88教案网

高三物理教案:《万有引力》教学设计

一名爱岗敬业的教师要充分考虑学生的理解性,教师要准备好教案,这是教师需要精心准备的。教案可以让学生们充分体会到学习的快乐,让教师能够快速的解决各种教学问题。那么,你知道教案要怎么写呢?考虑到您的需要,小编特地编辑了“高三物理教案:《万有引力》教学设计”,供大家参考,希望能帮助到有需要的朋友。

一.关于万有引力定律考纲要求

MicrosoftInternetExplorer402DocumentNotSpecified7.8 磅Normal0

主题

内容

要求

万有引力定律

万有引力定律及其应用

环绕速度

第二宇宙速度和第三宇宙速度

经典时空观和相对论时空观

二.教学目标

1.知识与技能:①掌握天上的卫星及“地面”上的物体做圆周运动的向心力的来源不同,理解万有引力向心力和重力间的区别与联系。

②会比较不同绕转天体做圆周运动的参量间的定性关系。

③能建立向心力与圆周运动参量间的定量关系。

2.过程与方法:通过本节学习提升学生对已知知识的整合能力,强化构建知识网络意识,掌握知识的横向和纵深拓展能力和方法。

3.情感态度与价值观:通过一题多变体会物理知识的灵活性,通过总结又可以多题归一,培养学生科学严谨的思维。

三.教学重点与难点:

1.教学重点:明确做圆周运动的向心力的来源及能建立向心力与圆周运动参量间的定性关系。

2.教学难点:掌握天上的卫星及“地面”上的物体做圆周运动的向心力的来源不同。

四.教学过程

(一).复习提问:

1.地球卫星绕地球做圆周运动的向心力由什么力充当?卫星的线速度、角速度、周期、加速度的表达式?

2.重力与万有引力的区别与联系是什么(特别强调在赤道上的物体)?

教师强调:(1)各运动参量表达式成立的条件是F万全部充当向心力才成立。

(2)对于同一中心天体运动参量随轨道半径r变化而变化。

(3)若中心天体不同各运动参量随轨道半径r和中心天体质量M两因素变化而变化。

(二)..典型例题---------赤道平面内的物体的运动

例1.处在赤道平面内的四个物体,卫星a,同步卫星b,近地卫星c,赤道上的物体d,均在赤道平面内做同向的圆周运动;已知地球半径为R,质量为M,自传周期为T0,万有引力常量为G

求:(1)比较四个物体的周期及角速度定性关系?

(2)比较b、c、d三个物体的线速度定性关系及a、b、c三个物体的线

速度定性关系?

(3)比较b、c、d三个物体的加速度定性关系及a、b、c三个物体的加速度定性关系?

拓展1:c卫星的轨道半径近似等于地球半径,已知该星的公转周期为T,求地球的平均密度?

拓展2:求质量为m的物体d所受的重力的大小(考虑地球的自传)?

拓展3:假设第球自转角速度不断增大,当角速度增大多大时,物体d刚好“飘起”?此时物体d的线速度与第一宇宙速度相比大小关系是?此时物体d做圆周运动的周期多大?

拓展4:c卫星的轨道半径近似等于地球半径,c卫星与d物体的线速度相等吗?为什么?

拓展5:c卫星的轨道半径近似等于地球半径为R,a卫星的轨道半径为Ra ,假设某时刻a、c、两卫星在过地心的同一直线上(如图所示)求a卫星至少再经多长时间出现在c卫星的正上方?此位置还在初始位置吗?

拓展6:如果在赤道上插一根很长的旗杆,当人沿旗杆往上爬,在低于同步轨道时此人此时松手人能否绕地球做圆周运动?在同步轨道和高于同步轨道时分别松手人能否绕地球做圆周运动?

随堂练习1:土星外层有一个环,为了判断它是土星的一部分还是土星的卫星群,可以根据环中各层的线速度V与该层到土星中心的距离R之间的关系来判断( )

A.若V∝R,则该层是土星的一部分 B.若V∝R,则该层是土星的卫星群

C.若V2∝1/R,则该层是土星的一部分 D.若V2∝1/R,则该层是土星的卫星群

随堂练习2:某地球同步卫星离地心距离为r,运行速度为v1,加速度为a1,地球赤道上的物体随地球自转的向心加速度为a2,第一宇宙速度为v2,地球的半径为R,则下列比例式正确的是( )

(三).典型例题---------双星模型

例2“双星系统”有两颗相距较近的恒星组成,每个恒星的半径远小于两星体之间的距离,且双星系统远离其它天体,如图所示连颗星体在相互作用的万有引力作用下绕连线上的O点做匀速圆周运动。现测得两恒星之间的距离为L,质量分别为m1和m2 则可求:

(1)m1与m2做圆周运动的轨道半径r1与r2的大小?

(2)双星m1与m2的线速度?

(3)双星的周期T=?

变形1:“双星系统”有两颗相距较近的恒星组成,每个恒星的半径远小于两星体之间的距离,且双星系统远离其它天体,如图所示连颗星体在相互作用的万有引力作用下绕连线上的O点做匀速圆周运动。现测得两恒星之间的距离为L,公转周期为T ,万有引力常量为G则双星的总质量为_________________.

变形2:宇宙中有A、B两颗天体构成的一个双星系统,它们互相环绕做圆周运动,其中天体A质量大于天体B的质量,假设两星之间存在质量转移,B的一部分质量转移到了A,若双星间的中心距离不变,则发生质量转移前后( )

A.天体A、B之间的万有引力不变 B.天体A、B做圆周运动的角速不变

C.天体A运动半径不变,线速度也不变 D.天体B运动半径变大,线速度也变大

变形3.当MB

习题1:(2010年高考大纲全国卷Ⅰ)如图,质量分别为m和M的两个星球A和B在引力作用下都绕O点做匀速圆周运动,星球A和B两者中心之间的

距离为L.已知A、B的中心和O三点始终共线,A和B分别在O的两侧.引力常数为G.

(1)求两星球做圆周运动的周期;

(2)在地月系统中,若忽略其他星球的影响.可以将月球和地球看成上述星球A和B,月球绕其轨道中心运行的周期记为T1.但在近似处理问题时,常常认为月球是绕地心做圆周运动的,这样算得的运行周期记为T2.已知地球和月球的质量分别为5.98×1024?kg和7.35×1022?kg.求T2与T1两者平方之比.(结果保留3位小数)

教师强调:双星系统一定是两颗质量可以相比的恒星相互绕着旋转的现象,两恒星质量相差较大时就不能看成是双星系统,看成质量小的恒星以质量大的星体为圆心的圆周运动。

迁移一:如图所示是用以说明向心力和质量、半径之间关系的仪器,球P和Q可以在光滑杆上无摩擦地滑动,两球之间用一条轻绳连接,mp=2mQ,当整个装置以ω匀速旋转时,两球离转轴的距离保持不变,则此时()

A.两球的向心力大小相等

B.两球做圆周运动半径RP:RQ=1:2

C.当ω增大时,P球将沿杆向外运动

D.当ω增大时,Q球将沿杆向外运动

迁移二(三星系统):(2006广东卷)宇宙中存在一些离其它恒星较远的、由质量相等的三颗星组成的三星系统,通常可忽略其它星体对它们的引作用。已观测到稳定的三星系统存在两种基本的构成形式:一种是三颗星位于同一直线上,两颗星围绕中央星在同一半径为?R的圆轨道上运行;另一种形式是三颗星位于等边三角形的三个项点上,并沿外接于等边三角形的圆形轨道运行。设三颗星质量相等,每个星体的质量均为m

(1).试求第一种情况下,星体运动的线速度和周期

(2)假设两种形式星体的运动周期相同,第二种形式下星体之间的距离应为多少?

