在上课时老师为了能够精准的讲出一道题的解决步骤。老师需要提前做好准备,让学生能够快速的明白这个知识点。这样我们可以在上课时根据不同的情况做出一定的调整,那怎样写才能有一份高质量教案呢?以下是小编为大家收集的“求一个小数的近似数”,欢迎您参考,希望对您有所助益。
《求一个小数的近似数》这节课教学内容是建立在学生已经对求整数的近似数基础上进行教学上,这两个内容都是让学生根据四舍五入法去求数的近似数,但是不同点就是近似的部位不同,针对这个情况,在教学这节课时,以求整数的近似数进行导入,让学生说一说近似的依据也就是四舍五入法,从而引入小数近似数的教学。这节课是掌握知识教学,在上课之前自己感觉整节课的设计挺不错的,开始的分类,由放到收,让学生在探索中学习。而在知识点的获取时,让学生主观发现,分析比较,概括出求一个小数的近似数的方法,体现了教师的主导作用和学生的主体地位。整节课的设计,总体感觉还是比较适合学生的思维发展的,在结构上,我也注重了前后呼应,使整堂课也显得比较紧凑。
但是上完之后,我觉得:学生掌握得不是不好,尤其是根据四舍五入法求一个小数的近似数,这里需要学生从逆向思维的角度去思考,但学生的逆向思维似乎都比较欠缺,这是我对学生在能力上的估计不足。对于重难点的突破尚有所欠缺,驾驭教材的能力有所欠缺。同时,应该在课堂上多给学生自己表达的机会,同时在冷场的时候多调动学生的积极性。
而《求一个小数的近似数》这一部分内容的练习题目要求很多样,如同是保留一位小数,可以说是保留一位小数,也可以说是精确到十分位,或者是省略十分位后的数等等,针对这一情况,让学生在练习时多读题,并逐一进行分析,如精确到十分位,省略十分位后的数都是要求保留几位小数,这样学生就能更好的理解。
苏教版五年级上册《求小数的近似数》数学教案
第三单元 小数的意义和性质
求小数的近似数
教学内容:
课本第43页。
教学目标:
1.使学生会根据要求用“四舍五入”的方法求一个小数的近似数。
2.在数学的活动过程中,进一步培养学生的思维能力,学会用知识迁移的方法学习新知,并体会数学在日常生活中的广泛应用。感受数学的文化价值。
教学重点:
会根据要求用“四舍五入”的方法求一个小数的近似数。
教学难点:
理解求小数的近似值时小数末尾的零不能去掉的原因。
教学准备:
课件
教学过程:
一、复习铺垫,揭示课题(3分钟左右)
1.把下列各数四舍五入到万位或亿位。
24800 995720
4602800000 5975600800
四舍五入到万位的方法是:
四舍五入到亿位的方法是:
四舍五入到万位或亿位方法的共同点是:
2.揭示课题:在生活中近似数的应用非常广泛,整数的近似数我们已经学会了,那么小数的近似数怎么求呢?这就是我们今天要学习的内容。
二、自主学习,建构模型。(预设15分钟)
1.自学例9。
明确例9中的数学信息及所需要解决的问题。
出示:教材例9情境图。
围绕导学单进行自主学习。
2.自学。
在学生自学时,教师收集学生求近似数的错例,备用。
导学单(时间:5分钟)
1.精确到十分位和百分位分别要保留几位小数?
2.回忆求整数近似数的方法,试着做例9。
3.想一想:近似数1.50末尾的0能去掉吗?近似数1.5和1.50,哪个更精确一些?
3.小组交流。
交流内容
1.496亿千米精确到十分位要保留几位小数?大约是多少?
1.496亿千米精确到百分位要保留几位小数?大约是多少?
比较两题的结果,这里的1.5和1.50相等吗?近似数1.50末尾的0能去掉吗?为什么?
求整数和小数近似数有哪些共同点?
