《牛顿第二定律》教案
【教学目标】:1.理解牛顿第二定律的内容、表达式和适用范围.2.学会分析两类动力学问题.
【教学重点】:理解牛顿第二定律的内容、表达式和适用范围
【教学难点】:.学会分析两类动力学问题.
【教学方法】:讲练结合
一、牛顿第二定律
[基础导引]
由牛顿第二定律可知,无论怎样小的力都可以使物体产生加速度,可是,我们用力提一个很重的箱子,却提不动它.这跟牛顿第二定律有没有矛盾?应该怎样解释这个现象?
[知识梳理]
1.内容:物体加速度的大小跟它受到的作用力成________、跟它的质量成________,加速度的方向跟____________相同.
2.表达式:________.
3.适用范围
(1)牛顿第二定律只适用于________参考系(相对地面静止或____________运动的参考系).
(2)牛顿第二定律只适用于________物体(相对于分子、原子)、低速运动(远小于光速)的情况.
二、两类动力学问题
[基础导引]
以15m/s的速度行驶的无轨电车,在关闭电动机后,经过10s停了下来.电车的质量是4.0×103kg,求电车所受的阻力.
[知识梳理]
1.动力学的两类基本问题
(1)由受力情况判断物体的____________
(2)由运动情况判断物体的____________.
2.解决两类基本问题的方法:以__________为桥梁,由运动学公式和____________________列方程求解.
:解决两类动力学问题的关键是什么?
三、力学单位制
[基础导引]
如果一个物体在力F的作用下沿着力的方向移动了一段距离l,这个力对物体做的功W=Fl.我们还学过,功的单位是焦耳(J).请由此导出焦耳与基本单位米(m)、千克(kg)、秒(s)之间的关系.
[知识梳理]
1.单位制由基本单位和导出单位共同组成.
2.力学单位制中的基本单位有________、________、时间(s).
3.导出单位有________、________、________等.
探究一牛顿第二定律的理解
例1牛顿第二定律导学案如图所示,自由下落的小球下落一段时间后,与弹簧接触,从它接触弹簧开始,到弹簧压缩到最短的过程中,小球的速度、加速度的变化情况如何?
牛顿第二定律导学案总结
利用牛顿第二定律分析物体运动过程时应注意以下两点:
(1)a是联系力和运动的桥梁,根据受力条件,确定加速度,以加速度
确定物体速度和位移的变化.(2)
一名合格的教师要充分考虑学习的趣味性,作为高中教师就要在上课前做好适合自己的教案。教案可以让学生们有一个良好的课堂环境,帮助授课经验少的高中教师教学。你知道怎么写具体的高中教案内容吗?考虑到您的需要,小编特地编辑了“牛顿第二定律的应用”,希望对您的工作和生活有所帮助。
§4.4牛顿第二定律的应用―――连接体问题
【学习目标】
1.知道什么是连接体与隔离体。2.知道什么是内力和外力。
3.学会连接体问题的分析方法,并用来解决简单问题。
【自主学习】
一、连接体与隔离体
两个或两个以上物体相连接组成的物体系统,称为。如果把其中某个物体隔离出来,该物体即为。
二、外力和内力
如果以物体系为研究对象,受到系统之外的作用力,这些力是系统受到的力,而系统内各物体间的相互作用力为。
应用牛顿第二定律列方程不考虑力。如果把物体隔离出来作为研究对象,则这些内力将转换为隔离体的力。
三、连接体问题的分析方法
1.整体法:连接体中的各物体如果,求加速度时可以把连接体作为一个整体。运用列方程求解。
2.隔离法:如果要求连接体间的相互作用力,必须隔离其中一个物体,对该物体应用求解,此法称为隔离法。
3.整体法与隔离法是相对统一,相辅相成的。本来单用隔离法就可以解决的连接体问题,但如果这两种方法交叉使用,则处理问题就更加方便。如当系统中各物体有相同的加速度,求系统中某两物体间的相互作用力时,往往是先用法求出,再用法求。
【典型例题】
例1.两个物体A和B,质量分别为m1和m2,互相接触放在光滑水平面上,如图所示,对物体A施以水平的推力F,则物体A对物体
B的作用力等于()
A.B.C.FD.