(四).估测中心天体的质量

Ⅰ.从中心天体本身出发。

例3.一宇航员抵达一半径为R的星球表面后,为了测定该星球的质量M,做如下的实验,取一根细线穿过光滑的细直管,细线一端栓一质量为m的砝码,另一端连在一固定的测力计上,手握细线直管抡动砝码,使它在竖直平面内做完整的圆周运动,停止抡动细直管。砝码可继续在同一竖直平面内做完整的圆周运动。如图所示,此时观察测力计得到当砝码运动到圆周的最低点和最高点两位置时,测力计得到当砝码运动到圆周的最低点和最高点两位置时,测力计的读数差为ΔF。已知引力常量为G,试根据题中所提供的条件和测量结果,求

(1)该星球表面重力加速度;

(2)该星球的质量M。

(3)该星球的第一宇宙速度。

Ⅱ.从环绕天体出发。

例4.已知哪些数据,可以测算地球的质量M,引力常数G为已知( )

A.月球绕地球运动的周期T1及月球中心到地球中心的距离r1.

B.月球绕地球运行的角速度及月球绕地球运行的线速度v2。

C.人造卫星在地面附近的运行速度V3和运行周期T3

D.地球绕太阳运行的速度V4及地球中心到太阳中心距离r4

教师小结求中心天体的质量方法:

Ⅰ.从中心天体本身出发:一般将g作为隐含条件,经常与在该中心天体上的抛体运动、自由落体运动、绳球模型、杆球模型等作为g的载体。

Ⅱ.从环绕天体出发。已知环绕天体的参数可求中心天体的质量不能求绕转天体的质量。

(五).本课小结:重力、万有引力、向心力的知识联系

五.课后作业。

1.行星A有一颗卫星a,行星B有一颗卫星b,A与B的质量之比为2:1,a与b的质量之比为10:1,A与B的半径之比为10:2,两卫星轨道半径之比1:2,则它们的运行周期之比Ta:Tb为( )

A.1:4 B.1:2 C.2:1 D.4:1

2. 关于人造地球卫星,下列说法中正确的是( )

A.运行的轨道半径越大,线速度越大 B.卫星绕地球运行的环绕速率可能等于8km/s

C.卫星的轨道半径越大,周期也越大 D.运行的周期可能等于80分钟

3.人造卫星绕地球作匀速圆周运动,其轨道半径为R,线速度为V,周期为T,若要使该卫星的周期变为2T,可以采取的办法是( )

A.保持半径不变,把线速度变为V/2 B.把轨道半径变为

C.把轨道半径变为2R,线速度变为V/2 D.卫星速率不变把轨道半径半径变为2R

4.设宇航员在月球表面附近高为h处以水平速度v0抛出一物体,经时间t落到月球表面,已知月球半径为R,引力常量为G,忽略月球自转,下列判断正确的是( )

5.已知地球半径R=6.37×106m.地球质量M=5.98×1024Kg,万有引力常量G=6.67×10-11 Nm2/Kg2.试求挂在赤道附近处弹簧秤下的质量m=1Kg的物体弹簧秤的示数多大(地球自转不可忽略)?

思考:不考虑地球自转弹簧秤的示数多大?与考虑自转读数差别大吗?两种情况比较说明什么问题?

6.在勇气号火星探测器着陆的最后阶段,着陆器降落到火星表面上,再经过多次弹跳才停下来。假设着陆器第一次落到火星表面弹起后,到达最高点时高度为h,速度方向是水平的,速度大小为v0,求它第二次落到火星表面时速度的大小,计算时不计火星大气阻力。已知火星的一个卫星的圆轨道的半径为r,周期为T。火星可视为半径为r0的均匀球体。

精选阅读

高三物理《万有引力与航天》教材分析


高三物理《万有引力与航天》教材分析

考点16万有引力与航天
考点名片
考点细研究:要点:以万有引力定律为基础的行星、卫星匀速圆周运动模型及其应用;双星模型、估算天体的质量和密度等;以开普勒三定律为基础的椭圆运行轨道及卫星的发射与变轨、能量等相关内容;万有引力定律与地理、数学、航天等知识的综合应用。
备考正能量:高考对本考点的命题比较固定,基本是一个选择题,个别省份有填空题和计算题出现。考点内容与人造卫星、载人航天、探月计划等热点话题密切联系,考查的频率也越来越高,应密切关注。

一、基础与经典
1.火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知()
A.太阳位于木星运行轨道的中心
B.火星和木星绕太阳运行速度的大小始终相等
C.火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方
D.相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积
答案C
解析由开普勒第一定律(轨道定律)可知,太阳位于木星运行轨道的一个焦点上,A错误。火星和木星绕太阳运行的轨道不同,运行速度的大小不可能始终相等,B错误。根据开普勒第三定律(周期定律)知所有行星轨道的半长轴的三次方与它的公转周期的平方的比值是一个常数,C正确。对于某一个行星来说,其与太阳连线在相同的时间内扫过的面积相等,不同行星在相同的时间内扫过的面积不相等,D错误。
2.关于万有引力定律,下列说法正确的是()
A.牛顿提出了万有引力定律,并测定了引力常量的数值
B.万有引力定律只适用于天体之间
C.万有引力的发现,揭示了自然界一种基本相互作用的规律
D.地球绕太阳在椭圆轨道上运行,在近日点和远日点受到太阳的万有引力大小是相同的
答案C
解析万有引力存在于一切物体间,B错误;牛顿提出万有引力定律,卡文迪许测定了万有引力恒量,A错误;万有引力是自然界的一种基本相互作用,它与距离的平方成反比,故C正确,D错误。
3.a、b、c、d是在地球大气层外的圆形轨道上运行的四颗人造卫星。其中a、c的轨道相交于P,b、d在同一个圆轨道上,b、c轨道在同一平面上。某时刻四颗卫星的运行方向及位置如图所示。下列说法中正确的是()

A.a、c的加速度大小相等,且大于b的加速度
B.b、c的角速度大小相等,且小于a的角速度
C.a、c的线速度大小相等,且小于d的线速度
D.a、c存在在P点相撞的危险
答案A
解析由图可知:ra=rcab,A正确。G=m=mω2r=ma,可知,B、C错误;a、c周期相同,故不可能同时到达同一位置,D错误。
4.(多选)如图所示,近地人造卫星和月球绕地球的运行轨道可视为圆。设卫星、月球绕地球运行周期分别为T卫、T月,地球自转周期为T地,则()

A.T卫T月
C.T卫r同r卫,由开普勒第三定律=k可知,T月T同T卫,又同步卫星的周期T同=T地,故有T月T地T卫,选项A、C正确。
5.研究表明,地球自转在逐渐变慢,3亿年前地球自转的周期约为22小时。假设这种趋势会持续下去,地球的其他条件都不变,未来人类发射的地球同步卫星与现在的相比()
A.距地面的高度变大B.向心加速度变大
C.线速度变大D.角速度变大
答案A
解析根据G=m2r可知r=,若T增大,r增大,h=r-R,故A正确。根据a=可知,r增大,a减小,B错误。根据G=可得v=,r增大,v减小,C错误。ω=,T增大,ω减小,D错误。
6.某行星和地球绕太阳公转的轨道均可视为圆,每过N年,该行星会运行到日地连线的延长线上,如图所示。该行星与地球的公转半径之比为()

