88教案网

二次函数性质的再研究

一名优秀负责的教师就要对每一位学生尽职尽责,作为高中教师就要好好准备好一份教案课件。教案可以让学生能够在课堂积极的参与互动,帮助高中教师能够井然有序的进行教学。您知道高中教案应该要怎么下笔吗?为满足您的需求,小编特地编辑了“二次函数性质的再研究”,但愿对您的学习工作带来帮助。

§二次函数性质的再研究
一、内容与解析
(一)内容:二次函数性质的再研究。
(二)解析:二次函数问题多以解答题的一个部分出现,主要考查利用二次函数的图像和性质研究最值、值域、单调性、求函数值等问题.特别是定轴动区间或(动轴定区间)问题是高考考查的热点也是难点,学本节时应加强练习,并能灵活运用数形结合的思想来解决问题.
二、目标及其解析:
(一)教学目标
(1)掌握二次函数的求最值、对称性和平移以及二次函数解析式的求法和二次函数的应用;
(二)解析
(1)二次函数是一重要的函数,掌握好二次函数,对学生学习以后的函数有重要的启发作用,学习时,要特别注意其性质的把握,这里面一个最关键的是对称轴。
三、问题诊断分析
研究二次函数问题一定注意问题成立的范围,超出范围的解是无效的.因此研究二次函数时,不仅要关注函数的解析式还要关注函数的定义域,这一点对初学者来说,是很容易犯错的。
四、教学支持条件分析
在本节课一次递推的教学中,准备使用PowerPoint2003。因为使用PowerPoint2003,有利于提供准确、最核心的文字信息,有利于帮助学生顺利抓住老师上课思路,节省老师板书时间,让学生尽快地进入对问题的分析当中。
五、教学过程
(一)研探新知:
(1)1.二次函数的性质

图像
开口方向①②
顶点坐标③④
对称轴

单调区间单调递减区间
⑤调递增区间单调递增区间
⑥单调递减区间
最值当,取得最小值为
当,取得最大值为

2.二次函数性质的应用
①如何确定二次函数的性质
②如何确定二次函数在闭区间上的值域或最值
3.二次函数的三种解析式
①顶点式:y=a(x-h)2+k(a≠0),其中点(h,k)为顶点,对称轴为x=h.如果已知顶点,则可设成这种形式.
②交点式:y=a(x-x1)(x-x2)(a≠0),其中x1,x2是抛物线与x轴的交点的横坐标.如果已知二次函数与x轴的交点坐标,则可设成这种形式.
③一般式:y=ax2+bx+c(a≠0),若已知二次函数上任意3点坐标,可设为这种形式.
(二)类型题探究
题型一二次函数的最值与解析式问题
例1已知,函数、表示函数在区间上的最小值,最大值,求、表达式.
解析:由,知图像关于对称,结合图像知,
当,即时,;
而当,即时,;
当,即时,.
∴.
当,即时,;
当,即时,.
∴.
题型二二次函数的实际应用问题
例2某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?
解析:(1)当每辆车的月租金定为3600元时,未租出的车辆数为:,所以这时租出了88辆车;
(2)设每辆车的月租金定为元,则租赁公司的月收益为:

整理得:,
所以,当时,取最大值,其最大值为,
即当每辆车的月租金定为4050元时,租赁公司的月收益最大,最大收益为307050元.

设计意图:通过以上问题的探讨,使学生逐渐体会研究函数问题的一般方法。
(三)小结:
六、目标检测
一、选择题
1.二次函数y=ax2+bx+c满足f(4)=f(1),那么()
A.f(2)>f(3)B.f(2)<f(3)
C.f(2)=f(3)D.f(2)与f(3)的大小关系不能确定
1.C解析:函数对称轴两侧的单调性与二次项系数的正负有关,结合对称轴的位置即可得到答案.
2.一元二次方程有一个正实数根和一个负实数根,则a的范围是()
A.B.C.D.
2.C解析:方程△=4-4a0,设两根为,则.∵异号,∴,结合两个不等式可得解.
3.函数是单调函数,则()
A.B.C.D.
3.A解析:函数的对称轴,∴函数)是单调函数,
4.二次函数,若,则等于()
A.B.C.D.jAB88.Com

