教学方法
启发式和引导式
教具预备
三角板、幻灯片
教学过程
1.复习回顾:
前面,我们学习了含有绝对值的不等式的基本解法,还了解了数轴标根法的解题思路,本节课,我们将继续研究分式不等式的解法.
2.讲授新课:
例3解不等式0.
分析:这是一个分式不等式,其左边是两个关于x的二次三项式的商,根据商的符号法则,它可以化成两个不等式组:
因此,原不等式的解集就是上面两个不等式组的解集的并集,此种解法从课本可以看到.
另解:根据积的符号法则,可以将原不等式等价变形为(x2-3x+2)(x2-2x-3)0
即(x+1)(x-1)(x-2)(x-3)0
令(x+1)(x-1)(x-2)(x-3)=0
可得零点x=-1或1,或2或3,将数轴分成五部分(如图).
由数轴标根法可得所求不等式解集为:
{x|-1x1或2x3}
说明:(1)让学生注重数轴标根法适用条件;
(2)让学生思考≤0的等价变形.
例4解不等式1
分析:首先转化成右端为0的分式不等式,然后再等价变形为整式不等式求解.
解:原不等式等价变形为:
-10
通分整理得:0
等价变形为:(x2-2x+3)(x2-3x+2)0
即:(x+1)(x-1)(x-2)(x-3)0
由数轴标根法可得所求不等式解集为:
{x|x-1或1x2或x3}
说明:此题要求学生把握较为一般的分式不等式的转化与求解.
3.课堂练习:
课本P19练习1.
补充:(1)≥0;
(2)x(x-3)(x+1)(x-2)≤0.
课堂小结
通过本节学习,要求大家在进一步把握数轴标根法的基础上,把握分式不等式的基本解法,即转化为整式不等式求解.
课后作业
习题6.43,4.
板书设计
教学后记
探究活动
试一试用所学知识解下列不等式:
(1);
(2);
(3).
答案:(1)原式
观察这个不等式组,由于要求,同时要求,所以①式可以不解.
∴原式
如下图
∴
(2)分析当时,不等式两边平方,当时,在有意义的前提下恒成立.
原式(Ⅰ)
或(Ⅱ)
由于同时满足(2)、(3)式,所以(1)式免解.
∴(Ⅰ)式
(Ⅱ)式.
综合(Ⅰ)、(Ⅱ),得.
(3)分析当时,不等式两边平方,当时,原式解集为.
原式
观察不等式组,设有可以免解的不等式.
一名优秀的教师在教学方面无论做什么事都有计划和准备,作为教师就要精心准备好合适的教案。教案可以让上课时的教学氛围非常活跃,帮助教师营造一个良好的教学氛围。那么,你知道教案要怎么写呢?下面是小编为大家整理的“课题:不等式解法举例(第四课时)”,相信您能找到对自己有用的内容。
课题:不等式解法举例(第四课时)授课教师:石家庄市第一中学张海江
教学目的
1.掌握指数与对数不等式的解法;2.掌握简单的无理不等式的解法。(例5以后可不讲)
教学难点
指数与对数不等式中单调性的使用
知识重点
指数与对数不等式的解法
教学过程
教学方法和手段
引入
复习前面学过的不等式的解法概念分析及例题讲解
一.指数和对数不等式指数不等式和对数不等式一般情况下是利用函数的单调性或其他相关变换思想将指数不等式和对数不等式的求解问题转化为代数不等式问题来解。解指数不等式和对数不等式除了应用不等式的基本解法外,还要应用指数、对数函数的性质。【例1】解下列不等式:(1)(2)答案:(1)(2)【例2】解下列不等式:(1)(2)答案:(1)当时,不等式的解集为(2)当时,不等式的解集为小结:例1,例2是利用指数和对数函数的单调性解题。【例3】解下列不等式:(1)(2)答案:(1)(2)当a1时,解集为当0a1时,解集为小结:例3是利用代换法解题的。二.简单的无理不等式
1.形如不等式解法:【例4】解不等式解:>等价于即∴原不等式的解集是{x|x≥3}.小结:
小结与作业
课堂小结
1.解指数或对数不等式的方法:(1)利用单调性(2)利用代换2.简单无理不等式的解法。
本课作业
1.解不等式2.解不等式3.解不等式4.解不等式
课后反思
教案课件是每个老师工作中上课需要准备的东西,准备教案课件的时刻到来了。只有写好教案课件计划,才能规范的完成工作!你们会写适合教案课件的范文吗?下面是小编为大家整理的“含绝对值不等式的解法”,欢迎阅读,希望您能阅读并收藏。
选修4-5学案§1.2.2含绝对值不等式的解法姓名
☆学习目标:1.掌握一些简单的含绝对值的不等式的解法;
2.理解含绝对值不等式的解法思想:去掉绝对值符号,等价转化
知识情景:
1.绝对值的定义:,
2.绝对值的几何意义:
10.实数的绝对值,表示数轴上坐标为的点A
20.两个实数,它们在数轴上对应的点分别为,
那么的几何意义是.
3.绝对值三角不等式:
①时,如下图,易得:.
②时,如下图,易得:.
③时,显然有:.综上,得
定理1如果,那么.当且仅当时,等号成立.
定理2如果,那么.当且仅当时,等号成立.
建构新知:含绝对值不等式的解法
1.设为正数,根据绝对值的意义,不等式的解集是
它的几何意义就是数轴上的点的集合是开区间,如图所示.
2.设为正数,根据绝对值的意义,不等式的解集是
它的几何意义就是数轴上的点的集合是开区间,如图所示.
3.设为正数,则10.;
20.;
30.设,则.
4.10.≥;
20..
☆案例学习:
例1解不等式(1);(2).
例2解不等式(1);(2).
例3解不等式(1);(2).
例4(1)(北京春)若不等式的解集为,则实数等于()
(2)不等式,对一切实数都成立,则实数的取值范围是
例5已知,≤,且,求实数的范围.
选修4-5练习§1.2.2含绝对值不等式的解法姓名
解不等式
11.已知不等式的解集为,求的值
12.解关于的不等式()
13.解关于的不等式:①解关于的不等式;②
文章来源:http://m.jab88.com/j/21297.html
更多