A.B.
C.D.
答案B
解析地球公转周期T1=1年,设T2为行星的公转周期,每过N年,行星会运行到日地连线的延长线上,即地球比该行星多转一圈,有N-N=2π,解得:T2=年,故行星与地球的公转周期之比为;由G=mr得:=,即rT,故行星与地球的公转半径之比为,B正确。
7.(多选)“神舟九号”飞船与“天宫一号”成功对接,在飞船完成任务后返回地面,要在A点从圆形轨道进入椭圆轨道,B为轨道上的一点,如图所示,关于“神舟九号”的运动,下列说法中正确的有()

A.在轨道上经过A的速度小于经过B的速度
B.在轨道上经过A的速度小于在轨道上经过A的速度
C.在轨道上运动的周期小于在轨道上运动的周期
D.在轨道上经过A的加速度小于在轨道上经过A的加速度
答案ABC
解析“神舟九号”飞船在轨道上经过远地点A的速度小于经过近地点B的速度,选项A正确;飞船从圆形轨道进入椭圆轨道,需要在A点减速,选项B正确;由开普勒第三定律=k可知,轨道半长轴越长周期越长,轨道上的周期小于轨道上的运动周期,选项C正确;a=可知,rA不变,所以在轨道上经过A的加速度等于在轨道上经过A的加速度,选项D错误。
8.(多选)设同步卫星离地心的距离为r,运行速率为v1,加速度为a1;地球赤道上的物体随地球自转的向心加速度为a2,第一宇宙速度为v2,地球的半径为R,则下列比值正确的是()
A.=B.=C.=D.=
答案BD
解析地球同步卫星的角速度和地球赤道上的物体随地球自转的角速度相同,由a1=ω2r,a2=ω2R可得,=,B项正确;对于地球同步卫星和以第一宇宙速度运动的近地卫星,由万有引力提供向心力,即m=;m=,得=,D项正确。
9.(多选)宇宙中,两颗靠得比较近的恒星,只受到彼此之间的万有引力作用互相绕转,称为双星系统。在浩瀚的银河系中,多数恒星都是双星系统。设某双星系统A、B绕其连线上的O点做匀速圆周运动,如图所示。若,则()

A.星球A的质量一定大于B的质量
B.星球A的线速度一定大于B的线速度
C.双星间距离一定,双星的质量越大,其转动周期越大
D.双星的质量一定,双星之间的距离越大,其转动周期越大
答案BD
解析设双星质量分别为mA、mB,轨道半径为RA、RB,两者间距为L,周期为T,角速度为ω,由万有引力定律可知:=mAω2RA,=mBω2RB,又有RA+RB=L,可得=,G(mA+mB)=ω2L3。由知,mAvB,B正确。由T=及G(mA+mB)=ω2L3可知C错误,D正确。
10.(多选)在太阳系中有一颗半径为R的行星,若在该行星表面以初速度v0竖直向上抛出一物体,上升的最大高度为H,已知该物体所受的其他力与行星对它的万有引力相比较可忽略不计。根据这些条件,可以求出的物理量是()
A.太阳的密度
B.该行星的第一宇宙速度
C.该行星绕太阳运行的周期
D.卫星绕该行星运行的最小周期
答案BD
解析由v=2gH,得该行星表面的重力加速度g=
根据mg=m=mR,解得该行星的第一宇宙速度v=,卫星绕该行星运行的最小周期T=,所以B、D正确;因不知道行星绕太阳运动的任何量,故不能算太阳的密度和该行星绕太阳运动的周期,所以A、C错误。
二、真题与模拟
11.20xx·全国卷]关于行星运动的规律,下列说法符合史实的是()
A.开普勒在牛顿定律的基础上,导出了行星运动的规律
B.开普勒在天文观测数据的基础上,总结出了行星运动的规律
C.开普勒总结出了行星运动的规律,找出了行星按照这些规律运动的原因
D.开普勒总结出了行星运动的规律,发现了万有引力定律
答案B
解析行星运动的规律是开普勒在第谷长期观察行星运动数据的基础上总结归纳出来的,并不是在牛顿运动定律的基础上导出的,但他并没有找出行星按这些规律运动的原因,A、C错误,B正确。牛顿发现了万有引力定律,D错误。
12.20xx·江苏高考](多选)如图所示,两质量相等的卫星A、B绕地球做匀速圆周运动,用R、T、Ek、S分别表示卫星的轨道半径、周期、动能、与地心连线在单位时间内扫过的面积。下列关系式正确的有()

A.TATBB.EkAEkB
C.SA=SBD.=
答案AD
解析卫星做圆周运动,万有引力提供向心力,即G=m=mR2,得v=,T=2π,由于RARB可知,TATB,vAa1a3B.a3a2a1
C.a3a1a2D.a1a2a3
答案D
解析对于东方红一号卫星,在远地点由牛顿第二定律可知=m1a1,即a1=(r1=2060km)。对于东方红二号卫星,由牛顿第二定律可知=m2a2,即a2=(r2=35786km)。因为r1a2,由圆周运动规律可知,对东方红二号卫星:a2=r2,对地球赤道上的物体:a3=R,因为r2R,所以a2a3,综上可得a1a2a3,D正确。
15.20xx·天津高考]我国即将发射“天宫二号”空间实验室,之后发射“神舟十一号”飞船与“天宫二号”对接。假设“天宫二号”与“神舟十一号”都围绕地球做匀速圆周运动,为了实现飞船与空间实验室的对接,下列措施可行的是()