4.D解析:二次函数对称轴,顶点坐标,所以=
二、填空题
5.某汽车运输公司购买了一批豪华大客车投入运营.据市场分析,每辆客车营运的利润y与营运年数x(x∈Z)为二次函数关系(如图),则客车有营运利润的时间不超过________年.
5.7解析:首先根据条件求出y=-(x-6)2+11,本题要求的“客车有营运利润的时间”实际上是求图像与x轴两个交点的横坐标之差.
6.若函数f(x)=x2+2(a-1)x+2在区间(-∞,4]上是减函数,那么实数a的取值范围是_____
6.a≤-3解析:利用二次函数的单调区间与其对称轴的关系来解题,已知函数二次项系数为10,所以在对称轴的左侧该函数为减函数.该函数对称轴为,所给区间都在对称轴的左侧,即a≤-3
三、解答题
7.(1)求函数(x∈N)的最小值.
(2)在区间上,求函数的最大值与最小值.
(3)在区间上,求函数的最大值与最小值.
7.解析:(1)因为,又因为∈N,所以当=1或=2时函数值都等于-9且最小.
(2)该函数的对称轴为x=,所给区间在对称轴的同侧,都在右侧,又二次项系数为10,所以在上该函数为增函数,所以当=2时,函数值最小,最小值为-9,当=3时函数有最大值,最大值为-7
(3)所给区间在对称轴的异侧,所以在对称轴的时候对应的函数值最小,最小值为,当时,,当时,,所以该函数的最大值为.
8.已知二次函数当x=4时有最小值-3,且它的图象与x轴两交点间的距离为6,求这个二次函数的解析式.
8.解析:解法一:设二次函数解析式为y=ax2+bx+c(a≠0),由条件,可得抛物线的顶点为(4,-3),且过(1,0)与(7,0)两点,将三个点的坐标代入,得解得
∴所求二次函数解析式为y=x2-x+.
解法二:∵抛物线与x轴的两个交点坐标是(1,0)与(7,0),
∴设二次函数的解析式为y=a(x-1)(x-7),把顶点(4,-3)代入,得-3=a(4-1)(4-7),解得a=.
∴二次函数解析式为y=(x-1)(x-7),即y=x2-x+.
解法三:∵抛物线的顶点为(4,-3),且过点(1,0),∴设二次函数解析式为y=a(x-4)2-3.
将(1,0)代入,得0=a(1-4)2-3,解得a=.
∴二次函数解析式为y=(x-4)2-3,即y=x2-x+.
高考能力演练
9.若函数f(x)=x2+ax+b与x轴的交点为(1,0)和(3,0),则函数f(x)的单调性

A.在(-∞,2]上减少,在[2,+∞)上增加B.在(-∞,3)上增加
C.在[1,3]上增加D.不能确定
9.A解析:由已知可得该函数的对称轴为,又二次项系数为10,所以在(-∞,2]上为单调递减函数,在[2,+∞)上为单调递增函数.
10.已知函数,且对任意的实数都有成立
(1)求实数的值;(2)利用单调性的定义判断函数在区间上的单调性.
10.解析:(1),所以该函数的对称轴为,
根据函数解析式可知,所以.
(2)由(1)可知,在上该函数为增函数,下面就用定义去证明:
设,则
,,,
即,故函数在区间上的增函数
11.已知函数f(x)=x2-2ax+a2+1,x∈[0,1],若g(a)为f(x)的最小值.
(1)求g(a);(2)当g(a)=5时,求a的值.
11.解析:f(x)=(x-a)2+1,
(1)当0≤a≤1时,g(a)=f(a)=1;
当a0时,g(a)=f(0)=a2+1;当a1时,g(a)=f(1)=a2-2a+2.
∴g(a)=
(2)令a=-2.令a=3.∴或时,

扩展阅读

2.2.2二次函数的性质与图像学案


2.2.2二次函数的性质与图像学案
【学习目标】
1、使学生掌握研究二次函数的一般方法——配方法;
2、应“描点法”画出二次函数(的图像,通过图像总结二次函数的性质;
3、通过研究二次函数和图像的性质,能进一步体会研究一般函数的方法,能由特殊到一般地研究问题。
【自主学习】
二次函数的性质与图像
1)定义:函数叫二次函数,它的定义域是。特别地,当时,二次函数变为(。
2)函数的图像和性质:
(1)函数的图像是一条顶点为原点的抛物线,当时,抛物线开口,当时,抛物线开口。
(2)函数为(填“奇函数”或“偶函数”)。
(3)函数的图像的对称轴为。
3)二次函数的性质
(1)函数的图像是,抛物线的顶点坐标是,抛物线的对称轴是直线。
(2)当时,抛物线开口向上,函数在处取得最小值;在区间上是减函数,在上是增函数。
(3)当时,抛物线开口向下,函数在处取得最大值;在区间上是增函数,在上是减函数。
跟踪1、试述二次函数的性质,并作出它的图像。

跟踪2、研讨二次函数的性质和图像。

跟踪3、求函数的值域和它的图像的对称轴,并说出它在那个区间上是增函数?在那个区间上是减函数?