扩展:1.若m1与m2与水平面间有摩擦力且摩擦因数均为μ则对B作用力等于。
2.如图所示,倾角为的斜面上放两物体m1和m2,用与斜面
平行的力F推m1,使两物加速上滑,不管斜面是否光滑,两物体
之间的作用力总为。
例2.如图所示,质量为M的木板可沿倾角为θ的光滑斜面下滑,
木板上站着一个质量为m的人,问(1)为了保持木板与斜面相
对静止,计算人运动的加速度?(2)为了保持人与斜面相对静止,
木板运动的加速度是多少?
【针对训练】
1.如图光滑水平面上物块A和B以轻弹簧相连接。在水平拉力F作用下以加速度a作直线运动,设A和B的质量分别为mA和mB,当突然撤去外力F时,A和B的加速度分别为()
A.0、0B.a、0
C.、D.a、
2.如图A、B、C为三个完全相同的物体,当水平力F作用
于B上,三物体可一起匀速运动。撤去力F后,三物体仍
可一起向前运动,设此时A、B间作用力为f1,B、C间作
用力为f2,则f1和f2的大小为()
A.f1=f2=0B.f1=0,f2=FC.f1=,f2=D.f1=F,f2=0
3.如图所示,在前进的车厢的竖直后壁上放一个物体,物体与壁间
的静摩擦因数μ=0.8,要使物体不致下滑,车厢至少应以多大的
加速度前进?(g=10m/s2)
4.如图所示,箱子的质量M=5.0kg,与水平地面的动摩擦因
数μ=0.22。在箱子顶板处系一细线,悬挂一个质量m=1.0kg
的小球,箱子受到水平恒力F的作用,使小球的悬线偏离竖直
方向θ=30°角,则F应为多少?(g=10m/s2)
【能力训练】
1.如图所示,质量分别为M、m的滑块A、B叠放在固定的、
倾角为θ的斜面上,A与斜面间、A与B之间的动摩擦因数
分别为μ1,μ2,当A、B从静止开始以相同的加速度下滑时,
B受到摩擦力()
A.等于零B.方向平行于斜面向上C.大小为μ1mgcosθD.大小为μ2mgcosθ
2.如图所示,质量为M的框架放在水平地面上,一轻弹簧上端固定在框架上,下端固定一个质量为m的小球。小球上下振动时,框架始终
没有跳起,当框架对地面压力为零瞬间,小球的加
速度大小为()
A.gB.C.0D.
3.如图,用力F拉A、B、C三个物体在光滑水平面上运动,现在中间的B物体上加一个小物体,它和中间的物体一起运动,且原拉力F不变,那么加上物体以后,两段绳中的拉力Fa和Fb的变化情况是()
A.Ta增大B.Tb增大
C.Ta变小D.Tb不变
4.如图所示为杂技“顶竿”表演,一人站在地上,肩上扛一质量
为M的竖直竹竿,当竿上一质量为m的人以加速度a加速下滑时,
竿对“底人”的压力大小为()
A.(M+m)gB.(M+m)g-maC.(M+m)g+maD.(M-m)g
5.如图,在竖直立在水平面的轻弹簧上面固定一块质量不计
的薄板,将薄板上放一重物,并用手将重物往下压,然后突
然将手撤去,重物即被弹射出去,则在弹射过程中,(即重
物与弹簧脱离之前),重物的运动情况是()
A.一直加速B.先减速,后加速
C.先加速、后减速D.匀加速
6.如图所示,木块A和B用一轻弹簧相连,竖直放在木块
C上,三者静置于地面,它们的质量之比是1:2:3,设所有
接触面都光滑,当沿水平方向抽出木块C的瞬时,A和B
的加速度分别是aA=,aB=。
7.如图所示,一细线的一端固定于倾角为45°的光滑楔形滑块
A的顶端P处,细线的另一端拴一质量为m的小球。当滑块至
少以加速度a=向左运动时,小球对滑块的压力等
于零。当滑块以a=2g的加速度向左运动时,线的拉力大小
F=。
8.如图所示,质量分别为m和2m的两物体A、B叠放在一起,放在光滑的水平地面上,已知A、B间的最大摩擦力为A物体重力的μ倍,若用水平力分别作用在A或B上,使A、B保持相对静止做加速运动,则作用于A、B上的最大拉力FA与FB之比为多少?