A.使飞船与空间实验室在同一轨道上运行,然后飞船加速追上空间实验室实现对接
B.使飞船与空间实验室在同一轨道上运行,然后空间实验室减速等待飞船实现对接
C.飞船先在比空间实验室半径小的轨道上加速,加速后飞船逐渐靠近空间实验室,两者速度接近时实现对接
D.飞船先在比空间实验室半径小的轨道上减速,减速后飞船逐渐靠近空间实验室,两者速度接近时实现对接
答案C
解析卫星绕地球做圆周运动,满足G=。若加速,则会造成G,卫星将做离心运动,向外跃迁。因此要想使两卫星对接绝不能同轨道加速或减速,只能从低轨道加速或从高轨道减速,C正确,A、B、D错误。
16.20xx·广东高考](多选)在星球表面发射探测器,当发射速度为v时,探测器可绕星球表面做匀速圆周运动;当发射速度达到v时,可摆脱星球引力束缚脱离该星球。已知地球、火星两星球的质量比约为101,半径比约为21。下列说法正确的有()
A.探测器的质量越大,脱离星球所需要的发射速度越大
B.探测器在地球表面受到的引力比在火星表面的大
C.探测器分别脱离两星球所需要的发射速度相等
D.探测器脱离星球的过程中,势能逐渐增大
答案BD
解析由G=m得,v=,则有v=,由此可知探测器脱离星球所需要的发射速度与探测器的质量无关,A项错误;由F=G及地球、火星的质量、半径之比可知,探测器在地球表面受到的引力比在火星表面的大,B项正确;由v=可知,探测器脱离两星球所需的发射速度不同,C项错误;探测器在脱离两星球的过程中,引力做负功,引力势能是逐渐增大的,D项正确。
17.20xx·重庆高考]宇航员王亚平在“天宫1号”飞船内进行了我国首次太空授课,演示了一些完全失重状态下的物理现象。若飞船质量为m,距地面高度为h,地球质量为M,半径为R,引力常量为G,则飞船所在处的重力加速度大小为()
A.0B.C.D.
答案B
解析对飞船进行受力分析,可得G=mg,得g=,B项正确。
18.20xx·江苏高考]过去几千年来,人类对行星的认识与研究仅限于太阳系内,行星“51pegb”的发现拉开了研究太阳系外行星的序幕。“51pegb”绕其中心恒星做匀速圆周运动,周期约为4天,轨道半径约为地球绕太阳运动半径的。该中心恒星与太阳的质量比约为()
A.B.1C.5D.10
答案B
解析行星绕恒星做匀速圆周运动,万有引力提供向心力,由G=mr2,得M=,则该中心恒星的质量与太阳的质量之比=·=3×=1.04,B项正确。
19.20xx·全国卷](多选)我国发射的“嫦娥三号”登月探测器靠近月球后,先在月球表面附近的近似圆轨道上绕月运行;然后经过一系列过程,在离月面4m高处做一次悬停(可认为是相对于月球静止);最后关闭发动机,探测器自由下落。已知探测器的质量约为1.3×103kg,地球质量约为月球的81倍,地球半径约为月球的3.7倍,地球表面的重力加速度大小约为9.8m/s2。则此探测器()
A.在着陆前的瞬间,速度大小约为8.9m/s
B.悬停时受到的反冲作用力约为2×103N
C.从离开近月圆轨道到着陆这段时间内,机械能守恒
D.在近月圆轨道上运行的线速度小于人造卫星在近地圆轨道上运行的线速度
答案BD
解析由题述地球质量约为月球质量的81倍,地球半径约为月球半径的3.7倍,由公式G=mg,可得月球表面的重力加速度约为地球表面重力加速度的,即g月=1.6m/s2,由v2=2g月h,解得此探测器在着陆瞬间的速度v≈3.6m/s,选项A错误;由平衡条件可得悬停时受到的反冲作用力约为F=mg月=1.3×103×1.6N≈2×103N,选项B正确;从离开近月圆轨道到着陆这段时间,由于受到了反冲作用力,且反冲作用力对探测器做负功,所以探测器机械能减小,选项C错误;由G=m,G=mg,解得v=,由于地球半径和地球表面的重力加速度均大于月球,所以探测器在近月轨道上运行的线速度要小于人造卫星在近地轨道上运行的线速度,选项D正确。
20.20xx·山东高考]如图,拉格朗日点L1位于地球和月球连线上,处在该点的物体在地球和月球引力的共同作用下,可与月球一起以相同的周期绕地球运动。据此,科学家设想在拉格朗日点L1建立空间站,使其与月球同周期绕地球运动。以a1、a2分别表示该空间站和月球向心加速度的大小,a3表示地球同步卫星向心加速度的大小。以下判断正确的是()

A.a2a3a1B.a2a1a3
C.a3a1a2D.a3a2a1
答案D
解析因空间站建在拉格朗日点,所以月球与空间站绕地球转动的周期相同,空间站半径小,由a=ω2r得a1a2a1,选项D正确。

一、基础与经典
21.宇航员驾驶宇宙飞船到达月球表面,关闭动力,飞船在近月圆形轨道绕月运行的周期为T;接着,宇航员调整飞船动力,安全着陆,宇航员在月球表面离地某一高度处将一质量为m的小球以初速度v0水平抛出,其水平射程为s。已知月球的半径为R,引力常量为G,求:
(1)月球的质量M;
(2)小球开始抛出时离地的高度;
(3)小球落地时重力的瞬时功率。
答案(1)(2)(3)
解析(1)飞船在近月圆形轨道上运动时,月球对飞船的万有引力提供向心力,有G=mR2,
解得月球的质量M=。
(2)小球做平抛运动,水平方向做匀速直线运动,有s=v0t,
竖直方向做自由落体运动,有h=gt2,
在月球表面,小球受到月球的万有引力近似等于重力,有
G=mR2=mg,
联立解得小球开始抛出时离地的高度为h=。
(3)小球落地时速度的竖直分量为v=gt=,
重力的瞬时功率为P=mgv=m·=。
22.如图所示,质量分别为m和M的两个星球A和B在引力作用下都绕O点做匀速圆周运动,星球A和B两者中心之间的距离为L。已知A、B的中心和O点始终共线,A和B分别在O点的两侧。引力常量为G。

(1)求两星球做圆周运动的周期。
(2)在地月系统中,若忽略其他星球的影响,可以将月球和地球看成上述星球A和B,月球绕其轨道中心运行的周期记为T1。但在近似处理问题时,常常认为月球是绕地心做圆周运动的,这样算得的运行周期为T2。已知地球和月球的质量分别为5.98×1024kg和7.35×1022kg。求T2与T1两者的平方之比。(结果保留3位小数)
答案(1)2π(2)1.012
解析(1)A和B绕O点做匀速圆周运动,它们之间的万有引力提供向心力,则A和B的向心力相等,且A、B的中心和O点始终共线,说明A和B组成双星系统且有相同的角速度和周期。设A、B做圆周运动的半径分别为r、R,则有
mω2r=Mω2R,r+R=L,
联立解得R=L,r=L,
对A,根据牛顿第二定律和万有引力定律得
=m2L,
解得T=2π。
(2)由题意,可以将地月系统看成双星系统,由(1)得
T1=2π,
若认为月球绕地心做圆周运动,则根据牛顿第二定律和万有引力定律得
=m2L,
解得T2=2π,
所以T2与T1的平方之比为
===1.012。
二、真题与模拟
23.20xx·天津高考]万有引力定律揭示了天体运行规律与地上物体运动规律具有内在的一致性。
(1)用弹簧秤称量一个相对于地球静止的小物体的重量,随称量位置的变化可能会有不同的结果。已知地球质量为M,自转周期为T,万有引力常量为G。将地球视为半径为R、质量均匀分布的球体,不考虑空气的影响。设在地球北极地面称量时,弹簧秤的读数为F0。
a.若在北极上空高出地面h处称量,弹簧秤读数为F1,求比值的表达式,并就h=1.0%R的情形算出具体数值(计算结果保留2位有效数字);
b.若在赤道地面称量,弹簧秤读数为F2,求比值的表达式。
(2)设想地球绕太阳公转的圆周轨道半径r、太阳的半径为RS和地球的半径R三者均减小为现在的1.0%,而太阳和地球的密度均匀且不变,仅考虑太阳和地球之间的相互作用,以现实地球的1年为标准,计算“设想地球”的1年将变为多长?
答案(1)a.=0.98b.=1-
(2)与现实地球的1年时间相同
解析(1)设小物体质量为m。
a.在北极地面G=F0,在北极上空高出地面h处
G=F1,
得=,h=1.0%R时,=≈0.98。
b.在赤道地面,小物体随地球自转做匀速圆周运动,受到万有引力和弹簧秤的作用力,有G-F2=mR,
得=1-。
(2)地球绕太阳做匀速圆周运动,受到太阳的万有引力。设太阳质量为MS,地球质量为M,地球公转周期为TE,有G=M,得TE==,其中ρS为太阳的密度。
由上式可知,地球公转周期TE仅与太阳的密度、地球公转轨道半径与太阳半径之比有关。因此“设想地球”的1年与现实地球的1年时间相同。
24.20xx·云南重点中学联考]有一质量为m的航天器靠近地球表面绕地球做匀速圆周运动(轨道半径等于地球半径),某时刻航天器启动发动机,向后喷气,在很短的时间内动能变为原来的,此后轨道变为椭圆,远地点与近地点距地心的距离之比是21,经过远地点和经过近地点的速度之比为12。已知地球半径为R,地球表面重力加速度为g。
(1)求航天器在靠近地球表面绕地球做圆周运动时的周期T;
(2)求航天器靠近地球表面绕地球做圆周运动时的动能;
(3)在从近地点运动到远地点的过程中航天器克服地球引力所做的功为多少?
答案(1)2π(2)mgR(3)mgR
解析(1)由牛顿第二定律mg=m2R,
解得T=2π。
(2)设航天器靠近地球表面绕地球做圆周运动时的速度为v1,由mg=m,解得Ek1=mv=mgR。
(3)由题意,喷气后航天器在近地点的动能为Ek2=Ek1=mgR,
航天器在远地点的动能为Ek3=Ek2=mgR。
由动能定理得航天器克服地球引力所做的功为
W=Ek2-Ek3=mgR。