跟踪4、课本P60练习B
1、

【归纳总结】
研究二次函数的图像与性质的思路是什么?
函数二次函数(a、b、c是常数,a≠0)

图像a0a0
性质

【典例示范】
例1:将函数配方,确定其对称轴和顶点坐标,求出它的单调区间及最大值或最小值,并画出它的图像。

例2:二次函数与的图像开口大小相同,开口方向也相同。已知函数的解析式和的顶点,写出符合下列条件的函数的解析式。
(1)函数,的图像的顶点是(4,);
(2)函数,图像的顶点是。

【快乐体验】
1、已知函数,如果,且,则它的图像是()

ABCD
2、函数的图像顶点位于()
A、第一象限B、第二象限C、第三象限D、第四象限
3、二次函数的图像过原点,且顶点为,则()
A、B、C、D、
4、一次函数与二次函数在同一坐标系中的图像大致是()

ABCD
5、已知二次函数,若,则的值为()
A、正数B、负数C、零D、符号与a有关
6、若函数在区间上是减函数,则的取值范围是()
ABCD
7、函数且的值域是。
8、如果二次函数在区间上是增函数,那么的取值
范围是。
9、抛物线与轴有两个交点,且两个交点间的距离为2,则=
10、已知函数在闭区间上有最大值3,最小值2,求的取值范围。

二次函数


一位优秀的教师不打无准备之仗,会提前做好准备,作为高中教师就需要提前准备好适合自己的教案。教案可以让学生能够在教学期间跟着互动起来,帮助高中教师有计划有步骤有质量的完成教学任务。我们要如何写好一份值得称赞的高中教案呢?下面是小编精心为您整理的“二次函数”,欢迎您参考,希望对您有所助益!


年级高一学科数学课题二次函数再研究(2)
授课时间撰写时间2011年8月21
学习重点配方法是研究二次函数图像性质和数学结合思想
学习难点有关二次函数综合问题的研究方法、思路
学习目标1.会对二次函数配方,并讨论图像的开口方向,开口大小,顶点,对称轴,单调性等性质。
2.会求二次函数的最值,体会图像的形状。
教学过程
一自主学习
二次函数()的性质

开口方向
顶点坐标
对称轴
单调区间
最值
值域

二师生互动
例1已知函数,
(1)求这个函数图象的顶点坐标和对称轴;
(2)求这个函数的最小值;
(3)不直接计算函数值,试比较f(-1)和f(1)的大小
练一练
1.已知二次函数,求函数在区间的最大值与最小值
例2已知函数的定义域为R,值域为,则a的值
练一练
已知函数且,则下列不等式成立的是()
AB
CD

三巩固练习
1.若x为实数,则函数y=x2+3x-5的最小值为…………………………………()
?A.?-294?B.?-5
?C.?0?D.?不存在
2.函数f(x)=11-x(1-x)的最大值是…………………………………()
?A.?45?B.?54
?C.?34?D.?43
3.二次函数y=-x2+bx+c图象的最高点是(-3,1),则b、c的值是……………()
?A.?b=6,c=8?B.?b=6,c=-8
?C.?b=-6,c=8?D.?b=-6,c=-8
4.已知二次函数y=f(x)在区间(-∞,5]上单调递减,在区间[5,+∞)上单调递增,则下列各式成立的是…………………………………()
?A.?f(-2)<f(6)<f(11)?B.?f(11)<f(6)<f(-2)
?C.?f(6)<f(11)<f(-2)?D.?f(11)<f(-2)<f(6)
5.已知函数f(x)=x2-6x+8,x∈[1,a],并且f(x)的最小值为f(a),则实数a的取值范围是.
6.已知二次函数y=-x2+2x+m的部分图象如图所示,则关于x的一元二次方程-x2+2x+m=0的根为.