9.如图所示,质量为80kg的物体放在安装在小车上的水平磅称上,小车沿斜面无摩擦地向下运动,现观察到物体在磅秤上读数只有600N,则斜面的倾角θ为多少?物体对磅秤的静摩擦力为多少?
10.如图所示,一根轻弹簧上端固定,下端挂一质量为mo的平盘,盘中有一物体,质量为m,当盘静止时,弹簧的长度比自然长度伸长了L。今向下拉盘使弹簧再伸长△L后停止,然后松手放开,设弹簧总处在弹性限度以内,刚刚松开手时盘对物体的支持力等于多少?
【学后反思】
参考答案
典型例题:
例1.分析:物体A和B加速度相同,求它们之间的相互作用力,采取先整体后隔离的方法,先求出它们共同的加速度,然后再选取A或B为研究对象,求出它们之间的相互作用力。
解:对A、B整体分析,则F=(m1+m2)a
所以
求A、B间弹力FN时以B为研究对象,则
答案:B
说明:求A、B间弹力FN时,也可以以A为研究对象则:
F-FN=m1a
F-FN=
故FN=
对A、B整体分析
F-μ(m1+m2)g=(m1+m2)a
再以B为研究对象有FN-μm2g=m2a
FN-μm2g=m2
提示:先取整体研究,利用牛顿第二定律,求出共同的加速度
=
再取m2研究,由牛顿第二定律得
FN-m2gsinα-μm2gcosα=m2a
整理得
例2.解(1)为了使木板与斜面保持相对静止,必须满足木板在斜面上的合力为零,所以人施于木板的摩擦力F应沿斜面向上,故人应加速下跑。现分别对人和木板应用牛顿第二定律得:
对木板:Mgsinθ=F。
对人:mgsinθ+F=ma人(a人为人对斜面的加速度)。
解得:a人=,方向沿斜面向下。
(2)为了使人与斜面保持静止,必须满足人在木板上所受合力为零,所以木板施于人的摩擦力应沿斜面向上,故人相对木板向上跑,木板相对斜面向下滑,但人对斜面静止不动。现分别对人和木板应用牛顿第二定律,设木板对斜面的加速度为a木,则:
对人:mgsinθ=F。
对木板:Mgsinθ+F=Ma木。
解得:a木=,方向沿斜面向下。即人相对木板向上加速跑动,而木板沿斜面向下滑动,所以人相对斜面静止不动。
答案:(1)(M+m)gsinθ/m,(2)(M+m)gsinθ/M。
针对训练
1.D2.C
3.解:设物体的质量为m,在竖直方向上有:mg=F,F为摩擦力
在临界情况下,F=μFN,FN为物体所受水平弹力。又由牛顿第二定律得:
FN=ma
由以上各式得:加速度
4.解:对小球由牛顿第二定律得:mgtgθ=ma①
对整体,由牛顿第二定律得:F-μ(M+m)g=(M+m)a②
由①②代入数据得:F=48N
能力训练
1.BC2.D3.A4.B5.C6.0、7.g、
8.解:当力F作用于A上,且A、B刚好不发生相对滑动时,对B由牛顿第二定律得:μmg=2ma①
对整体同理得:FA=(m+2m)a②