高一物理教案:《圆周运动- 万有引力》教学设计


一名合格的教师要充分考虑学习的趣味性,作为高中教师就要好好准备好一份教案课件。教案可以让学生们充分体会到学习的快乐,让高中教师能够快速的解决各种教学问题。你知道如何去写好一份优秀的高中教案呢?以下是小编收集整理的“高一物理教案:《圆周运动- 万有引力》教学设计”,大家不妨来参考。希望您能喜欢!

高一物理教案:《圆周运动- 万有引力》教学设计

一、选择题:

1.关于圆周运动的下列论述正确的是 ( )

A. 做匀速圆周运动的物体,在任何相等的时间内通过的位移都相等

B. 做匀速圆周运动的物体,在任何相等的时间内通过的路程都相等

C. 做圆周运动的物体的加速度的方向一定指向圆心

D. 做圆周运动的物体的线速度的方向一定跟半径垂直

2.如图6-1有一个空心圆锥面开口向上放置着,圆锥面绕几何轴线匀速转动,在圆锥面内表面有一个物体m与壁保持相对静止,则物体m所受的力为 ( )

A. 重力、弹力、下滑力共三个力 B. 重力、弹力共两个力

C. 重力、弹力、向心力共三个力

D. 重力、弹力、离心力共三个力

3.一个水平的圆盘上放一个木块,木块随圆盘绕通过圆盘中心的竖直轴匀速转动,如图6-2所示。木块受到的圆盘所施的摩擦力的方向为 ( )

A. 方向指向圆盘的中心 B. 方向背离圆盘的中心

C. 方向跟木块运动的方向相同

D. 方向跟木块运动的方向相反

4.长l的细绳一端固定,另一端系一个质量为m的小球,使球在竖直面内做圆运动,那么 ( )

A. 小球通过圆周上顶点时的速度最小可以等于零

B. 小球通过圆周上顶点时的速度不能小于 C. 小球通过最高点时,小球需要的向心力可以等于零

D. 小球通过最高点时绳的张力可以等于零

5.人造卫星在轨道上绕地球做圆周运动,它所受的向心力F跟轨道半径r的关系是 ( )

A.由公式F= 可知F和r成反比

B.由公式F=mω2r可知F和ω2成正比

C.由公式F=mωv可知F和r无关

D.由公式F= 可知F和r2成反比

6.由于某种原因,人造地球卫星的轨道半径减小了,那么,卫星的 ( )

A.速变率大,周期变小 B.速率变小,周期变大

C.速率变大,周期变大 D.速率变小,周期变小

7.关于同步定点卫星(这种卫星相对于地面静止不动),下列说法中正确的是 ( )

A.它一定在赤道上空运行

B.同步卫星的高度和运动速率是一个确定的值

C.它运行的线速度一定小于第一宇宙速度

D.它运行的线速度介于第一和第二宇宙速度之间

8.两行星A和B各有一颗卫星a和b,卫星的圆轨道接近各自行星表面,如果两行星质量之比MA:MB=p,两行星半径之比RA:RB=q,则两个卫星周期之比TA:TB为 ( )

A.q· B.q· C.p· D.q·

二、填空题

9.质量为m的小球,沿着在竖直平面的圆形轨道的内侧运动,它经过最高点而不脱离轨道的最小速度是v,当小球以2v的速度经过最高点时,这对轨道的压力是___________。

10.一个做匀速圆周运动的物体,如果轨道半径不变,转速变为原来的3倍,所需的向心力就比原来的向心力大40N,物体原来的向心力大小为___________;若转速不变,轨道半径变为原来的3倍,所需的向心力比原来大40N,那么物体原来的向心力大小为__________。

11.用长为L的细绳拴一质量为m的小球,当小球绕悬挂点O摆动经过最低点时,已知细绳的拉力为3mg 。若在小球经过最低点时,用细杆挡在绳中点O′如图6-3所示,则这时球对绳拉力的大小将是________ 12.如图6-4所示的皮带传动装置,皮带轮O和O′上的三点A、B、C,OA=O′C=r,O′B=2r。则皮带轮转动时,A、B、C三点的运动情况是WA_WB_WC,VA_ VB__VC,aA_aB_ac(填=,>,

14.如图6-5所示,在一水平转台上放置两个物体甲和乙,已知M甲=2M乙,两物体所受转台的最大静摩擦力与其质量成正比,则当转台转速逐渐增加时,________物体先滑动。

三、计算题:

15.司机为了能够控制驾驶的汽车,汽车对地面的压力一定要大于零。在高速公路上所建的高架桥的顶部可以看作是一个圆弧。若高速公路上汽车设计时速为180km/h,求高架桥顶部的圆弧半径至少是多少?(g取10m/s2)

16.汽车起重机用5m长的缆绳吊着lt重的重物,以2m/s的速度水平行驶,若突然刹车,求此瞬间缆绳所受的拉力大小。(取g=10m/s2)

17.若地球绕太阳公转的周期与月球绕地球公转的周期之比为p,地球绕太阳公转的半径与月球绕地球公转的半径之比q,则太阳质量与地球质量之比M日/M地是多少?

18.一根轻杆长为l,顶端有质量为m的小球,另一端为轴。如轻杆在竖直平面内匀速旋转角速度为ω,求:(1)小球经过圆周轨道最低点时小球给杆的作用力;(2)小球经过圆周轨道最高点时,小球给杆的作用力(区分为拉力、压力及无力三种情况加以说明)。

19.在离地球表面等于3倍地球半径的高度上,运行一颗人造地球卫星,已知地球半径为R=6.4×106m,取g=10m/s2,则这颗人造地球卫星的运行速度是多少?

20.在一次测定万有引力恒量的实验里,两个小球的质量分别是0.80kg和4.0×10-3kg,当它们相距4.0×10-2m时相互吸引的作用力是1.3×10-10N。如果地球表面的重力加速度是9.8m/s2,地球的半径取6.4×106m,试计算出地球的质量。

高一物理教案:《万有引力定律》教学设计


一位优秀的教师不打无准备之仗,会提前做好准备,作为高中教师就要在上课前做好适合自己的教案。教案可以让学生更好地进入课堂环境中来,帮助高中教师在教学期间更好的掌握节奏。高中教案的内容具体要怎样写呢?为满足您的需求,小编特地编辑了“高一物理教案:《万有引力定律》教学设计”,供大家参考,希望能帮助到有需要的朋友。

高一物理教案:《万有引力定律》教学设计

教学目标

知识目标

1、在开普勒第三定律的基础上,推导得到万有引力定律,使学生对此定律有初步理解;

2、使学生了解并掌握万有引力定律;

3、使学生能认识到万有引力定律的普遍性(它存在宇宙中任何有质量的物体之间,不管它们之间是否还有其它作用力).