导学要点:
进一步分析近似数1.5和1.50所表示的准确数的区别。
小结:在表示近似数时,小数末尾的0不能去掉。
4.全班交流。
分析黑板上学生在自学中出现的各种情况,给予适当点评。
5.回忆学习过程。
在教师的引导下,总结学习过程:回忆相关旧知、方法迁移、解决新知。
师:刚才我们是通过什么办法,学会了求小数的近似数的?
师:数学知识间有着密切的联系,利用旧知的迁移是探究学习新知的好方法。
6.总结求近似数的方法。
a.完成“试一试”。学生独立完成,组织交流。
b.怎样求一个小数的近似数?
要求学生一起梳理求一个小数的近似数的方法和注意点。
指导归纳:
①弄清保留几位小数
②确定看哪一位上的数,用四舍五入法求出结果。
求一个小数的近似数时有什么注意点?(正确使用“≈”,近似数末尾的“0”不能去掉。)
三、分层练习,内化提升。(14分钟左右)
【基本练习】
(一)适应练习。
1.练一练。
点拨:比较两小题要求精确到的数位不同。
2.练习七第5题。
近似数末尾的“0”不能去掉。
3.练习七第6题。
要求学生完成改写后放在原题中读一读、比一比。
(二)变式练习
1. 练习七第7题。
学会区分精确数与近似数。
2. 练习七第8题。
改写与求近似数的对比练习。
(三)创编练习
1.在下面的□里填适当的数字。
□.□□≈2.3
□.□□>2.3
2.判断:准确数大于近似数。( )
3.填出下面的小数各在哪两个整数之间。
( )<4.6<( ) ( )<48.2<( )
( )>11.12>( ) ( )>0.9>( )
四、课堂总结:
通过这节课的学习,你学到了什么知识呢?
教学反思:
众所周知,一位优秀的老师离不开一份优质的教案。这时就需要自己去精心研究如何做一份学生爱听老师爱讲的教案。对教学过程进行预测和推演,从而更好地实现教学目标,那么教案怎样写才好呢?以下是小编为大家收集的“四年级数学下册《小数的近似数》教案分析”,仅供您在工作和学习中参考。
四年级数学下册《小数的近似数》教案分析
教学目标:
1、使学生能够根据要求会用:“四舍五入”法保留一定的小数位数,求出一个小数的近似数。
2、培养学生的类推能力,增进学生对数学的理解和应用数学的信心。
教学重点:
能正确的求一个小数的近似数。
教学难点:
怎样准确的求一个小数的近似数。
教学过程:
一、导入新课
师:我们已经认识了小数,生活中有许多小数的信息,你收集到了吗?(此处安排收集资料。这样做的目标在于使学生认识到近似数与实际生活的联系,从而体会近似数的应用价值)
生:汇报,教师按准确数和近似数把学生提供的信息中的小数分成两种写在黑板上。师:谁注意到了老师为什么把同学提供的这些小数分成两种写在黑板上呢?(生通过观察回答)
师:在实际生活中有时不必说出小数的准确数,只要说出它的近似数就可以了,同学们看一看自己收集到的信息中有这样的情况吗?(生汇报和小数近似数有关的信息。)
师:听了同学们的汇报,你有什么感受呢?小数的近似数在生活中应用的这么广泛,怎么求一个小数的近似数呢?今天我们就来一起学习。师板书课题。
1.把下面各数省略万后面的尾数,求出它们的近似数(卡片出示)
9865345874131200
5004739801014870
2.下面的□里可以填上哪些数字?
32□645≈32万47□05≈47万
学生填完后,说一说是怎么想的。
二、探究新知
1.导入新课
我们学过求一个整数的近似数。在实际应用小数时,往往也没有必要说出它的准确数,只要它的近似数就可以了。如:如豆豆的身高0.984米,平常不需要说得那么精确,那么如何求一个小数的近似数呢?今天我们就来学习这一内容。
[板书课题:求一个小数的近似数]
二、新授
师:豆豆的身高0.984米,我们一般怎么表述豆豆的身高?