由①②得
当力F作用于B上,且A、B刚好不发生相对滑动时,对A由牛顿第二定律得:μμmg=ma′③
对整体同理得FB=(m+2m)a′④
由③④得FB=3μmg
所以:FA:FB=1:2
9.解:取小车、物体、磅秤这个整体为研究对象,受
总重力Mg、斜面的支持力N,由牛顿第二定律得,
Mgsinθ=Ma,∴a=gsinθ取物体为研究对象,受力
情况如图所示。
将加速度a沿水平和竖直方向分解,则有
f静=macosθ=mgsinθcosθ①
mg-N=masinθ=mgsin2θ②
由式②得:N=mg-mgsin2θ=mgcos2θ,则cosθ=代入数据得,θ=30°
由式①得,f静=mgsinθcosθ代入数据得f静=346N。
根据牛顿第三定律,物体对磅秤的静摩擦力为346N。
10.解:盘对物体的支持力,取决于物体状态,由于静止后向下拉盘,再松手加速上升状态,则物体所受合外力向上,有竖直向上的加速度,因此,求出它们的加速度,作用力就很容易求了。
将盘与物体看作一个系统,静止时:kL=(m+m0)g……①
再伸长△L后,刚松手时,有k(L+△L)-(m+m0)g=(m+m0)a……②
由①②式得
刚松手时对物体FN-mg=ma
则盘对物体的支持力FN=mg+ma=mg(1+)
4.3牛顿第二定律
[教学目标]
一、知识与技能
1、掌握牛顿第二定律的文字内容和数学公式
2、理解公式中各物理量的意义及相互联系
3、知道在国际单位制中力的单位“牛顿”是怎样定义的
4、会用牛顿第二定律的公式进行有关的计算
二、过程与方法
1、以实验为基础,归纳得到物体的加速度跟它的质量及所受外力的关系,进而总结出牛顿第二定律
2能从实际运动中抽象出模型并用第二定律加以解决
三、情感态度与价值观
1、渗透物理学研究方法的教育
2、认识到由实验归纳总结物理规律是物理学研究的重要方法
[教学重点]
1、牛顿第二定律
2、牛顿第二定律的应用
[教学难点]
牛顿第二定律的应用
[课时安排]
1课时
[教学过程]
引入
师:牛顿第一定律告诉我们,力是改变物体运动状态的原因即产生加速度的原因,加速度同时又与物体的质量有关。上一节课的探究实验我们已经看到,小车的加速度可能与所受的合外力成正比,与物体的质量成反比。大量实验和观察到的事实都能得出同样的结论,由此可以总结出一般性的规律:物体加速度的大小跟合外力成正比,跟物体的质量成反比,加速度的方向与合外力的方向相同。这就是牛顿第二定律。
一、牛顿第二定律:
定义:物体加速度的大小跟合外力成正比,跟物体的质量成反比,加速度的方向与合外力的方向相同。
比例式:或。
等式:其中k是比例系数。(公式中的F是合外力,而ma是作用效果,不要看成力,它们只是大小相等)
力的单位
K是比例常数,那k应该是多少呢?