四课后反思

五课后巩固练习
1.方程的两根均大于1,则实数a的取值范围
2.已知二次函数f(x)=ax2+2ax+1在区间[-2,3]上的最大值为6,求a的值.

二次函数的图象


普通高中课程标准实验教科书[北师版]–必修1
第二章函数
§2.4.1二次函数的图象(学案)
[学习目标]
1、知识与技能
(1)通过绘制二次函数图象,观察二次函数图象的特征;
(2)通过画出具体二次函数的图象,总结二次函数和以及
的图象之间的关系和变换特征.
(3)利用多媒体绘画技术演示各函数图象之间的关系并能直观认识.
2、过程与方法
(1)通过学习二次函数的图象,借助图形直观认识函数图象的变换,找到一般的变换
规律,完成从直观到抽象的转变.
(2)了解运用多媒体技术制作演示函数函数图象,理解和研究二次函数的性质.
3、情感.态度与价值观
通过学习感受到学习二次函数图象的必要性与重要性,增强学习函数的积极性和自信心.
[学习重点]:二次函数图象的变换.
[学习难点]:二次函数图象的绘制与想象以及发展到一般函数图象的变换结论.
[学习用具]:直尺、多媒体和画图纸
[学习方法]:观察、思考、交流、总结.
[学习过程]
【新课导入】
[互动过程1]
我们初中学习过二次函数的图象是抛物线,了解了抛物线的开口方向、对称轴、顶点等特征以及与系数之间的关系.请同学们回顾二次函数的开口方向与谁的取值有关?抛物线的对称轴的方程是什么?顶点的坐标是什么?怎样表示出?
练习1.回答二次抛物线(1)的对称轴方程_________和顶点坐标__________;
(2)的对称轴方程_______和顶点坐标________.
[提出问题]
1.和的图象之间有什么关系?
2.和的图象之间有什么关系?
3.和的图象之间有什么关系?
这三个问题是本节课所要解决的问题.引出课题:
2.4.1二次函数的图象
1.请同学们列表画出函数和的图像
x…-3-2-10123…
…9410149…
…188202818…
[互动过程2]
从表中你发现了什么?从图像上发生这样的变化?它们相对应的点之间有什么关系?
从表中我们不难发现,要得到的值,只要把相应的的值扩大____倍即可,在图像上
则可以看出把线段AB________为原来的____倍,即AC的长度,得到当
时,对应的值.同理,其余的x的值对应的的值,都_____为原来的___倍,就可以得到的图像了.请你用类似的方法画出和的图像.
思考:(1)和的图像与和的图像之间有什么关系?
(2)二次函数与的图像之间有什么关系?请你总结出规律.
规律:二次函数的图像可以由的图像变化得到,横坐标
____________,纵坐标__________________到原来的_____________倍.
(3)二次函数中起什么作用?
从图上可以看出,a决定了图像的_________和__________________________.
[互动过程3]
请画出与的图像,并回答下列问题:
1.抛物线与的顶点分别是______________.对称轴和开口方向_________________________那么开口大小呢?开口大小与谁有关呢?
2.与的图像有什么关系?
抛物线的顶点为____________开口向_________,
对称轴为____________,的顶点是_________,
开口向________,对称轴为______________.
从图上可以看出只要把向_________平移__________个
单位长度,再向__________平移___________个单位长度就
可以得到的图像.,它们的形状相同,位置不同.
[互动过程4]
1.你能说出由函数的图像怎样得到函数
的图像吗?
2.如果把函数向右平移2个单位,再向上平移3个
单位,你得到的是哪个函数的图像?请你写出解析式_______________________________.
3.思考:对于二次函数,的作用是什么?和分别代表什么含义?
结论:一般地,二次函数,决定了二次函数图像的_________及___________;决定了二次函数图像的________平移,而且遵循的原则为“____________________”;决定了二次函数图像的__________平移,而且“_______________________”.
4.思考:对于一个一般函数的图像与函数的图像之间的关系怎样?
你能由函数的图像得到函数的图像吗?
[互动过程5]
1.你能写出函数的顶点坐标吗?有哪些方法?请你把方程改写为
的形式吗?你能说出函数的图象是由的怎样进行平移的吗?
2.请举出一例形如的函数改写为形式的
函数吗?试试看.
3.你能写出函数的顶点坐标吗?请你把函数改写为顶点式
的形式.并说明函数的图象是怎样由的图象变来的.
变化规律为:=_________________________,即把函数的图象向__________________________________平移_______________个单位,然后再向_________________平移________________个单位.
4.二次函数中,确定函数图像开口大小和方向的参数是什么?确定函
数图像位置的参数是什么?
5.写出一个开口向下,顶点为(-3,1)的二次函数的解析式,并画出其图像.