你是怎样得出豆豆身高的近似数的?
师:你们能利用已有的知识来求出这个小数在不同情况下的近似数吗?
生:自己练习在练习本上做一做,然后在小组内进行交流,看一看有没有争议的地方。并引导学生按顺序进行汇报。
生:(1)学生汇报保留两位小数求近似数的思维过程,并再找一名同学进行汇报,加深对方法的理解。
(2)保留一位小数,有争议吗?找同学汇报自己的想法。学生讨论近似数是1.0还是1。教师出示线段图,看一看给学生带来什么启示。
引导学生小组讨论交流:
使学生明确保留一位小数是1.0,原来的长度在0.95与1.04之间。保留整数为1,原来的准确长度在1.4与1.0之间,所以1.0比1精确的程度高一些。也就是小数保留的位数越多,精确的程度越高。
师:总结出尽管两个数的大小相等,但表示的精确程度不同,同学们认为哪个答案是正确的呢?求近似数时,小数末尾的零不能去掉。
(3)保留整数部分应怎样思考,注意什么问题呢?
师:请同学们回忆求0.984近似数的过程,你能发现求一个小数的近似数有什么共同的特点吗?同学们利用我们以前学过的知识也就是求整数近似数的方法,四舍五入的方法来求小数的近似数,希望同学在今后的学习中也能运用我们学过的知识来解决新的问题。下面我们就用这种方法来求课前同学们提供的这些小数的近似数。(保留到十分位)
(4)小结:
问:求一个小数的近似数应注意什么?
引导学生讨论知道:求一个小数的近似数要注意两点:
①要根据题目标要求取近似值,如果保留整数,就看十分位是几;要保留一位小数,就看百分位是几;……然后按“四舍五入法”决定是舍还是入。
②取近似值时,在保留的小数位里,小数末一位或几位是0的。0应当保留,不能丢掉。
三、练习
(1)师:最后一个信息谁提供的,你能把这个信息用小数近似数的形式表示出来吗?生评价(改后的信息叙述也要准确)。
学生自己修改自己手中的信息,汇报后,再同桌之间交流。
(2)师:老师也收集到了一些小数的信息,这些信息能用小数近似数的形式表述吗?能请你表示出来,不能,请说明理由
(3)师:同学们还记得自己的身高大约是多少吗?想知道老师的身高吗?教师提示:身高大约是1.6米,老师的实际身高是两位小数,猜一猜老师的实际身高是多少米?老师的身高是用四舍法得到的,再来猜一猜。
(4)出示食物的价格,判断小明带12元钱够吗?学生自由发言,说明自己的理由。
(5)出示租车说明,判断租多少辆车去出游?
师:看来我们不仅要掌握求近似数的方法,还要灵活的运用所学的知识才能解决生活中的实际问题。
四、全课小结:
教师明确小数的近似数的方法与整数的近似数相似。要用“四舍五入”法保留小数位数。要注意保留小数位数越多,精确程度越高。
四年级数学下册《求一个小数的近似数》导学案
学习目标:
1、学会用“四舍五入”法保留一定的小数位数,求出小数的近似数,将不是整万或整亿的数改写成用“万”或“亿”单位的数。
2、通过学生自主探索、合作交流的学习活动,培养学生的探索能力。
学习重点:掌握用“四舍五入”法求一个小数的近似数的方法。
学习难点:使学生准确、熟练地应用“四舍五入”法求一个小数的近似数。
学习用具:多媒体课件
学习过程:
一、激趣定标
1、怎样用“四舍五入”法求出一位小数的近似数?
2、怎样将不是整万或整亿的数改写成用“万”或“亿”作单位的数?
二、自学互动,适时点拨
活动:求一个小数的近似数
学习方式:自主探究,小组合作
学习任务:互动新授
课件出示豆豆,看看小豆豆的身高是多少呢?
今天下午我们就来研究求一个小数的近似数。
(一)求小数的近似数的方法
1、同学们还刻求整数的近似数的方法吗?我们可不可以用“四舍五入”法来求小数的近似数呢?