能力目标

1、使学生能应用万有引力定律解决实际问题;

2、使学生能应用万有引力定律和圆周运动知识解决行星绕恒星和卫星绕行星运动的天体问题.

情感目标

1、使学生在学习万有引力定律的过程中感受到万有引力定律的发现是经历了几代科学家的不断努力,甚至付出了生命,最后牛顿总结了前人经验的基础上才发现的.让学生在应用万有引力定律的过程中应多观察、多思考.

教学建议

万有引力定律的内容固然重要,让学生了解发现万有引力定律的过程更重要.建议教师在授课时,应提倡学生自学和查阅资料.教师应准备的资料应更广更全面.通过让学生阅读“万有引力定律的发现过程”,让学生根据牛顿提出的几个结果自己去猜测万有引力与那些量有关.教师在授课时可以让学生自学,也可由教师提出问题让学生讨论,也可由教师展示出开普勒三定律和牛顿的一些故事引导学生讨论.

万有引力定律的教学设计方案

教学目的:

1、了解万有引力定律得出的思路和过程;

2、理解万有引力定律的含义并会推导万有引力定律;

3、掌握万有引力定律,能解决简单的万有引力问题;

教学难点:万有引力定律的应用

教学重点:万有引力定律

教具:

展示第谷、哥白尼,伽利略、开普勒和牛顿等人图片.

教学过程

(一)新课教学(20分钟)

1、引言

展示第谷、哥白尼,伽利略、开普勒和牛顿等人照片并讲述物理学史:

十七世纪中叶以前的漫长时间中,许多天文学家和物理学家(如第谷、哥白尼,伽利略和开普勒等人),通过了长期的观察、研究,已为人类揭示了行星的运动规律.但是,长期以来人们对于支配行星按照一定规律运动的原因是什么.却缺乏了解,更没有人敢于把天体运动与地面上物体的运动联系起来加以研究.

伟大的物理学家牛顿在哥白尼、伽利略和开普勒等人研究成果的基础上,进一步将地面上的动力学规律推广到天体运动中,研究、确立了《万有引力定律》.从而使人们认识了支配行星按一定规律运动的原因,为天体动力学的发展奠定了基础.那么:

(1)牛顿是怎样研究、确立《万有引力定律》的呢?

(2)《万有引力定律》是如何反映物体间相互作用规律的?

以上两个问题就是这节课要研究的重点.

2、通过举例分析,引导学生粗略领会牛顿研究、确立《万有引力定律》的科学推理的思维方法.

苹果在地面上加速下落:(由于受重力的原因):

月亮绕地球作圆周运动:(由于受地球引力的原因);

行星绕太阳作圆周运动:(由于受太阳引力的原因),

(牛顿认为)

牛顿将上述各运动联系起来研究后提出:这些力是属于同种性质的力,应遵循同一规律;并进一步指出这种力应存在于宇宙中任何具有质量的物体之间.

3、引入课题.

板书:第二节、万有引力定律

(1)万有引力:宇宙间任何有质量的物体之间的相互作用.(板书)

(2)万有引力定律:宇宙间的一切物体都是相互吸引的.两个物体间的引力大小,跟他们之间质量的乘积成正比,跟它们的距离的平方成反比.(板书)

式中: 为万有引力恒量 ; 为两物体的中心距离.引力是相互的(遵循牛顿第三定律).

(二)应用(例题及课堂练习)

学生中存在这样的问题:既然宇宙间的一切物体都是相互吸引的,哪为什么物体没有被吸引到一起?(请学生带着这个疑问解题)

例题1、两物体质量都是1kg,两物体相距1m,则两物体间的万有引力是多少?

解:由万有引力定律得:

代入数据得:

通过计算这个力太小,在许多问题的计算中可忽略

例题2.已知地球质量大约是 ,地球半径为 km,地球表面的重力加速度 .

求:

(1)地球表面一质量为10kg物体受到的万有引力?

(2)地球表面一质量为10kg物体受到的重力?

(3)比较万有引力和重力?

解:(1)由万有引力定律得:

代入数据得:

(2)

(3)比较结果万有引力比重力大.原因是在地球表面上的物体所受万有引力可分解为重力和自转所需的向心力.

(三)课堂练习:

教师请学生作课本中的练习,教师引导学生审题,并提示使用万有引力定律公式解题时,应注意因单位制不同, 值也不同,强调用国际单位制解题.请学生同时到前面,在黑板上分别作1、2、3题.其它学生在座位上逐题解答.此时教师巡回指导学生练习随时注意黑板上演算的情况.

(四)小结:

1、万有引力存在于宇宙中任何物体之间(天体间、地面物体间、微观粒子间).天体间万有引力很大,为什么?留学生去想(它是支配天体运动的原因).地面物体间,微观粒子间:万有引力很小,为什么?它不足以影响物体的运动,故常常可忽略不计.

2、应用万有引力定律公式解题, 值选 ,式中所涉其它各量必须取国际单位制.

(五)布置作业(3分钟):教师可根据学生的情况布置作业.

探究活动

组织学生编写相关小论文,通过对资料的收集,了解万有引力定律的发现过程,了解科学家们对知识的探究精神,下面就是相关的题目.

1、万有引力定律发现的历史过程.

2、第谷在发现万有引力定律上的贡献.