这里要指出的是,在17世纪,人类已经有了一些基本物理量的计量标准,但还没有规定多大的力为一个单位力,当然也没有力的单位牛顿。科学家们在做与力有关的实验时并没有准确计算力的大小,利用的仅仅是简单的倍数关系。比如当挂一个钩码时,质量为1kg的小车产生大小为2m/s2的加速度,当挂两个钩码时,此时小车受力是第一次的两倍,实验结果是小车产生大小为4m/s2的加速度,由此可以得出物体的加速度与所受的合外力成正比(因为还没有规定一个单位的力是多大,所以你也无法知道一个钩码是几个单位的力。比如只有当我们规定了多长的距离为一个单位长度(1m)后才能知道一根棒有几个单位长度即几米。)。
由于单位力的大小还没有规定,所以k的选择有一定的任意性,只要是常数,它就能正确表示F与m、a之间的比例关系。(或者反过来讲,如果我们当时已经规定了力的单位为N,并且规定一个钩码的重量为1N,那么公式中的k就不具有随意性。在计算时质量的单位用kg,加速度的单位用m/s2,当Fma三者都取值为单位1时有:1N=k1kg1m/s2而我们知道1kg1m/s2表示使质量为1kg的物体产生1m/s2的力,对照上例应该是半个钩码,那k就应该等于2。如果当时规定两个钩码重量为1N时,那k应该是4。而当规定半个钩码重为1N时,k就是1了。所以由于没有规定1N的力是多大,k的值任意的,只要常数就行。
既然k是任意取的,那取1将会使公式最简便。当k值取定后,力的单位理所当然也定下来了:一个单位力=11kg1m/s2,即规定了1N的力是使质量为1kg的物体产生1m/s2加速度的力。用手托住两个鸡蛋大约就是1N。
从上可知力的单位是kgm/s2,后来为了纪念牛顿,把kgm/s2称做“牛顿”,用N表示。
公式:
例1、一物体质量为1kg的物体静置在光滑水平面上,0时刻开始,用一水平向右的大小为2N的力F1拉物体,则
(1)物体产生的加速度是多大?2S后物体的速度是多少?
(2)若在3秒末给物体加上一个大小也是2N水平向左的拉力F2,则物体的加速度是多少?4秒末物体的速度是多少?
(3)3S内物体的加速度2m/s2是由力F1产生的,3S后物体的加速度为0,那是说3S后F1不再产生加速度了?
解:(1)受力分析知:物体所受的合外力为F1=2N,则根据公式有;从0时刻开始做初速度为0,加速度为2m/s2的匀加速直线运动,据得2S末速度为4m/s。
(2)3S末加上F2后,物体所受的合外力为0,则据有加速度为0;从3S末开始物体做匀速直线运动,4S末速度仍是4m/s。
(3)可以用平形四边形定则进行分解合成的不仅仅是力,所有的矢量均可以用平形四边形定则进行分解合成,当然也包括加速度。3S后F1仍然产生2m/s2的加速度,不过F1产生的加速度与F2产生的加速度相互抵消,所以总的加速度是0。
牢记:物体受到几个力的作用时,每个力各自独立地使物体产生一个加速度,就像其他力不存在一样,这个性质叫做力的独立性原理。物体的合加速度等于各个分力分别产生的加速度的矢量和;也等于合外力与质量的比值。
例2:光滑水面上,一物体质量为1kg,初速度为0,从0时刻开始受到一水平向右的接力F,F随时间变化图如下,要求作出速度时间图象。
牢记:加速度与合外力存在着瞬时对应关系:某一时刻的加速度总是与那一时刻的合外力成正比;有力即有加速度;合外力消失,加速度立刻消失;所以加速度与力一样,可以突变,而速度是无法突变的。
例3、牛顿第一定律是牛顿第二定律的特例吗?
牢记:牛顿第一定律说明物体的运动不需要力来维持,力是改变物体运动状态的原因。牛顿第一定律定义了力。正因为知道了在没有力的情况下物体是静止或匀速的,人们才能去研究物体在有力的情况下是如何运动的。所以牛顿第一定律是牛顿第二定律的基础,牛顿第二定律是牛顿第一定律的扩展。
总结分析
1、F与a的同向性。
2、F与a的瞬时性。
3、力的独立性原理。
4、F可以突变,a可以突变,但v不能突变。
5、牛二只适用于惯性参考系
6、牛二适用于宏观低速运动的物体
7、是定义式、度量式;是决定式。两个加速度公式,一个是纯粹从运动学(现象)角度来研究运动;一个从本质内因进行研究。就像农民看云识天气,掌握天气规律,但并不知道云是如何形成的,为什么不同的云代表不同的天气。就像知道有加速度却不知道为何会有。
8、不能认为牛顿第一定律是牛顿第二定律在合外力为0时的特例。
例4、从牛顿第二定律知道,无论怎样小的力都可以使物体产生加速度。可是我们用力提一个很重的物体时却提不动它,这跟牛顿第二定律有无矛盾?为什么?