例1.二次函数和的图像开口大小相同,开口方向也相同,已知函数的解析式和图像的顶点,写出函数的解析式.
(1)函数,的顶点为(4,-7);
(2)函数,的顶点为(-3,2)

练习:1.画出函数的图像,并由此图像得到函数的图像.

练习:2.不画函数的图像,你能说出由函数的图像怎样得到函数的图像吗?

练习:3.画出函数的图像,怎样得到函数的图像?.

练习:4.画出函数的图像,你能由函数的图像,得到函数的图像吗?

[解决的问题]:
1.
2
3.
4.
〖课后练习〗P44练习1,2,3.
〖课后作业〗P46习题1,2,3

二次函数与一元二次方程


俗话说,居安思危,思则有备,有备无患。作为教师就要早早地准备好适合的教案课件。教案可以让学生们有一个良好的课堂环境,帮助教师营造一个良好的教学氛围。教案的内容具体要怎样写呢?为此,小编从网络上为大家精心整理了《二次函数与一元二次方程》,供大家借鉴和使用,希望大家分享!

总课题函数与方程分课时第1课时总课时总第37课时
分课题二次函数与一元二次方程课型新授课
教学目标会用二次函数的图象与判别式的符号,判断一元二次方程根的情况。弄清二次函数的零点与方程根的关系。渗透数形结合思想和函数与方程的相互转化的数学思想方法。
重点函数与方程的关系。
难点数形结合思想和函数与方程的相互转化的数学思想方法。
一、复习引入
问题1、不解方程如何判断一元二次方程解的情况。
问题2、画出二次函数的图象,观察图象,指出取哪些值时,。
二、建构数学
1、探究函数与方程图象之间的关系,填表:
Δ=
Δ
Δ
Δ

的根
的图象

的零点
2、零点:对于函数,我们把使的实数x叫做的零点;
有实数根的图象与轴有交点有零点。
三、例题分析
例1、(如图)是一个二次函数图象的一部分,(1)的零点为。
(2)。

例2、求证:一元二次方程有两个不相等的实数根(用两种方法证)。

例3、(1)在区间上是否存在零点?
(2)在区间、上是否存在零点?

观察:值的符号特点;、值的符号特点。
结论:如果函数在区间上的图象是连续不断的一条曲线,并且,那么函数在区间内有零点。(即存在,使得.这个也就是方程的根。)
思考:
(1)若在上是单调函数,且,则在上的零点情况如何?
(2)若是二次函数的零点,且,那么一定成立吗?
四、随堂练习
1、分别指出下列各图象对应的二次函数中与0的大小关系:
(1)(2)(1)______0,_____0,______0,______0
(2)______0,_____0,______0,______0

2、判断函数在区间上是否存在零点。
3、证明:(1)函数有两个不同的零点;
(2)函数在区间(0,1)上有零点。

五、回顾小结
1、函数与方程的关系。
课后作业
班级:高一()班姓名__________
一、基础题
1、若二次函数的两个零点分别是2和3,则,的值分别是()
A、B、C、D、
2、函数的零点个数是()
ABCD
3、若一元二次方程有两个不相等的实数根,则的取值范围是。
4、已知函数在区间[,]上的最小值大于0,则该函数的零点个数有个。
5、若二次函数的图象与轴有公共点,则。
6、设二次函数的两个零点分别为和,则。(填>,<)。
7、函数的图象如图所示。
(1)写出方程的根;
(2)求,,的值。

8、二次函数的图象交轴于两点,交轴于点,求的面积。

9、已知二次函数满足且最小值为,求的表达式。

二、提高题
10、求证:方程没有实数根(用两种方法证)。
11、若方程方程的一个根在区间(,)内,另一个在区间(,)内,求实数的取值范围。

三、提高题
12、当为何值时,方程在区间(,)内有实数解?

文章来源:http://m.jab88.com/j/18514.html

更多

最新更新

更多