万有引力与航天


第4讲万有引力与航天
图4-4-4
三颗人造地球卫星A、B、C在同一平面内沿不同的轨道绕地球做匀速圆周运动,且绕行方向相同,已知RA<RB<RC.若在某一时刻,它们正好运行到同一条直线上,如图4-4-4所示.那么再经过卫星A的四分之一周期时,卫星A、B、C的位置可能是()
答案:C
2.(2009全国Ⅰ,19)天文学家新发现了太阳系外的一颗行星.这颗行星的体积是地球的4.7倍,质量是地球的25倍.已知某一近地卫星绕地球运动的周期约为1.4小时,引力常量G=6.67×10-11Nm2/kg2,由此估算该行星的平均密度约为()
A.1.8×103kg/m3B.5.6×103kg/m3C.1.1×104kg/m3D.2.9×104kg/m3
解析:近地卫星绕地球做圆周运动时,所受万有引力充当其做圆周运动的向心力,即:GMmR2=m2πT2R,由密度、质量和体积关系M=ρ43πR3解两式得:ρ=3πGT2≈5.60×103kg/m3.由已知条件可知该行星密度是地球密度的25/4.7倍,即ρ=5.60×103×254.7kg/m3=2.9×104kg/m3.
答案:D
3.质量相等的甲、乙两颗卫星分别贴近某星球表面和地球表面围绕其做匀速圆周运动,已知该星球和地球的密度相同,半径分别为R和r,则()
A.甲、乙两颗卫星的加速度之比等于R∶r
B.甲、乙两颗卫星所受的向心力之比等于1∶1
C.甲、乙两颗卫星的线速度之比等于1∶1
D.甲、乙两颗卫星的周期之比等于R∶r
解析:由F=GMmR2和M=ρ43πR3可得万有引力F=43GπRmρ,又由牛顿第二定律F=ma可得,A正确.卫星绕星球表面做匀速圆周运动时,万有引力等于向心力,因此B错误.由F=43GπRmρ,F=mv2R可得,选项C错误.由F=43GπRmρ,F=mR4π2T2可知,周期之比为1∶1,故D错误.
答案:A
4.
图4-4-5
为纪念伽利略将望远镜用于天文观测400周年,2009年被定为以“探索我的宇宙”为主题的国际天文年.我国发射的“嫦娥一号”卫星经过一年多的绕月运行,完成了既定任务,于2009年3月1日16时13分成功撞月.如图4-4-5为“嫦娥一号”卫星撞月的模拟图,卫星在控制点①开始进入撞月轨道.假设卫星绕月球做圆周运动的轨道半径为R,周期为T,引力常量为G.根据题中信息,以下说法正确的是()
A.可以求出月球表面的重力加速度
B.可以求出月球对“嫦娥一号”卫星的引力
C.“嫦娥一号”卫星在控制点①处应减速
D.“嫦娥一号”在地面的发射速度大于11.2km/s
解析:根据Gm1m2R2=m24π2T2R,已知卫星的T、R和引力常量G,可以求月球的质量m1;因为不知道“嫦娥一号”卫星的质量,故无法知道月球对“嫦娥一号”卫星的引力,B项错误;在控制点①,卫星要做向心运动,故需要减速,C项正确;11.2km/s是第二宇宙速度,是卫星脱离地球引力的束缚成为太阳的人造行星的最小发射速度,而“嫦娥一号”卫星并不能脱离地球引力的范围,故其发射速度小于11.2km/s,D项错误.
答案:C
5.
图4-4-6
神奇的黑洞是近代引力理论所预言的一种特殊天体,探寻黑洞的方案之一是观测双星系统的运动规律.天文学家观测河外星系麦哲伦云时,发现了LMCX3双星系统,它由可见星A和不可见的暗星B构成.两星视为质点,不考虑其他天体的影响,A、B围绕两者的连线上的O点做匀速圆周运动,它们之间的距离保持不变,如图4-4-6所示.引力常量为G,由观测能够得到可见星A的速率v和运行周期T.
(1)可见星A所受暗星B的引力FA可等效为位于O点处质量为m′的星体(视为质点)对它的引力,设A和B的质量分别为m1、m2,试求m′(用m1、m2表示);
(2)求暗星B的质量m2与可见星A的速率v、运行周期T和质量m1之间的关系式.
解析:(1)由Gm1m2(r1+r2)2=m1ω2r1=m2ω2r2,可得r1/r2=m2/m1,
又由Gm1m2(r1+r2)2=Gm1m′r21,可解得:m′=m32(m1+m2)2.
(2)由v=2πr1T,得r1=vT2π,再由Gm1m2(r1+r2)2=m1v2r1可得:Gm32(m1+m2)2=v3T2π.
答案:(1)m′=m32(m1+m2)2(2)Gm32(m1+m2)2=v3T2π
1.可以发射一颗这样的人造地球卫星,使其圆轨道()
A.与地球表面上某一纬度线(非赤道)是共面同心圆
B.与地球表面上某一经度线所决定的圆是共面同心圆
C.与地球表面上的赤道线是共面同心圆,且卫星相对地球表面是静止的
D.与地球表面上的赤道线是共面同心圆,但卫星相对地球表面是运动的