答:没有矛盾,从角度来看,因为提不动,所以静止,则合外力为0,所以加速度也为0;从角度来看,物体受三个力,支持力、重力、向上提的力。这三个力产生的加速度相互抵消,所以合加速度也是0。
二、用牛顿第二定律解题的方法和步骤
1、明确研究对象(隔离或整体)
2、进行受力分析和运动状态分析,画出示意图
3、规定正方向或建立直角坐标系,求合力F合
4、列方程求解
①物体受两个力:合成法
②物体受多个力:正交分解法(沿运动方向和垂直于运动方向分解)
(运动方向)
(垂直于运动方向)
一、教学目标
1.物理知识方面的要求:
(1)巩固记忆牛顿第二定律内容、公式和物理意义;
(2)掌握牛顿第二定律的应用方法.
2.通过例题分析、讨论、练习使学生掌握应用牛顿定律解决力学问题的方法,培养学生的审题能力、分析综合能力和运用数学工具的能力.
3.训练学生解题规范、画图分析、完善步骤的能力.
二、重点、难点分析
1.本节为习题课,重点内容是选好例题,讲清应用牛顿第二定律解决的两类力学问题及解决这类问题的基本方法.
2.应用牛顿第二定律解题重要的是分析过程、建立图景;抓住运动情况、受力情况和初始条件;依据定律列方程求解.但学生往往存在重结论、轻过程,习惯于套公式得结果,所以培养学生良好的解题习惯、建立思路、掌握方法是难点.
三、教具
投影仪、投影片、彩笔.
四、主要教学过程
(一)引入新课
牛顿第二定律揭示了运动和力的内在联系.因此,应用牛顿第二定律即可解答一些力学问题.
我们通过以下例题来体会应用牛顿第二定律解题的思路、方法和步骤.
(二)教学过程设计
1.已知受力情况求解运动情况
例题1(投影)一个静止在水平面上的物体,质量是2kg,在水平方向受到5.0N的拉力,物体跟水平面的滑动摩擦力是2.0N.
1)求物体在4.0秒末的速度;
2)若在4秒末撤去拉力,求物体滑行时间.
(1)审题分析
这个题目就是根据已知的受力情况来求物体的运动情况.前4秒内运动情况:物体由静止在恒力作用下做匀加速直线运动,t=4.0s.受力情况:F=5.0N,f=2.0N,G=N;初始条件:v0=0;研究对象:m=2.0kg.求解4秒末的速度vt.4秒后,撤去拉力,物体做匀减速运动,v′t=0.受力情况:G=N、f=2.0N;初始条件:v′0=vt,求解滑行时间.
(2)解题思路
研究对象为物体.已知受力,可得物体所受合外力.根据牛顿第二定律可求出物体的加速度,再依据初始条件和运动学公式就可解出前一段运动的末速度.运用同样的思路也可解答后一段运动的滑行距离.
(3)解题步骤(投影)
解:确定研究对象,分析过程(画过程图),进行受力分析(画受力图).
前4秒根据牛顿第二定律列方程:
水平方向
F-f=ma
竖直方向
N-G=0
引导学生总结解题步骤:确定对象、分析过程、受力分析、画图、列方程、求解、检验结果.
(4)讨论:若无第一问如何解?实际第一问的结果是第二问的初始条件,所以解题的过程不变.
(5)引申:这一类题目是运用已知的力学规律,作出明确的预见.它是物理学和技术上进行正确分析和设计的基础,如发射人造地球卫星进入预定轨道,带电粒子在电场中加速后获得速度等都属这一类题目.
2.已知运动情况求解受力情况
例题2(投影)一辆质量为1.0×103kg的小汽车正以10m/s的速度行驶,现在让它在12.5m的距离内匀减速地停下来,求所需的阻力.
(1)审题分析
这个题目是根据运动情况求解汽车所受的阻力.研究对象:汽车m=1.0×103kg;运动情况:匀减速运动至停止vt=0,s=12.5m;初始条件:v0=10m/s,求阻力f.