解析:人造卫星绕地球做圆周运动所需的向心力是万有引力提供的,人造卫星受地球的引力一定指向地心,所以任何人造卫星的稳定轨道平面都是通过地心的.A选项所述的卫星不能满足这个条件,A错.B选项所述的卫星虽然满足这个条件,但是由于地球在自转,经线所决定的平面也在转动,这样的卫星又不可能有与地球自转同方向的速度,所以不可能始终在某一经线所决定的平面内,如图所示,故B项也错.无论高低如何,轨道平面与地球赤道平面重合的卫星都是存在的,C选项所述卫星就是地球同步卫星,而D项所述卫星不是同步卫星,故C、D项都对.
答案:CD
2.据报道,2009年4月29日,美国亚利桑那州一天文观测机构发现一颗与太阳系其他行星逆向运行的小行星,代号为2009HC82.该小行星绕太阳一周的时间为T年,直径2~3千米,而地球与太阳之间的距离为R0.如果该行星与地球一样,绕太阳运动可近似看做匀速圆周运动,则小行星绕太阳运动的半径约为()
A.R03T2B.R031TC.R031T2D.R03T
解析:小行星和地球绕太阳做圆周运动,都是由万有引力提供向心力,有Gm1m2R2=m22πT2R,可知小行星绕太阳运行轨道半径为R=R03T212=R03T2,A正确.
答案:A
3.
图4-4-7
2008年9月27日16时40分,我国航天员翟志刚打开“神舟”七号载人飞船轨道舱舱门,首度实施空间出舱活动,在茫茫太空第一次留下中国人的足迹(如图4-4-7所示).翟志刚出舱时,“神舟”七号的运行轨道可认为是圆周轨道.下列关于翟志刚出舱活动的说法正确的是()
A.假如翟志刚握着哑铃,肯定比举着五星红旗费力
B.假如翟志刚自由离开“神舟”七号,他将在同一轨道上运行
C.假如没有安全绳束缚且翟志刚使劲向前推“神舟”七号,他将可能沿竖直线自由落向地球
D.假如“神舟”七号上有着和轮船一样的甲板,翟志刚在上面行走的步幅将比在地面上大
解析:“神舟”七号上的一切物体都处于完全失重状态,受到的万有引力提供向心力,A错B对;假如没有安全绳束缚且翟志刚使劲向前推“神舟”七号,将使他对地的速度减小,翟志刚将在较低轨道运动,C错误;由于“神舟”七号上的一切物体都处于完全失重状态,就算“神舟”七号上有着和轮船一样的甲板,翟志刚也几乎不能行走,D错误.
答案:B
4.
图4-4-8
在美国东部时间2009年2月10日上午11时55分(北京时间11日0时55分),美国一颗质量约为560kg的商用通信卫星“铱33”与俄罗斯一颗已经报废的质量约为900kg军用通信卫星“宇宙2251”相撞,碰撞发生的地点在俄罗斯西伯利亚上空,同时位于国际空间站轨道上方434千米的轨道上,如图4-4-8所示.如果将卫星和空间站的轨道都近似看做圆形,则在相撞前一瞬间下列说法正确的是()
A.“铱33”卫星比“宇宙2251”卫星的周期大
B.“铱33”卫星比国际空间站的运行速度大
C.“铱33”卫星的运行速度大于第一宇宙速度
D.“宇宙2251”卫星比国际空间站的角速度小
解析:由题意知两卫星的轨道半径相等且大于空间站的轨道半径,故A项错.又v=GMr,所以“铱33”卫星的运行速度小于空间站的运行速度,第一宇宙速度为地球表面卫星的最大运行速度,故B、C均错.由ω=GMr3可知,半径越小,ω越大,故D正确.
答案:D
5.(20xx杭州七校联考)一宇宙飞船绕地心做半径为r的匀速圆周运动,飞船舱内有一质量为m的人站在可称体重的台秤上.用R表示地球的半径,g表示地球表面处的重力加速度,g′表示宇宙飞船所在处的地球引力加速度,FN表示人对秤的压力,下列说法中正确的是()
A.g′=0B.g′=R2r2gC.FN=0D.FN=mRrg
解析:做匀速圆周运动的飞船及其上的人均处于完全失重状态,台秤无法测出其重力,故FN=0,C正确,D错误;对地球表面的物体,GMmR2=mg,宇宙飞船所在处,GMmr2=mg′,可得:g′=R2r2g,A错误,B正确.
答案:BC
6.“探路者”号宇宙飞船在宇宙深处飞行过程中,发现A、B两颗均匀球形天体,两天体各有一颗靠近其表面飞行的卫星,测得两颗卫星的周期相等,以下判断正确的是()
A.天体A、B的质量一定不相等
B.两颗卫星的线速度一定相等
C.天体A、B表面的重力加速度之比等于它们的半径之比
D.天体A、B的密度一定相等
解析:假设某行星有卫星绕其表面旋转,万有引力提供向心力,可得GMmR2=m4π2T2R,那么该行星的平均密度为ρ=MV=M43πR3=3πGT2卫星的环绕速度v=GMR,表面的重力加速度g=GMR2=G4ρπR3,所以正确答案是CD.
答案:CD
7.2008年9月25日21时10分,载着翟志刚、刘伯明、景海鹏三位宇航员的“神舟七号”飞船在中国酒泉卫星发射中心发射成功.9月27日翟志刚成功实施了太空行走.如果“神舟七号”飞船在离地球表面h高处的轨道上做周期为T的匀速圆周运动,已知地球的半径R,万有引力常量为G.在该轨道上,“神舟七号”航天飞船()
A.运行的线速度大小为2πhT
B.运行的线速度小于第一宇宙速度
C.运行时的向心加速度大小为4π2(R+h)T2
D.地球表面的重力加速度大小可表示为4π2(R+h)3T2R2
解析:本题考查天体运动和万有引力定律的应用.由于飞船的轨道半径为R+h,故A项错误;第一宇宙速度是环绕的最大速度,所以飞船运行的速度小于第一宇宙速度,B项正确;运行的向心加速度为a=4π2(R+h)T2,C项正确;在地球表面mg=GMmR2,对飞船GMm(R+h)2=m4π2T2(R+h),所以地球表面的重力加速度g=4π2(R+h)3T2R2,D项正确.
答案:BCD
8.
图4-4-9
2008年9月我国成功发射“神舟七号”载人航天飞船.如图4-4-9为“神舟七号”绕地球飞行时的电视直播画面,图中数据显示,飞船距地面的高度约为地球半径的120.已知地球半径为R,地面附近的重力加速度为g,大西洋星距地面的高度约为地球半径的6倍.设飞船、大西洋星绕地球均做匀速圆周运动.则()
A.“神舟七号”飞船在轨运行的加速度为0.91g
B.“神舟七号”飞船在轨运行的速度为gR
C.大西洋星在轨运行的角速度为g343R
D.大西洋星在轨运行的周期为2π343Rg
解析:“神舟七号”飞船在轨运行时,由牛顿第二定律得GMm1(R+h)2=m1a=m1v2(R+h),h=R20,由物体在地球表面受到的万有引力近似等于物体重力得:GM=gR2,所以有a=400441g=0.91g,v=20gR21,故A正确.大西洋星绕地球做匀速圆周运动时,由牛顿第二定律得GMm2(R+h′)2=m2(R+h′)ω2=m2(R+h′)4π2T2,且h′=6R,所以有ω=g343R,T=2π343Rg,故CD正确.
答案:ACD
9.(2009福建,14)“嫦娥一号”月球探测器在环绕月球运行过程中,设探测器运行的轨道半径为r,运行速率为v,当探测器在飞越月球上一些环形山中的质量密集区上空时()
A.r、v都将略为减小B.r、v都将保持不变
C.r将略为减小,v将略为增大D.r将略为增大,v将略为减小
解析:当探测器飞越月球上一些环形山中的质量密集区的上空时,相当于探测器和月球重心间的距离变小了,由万有引力定律F=Gm1m2r2可知,探测器所受月球的引力将增大,这时的引力略大于探测器以原来轨道半径运行所需要的向心力,探测器将做靠近圆心的运动,使轨道半径略为减小,而且月球的引力对探测器做正功,使探测器的速度略微增加,故A、B、D选项错误,C选项正确.
答案:C
10.
图4-4-10
如图4-4-10是“嫦娥一号”奔月示意图,卫星发射后通过自带的小型火箭多次变轨,进入地月转移轨道,最终被月球引力捕获,成为绕月卫星,并开展对月球的探测.下列说法正确的是()
A.发射“嫦娥一号”的速度必须达到第三宇宙速度
B.在绕月圆轨道上,卫星周期与卫星质量有关
C.卫星受月球的引力与它到月球中心距离的平方成反比
D.在绕月圆轨道上,卫星受地球的引力大于受月球的引力
解析:本题考查了与万有引力定律相联的多个知识点,如万有引力公式、宇宙速度、卫星的周期等,设问角度新颖.第三宇宙速度是卫星脱离太阳系的最小发射速度,所以“嫦娥一号”卫星的发射速度一定小于第三宇宙速度,A项错误;设卫星轨道半径为r,由万有引力定律知卫星受到的引力F=GMmr2,C项正确.设卫星的周期为T,由GMmr2=m4π2T2r得T2=4π2GMr3,所以卫星的周期与月球质量有关,与卫星质量无关,B项错误.卫星在绕月轨道上运行时,由于离地球很远,受到地球引力很小,卫星做圆周运动的向心力主要是月球引力提供,D错误.
答案:C
11.宇航员在地球表面以一定初速度竖直上抛一小球,经过时间t小球落回原处;若他在某星球表面以相同的初速度竖直上抛同一小球,需经过时间5t小球落回原地.(取地球表面重力加速度g=10m/s2,阻力不计)
(1)求该星球表面附近的重力加速度g′;
(2)已知该星球的半径与地球半径之比为R星∶R地=1∶4,求该星球的质量与地球质量之比M星∶M地.
解析:(1)设竖直上抛初速度为v0,则v0=gt/2=g′5t/2,故g′=15g=2m/s2.
(2)设小球质量为m,则mg=GMmR2M=gR2G,故M星M地=g′R2星gR2地=15×116=180.
答案:(1)2m/s2(2)180
12.
图4-4-11
欧盟和我国合作的“伽利略”全球卫星定位系统的空间部分由平均分布在三个轨道平面上的30颗轨道卫星构成,每个轨道平面上有10颗卫星,从而实现高精度的导航定位.现假设“伽利略”系统中每颗卫星均围绕地心O做匀速圆周运动,轨道半径为r,一个轨道平面上某时刻10颗卫星所在位置如图4-4-11所示,相邻卫星之间的距离相等,卫星1和卫星3分别位于轨道上A、B两位置,卫星按顺时针运行.地球表面重力加速度为g,地球的半径为R,不计卫星间的相互作用力.求卫星1由A位置运行到B位置所需要的时间.
解析:设地球质量为M,卫星质量为m,每颗卫星的运行周期为T,万有引力常量为G,由万有引力定律和牛顿定律有GmMr2=mr2πT2①
地球表面重力加速度为g=GMR2②
联立①②式可得T=2πRr3g③
卫星1由A位置运行到B位置所需要的时间为t=210T④
联立③④式可得t=2π5Rr3g.
答案:2π5Rr3g

文章来源:http://m.jab88.com/j/114671.html

更多

最新更新

更多