(2)解题思路
由运动情况和初始条件,根据运动学公式可求出加速度;再根据牛顿第二定律求出汽车受的合外力,最后由受力分析可知合外力即阻力.
(3)解题步骤(投影)
画图分析
据牛顿第二定律列方程:
竖直方面
N-G=0
水平方面
f=ma=1.0×103×(-4)N=-4.0×103N
f为负值表示力的方向跟速度方向相反.
引导学生总结出解题步骤与第一类问题相同.
(5)引申:这一类题目除了包括求出人们熟知的力的大小和方向,还包括探索性运用,即根据观测到的运动去认识人们还不知道的物体间的相互作用的特点.牛顿发现万有引力定律、卢瑟福发现原子内部有个原子核都属于这类探索.
3.应用牛顿第二定律解题的规律分析(直线运动)
题目类型流程如下
由左向右求解即第一类问题,可将vt、v0、s、t中任何一个物理量作为未知求解.
由右向左求解即第二类问题,可将F、f、m中任一物量作为未知求解.
若阻力为滑动摩擦力,则有F-μmg=ma,还可将μ作为未知求解.
如:将例题2改为一物体正以10m/s的速度沿水平面运动,撤去拉力后匀减速滑行2.5m,求物体与水平面间动摩擦因数.
4.物体在斜向力作用下的运动
例题3(投影)一木箱质量为m,与水平地面间的动摩擦因数为μ,现用斜向右下方与水平方向成θ角的力F推木箱,求经过t秒时木箱的速度.
解:(投影)
画图分析:
木箱受4个力,将力F沿运动方向和垂直运动方向分解:
水平分力为
Fcosθ
竖直分力为
Fsinθ
据牛顿第二定律列方程,竖直方向
N-Fsinθ-G=0①
水平方向
Fcosθ-f=ma②
二者联系
f=μN③
由①式得N=Fsinθ+mg代入③式有
f=μ(Fsinθ+mg)
代入②式有Fcosθ-μ(Fsinθ+mg)=ma,得
可见解题方法与受水平力作用时相同.
(三)课堂小结(引导学生总结)
1.应用牛顿第二定律解题可分为两类:一类是已知受力求解运动情况;一类是已知运动情况求解受力.
2.不论哪种类型题目的解决,都遵循基本方法和步骤,即分析过程、建立图景、确定研究对象、进行受力分析、根据定律列方程,进而求解验证效果.在解题过程中,画图是十分重要的,包括运动图和受力图,这对于物体经过多个运动过程的问题更是必不可少的步骤.
3.在斜向力作用下,可将该力沿运动方向和垂直运动方向分解,转化为受水平力的情形.解题方法相同.
五、说明
1.例题1在原题基本上增加了一个运动过程,目的是强调过程图和受力图的重要性.因为有些学生对此不够重视而导致错误,尤其是以后遇到复杂问题的处理时更加突出,比如不注意各段运动中物体受力情况的变化和与之相关的加速度的变化,用前一段运动的加速度代入后一段运动方程进行运算,得出错误结果.但教材中节练习题和章习题中没有这类题目,所以可根据学生情况加以取舍.
2.解题过程反复强调分析方法、解题步骤,意在培养学生的良好解题习惯和书写规范,由于解题过程要力求详尽,故本课密度较大.为此,解题过程可利用投影片以节省时间.
3.例题中增加了斜向力作用的情形,目的是使学生注意竖直方向运动方程的建立,对水平方向物理量的影响.因为学生长时间只考虑水平方向受力,就会忽视了竖直方向的受力分析,认为在任何情况下都无须考虑竖直方向受力.另外,了解到斜向力分解后的解题方法仍是前面所述的基本方法,从而体会对复杂问题的处理方法,以巩固基本知识、基本方法.但不提及建立坐标和正交分解,这一部分亦可据学生情况取舍.
文章来源:http://m.jab88.com/j/16168.html
更多