2、探究新知
(1)同桌讨论回忆什么是“四舍五入”法?
(2)讨论尝试
①那么求一个小数的近似数,我们也可以根据需要用“四舍五入”法省略十分位、百分位、千分位后面的数。
②出示例1,讨论求0.984的近似数
③保留一位小数时,末尾的“0”为什么应该写呢?
(3)总结归纳。求一个数的近似数,保留不同的位数,求得的近似数不同。保留小数位数越多,这个近似数就越接近准确数,也就是更精确。
(二)将不是整万或整亿数改写成用“万”或“亿”作单位的数
1、出示教材第53页例2
①讨论:通过课件图片中的数学信息,我们怎样表示这些数的读写会比较方便呢?
②结论:改写成用“亿”或“万”作单位的数。
2、从算理入手,理解改写方法。
①讨论:怎样改写呢?
②结论:改写时在万位后面点上小数点,写上“万”字,并去掉小数末尾的0就可以了。改写成以“亿”作单位同上。
三、达标测评
1、教材第52页的“做一做”。
2、教材第54页练习十三第1、2题。
四、总结课堂
板书设计教
求一个小数的近似数
四舍五入法
保留两位小数0.984≈0.98142800千米=14.28万千米
保留一位小数0.984≈1.0778330000千米=7.7833亿千米
≈7.8亿千米
保留整数0.984≈1
注意:在表示近似数时,小数末尾的0不能去掉
北京版四年级下册《求一个小数的近似数》数学教案
教学目的:
1、使学生掌握把一个不是整万或整亿的数改写成用万或亿作单位的数,以及根据要求保留一定的小数位数。
2、培养学生的类推能力,增进学生对数学的理解和应用数学的信心。
教学重点: 掌握把一个不是整万或整亿的数改写成用万或亿作单位的数
教学难点: 根据要求保留一定的小数位数。
教学过程:
一、导入新课
将下面的数写成以万为单位的数。
一个人的头发约有80000到90000根。
人造卫星每分钟约行472000千米。
师:比较它们的相同点和不同点?
相同点:都是把一个以个为单位数写成以万位单位的数
不同点:整万的数可以直接改写成一万位单位的数
不是整万的数先省略万后面的尾数,用四舍五入的方法取近似数。
二、新课:
1像这样为了读写方便。常常把一个多位数改写成用万或亿作单位的数。
我们知道整万或整亿的数能够直接改写成以万或亿位单位的数,不是整万或整亿的数怎么改写成用万或亿为单位的数?
2木星的直径是142800千米,它离太阳的距离是778330000千米。
它的直径是多少万千米?它离太阳的距离是多少亿千米?
小组研究:
尝试把上面两个数改写成以万或以亿为单位的数
说明你是怎么想的?
3小结:
改写成以万为单位的数:小数点向左移动4位,加上万字。
改写成以亿为单位的数:小数点向左移动8位,加上亿字。
4练习:
把24800改写成用万作单位的数
把345280000改写成用亿作单位的数
5像这样把345280000改写成用亿作单位的数是3.4528亿,小数点后有4位,小数位数太多,往往实际又没有用,这时就可以根据需要保留一定的小数位数。如这道题保留两位小数应该是多少?说说你是怎么想的?
三、练习:
1把下面个数改写成以万为单位的数并保留两位小数
台湾岛是我国第一大岛,面积35990平方千米。
海南岛是我国第二大岛,面积34000平方千米。
2、2003年我国在校小学生116897000人,改写成用亿人作单位的数并保留一位小数。
课题:求近似数、四舍五入
教学目标
1.使学生理解并掌握近似数的概念.
2.使学生初步掌握用“四舍五入法”求一个数的近似数.
3.能正确运用“四舍五入法”解决日常生活中的实际问题,并通过联系生活实际,激发学生学习数学的兴趣.
教学重点
用“四舍五入法”求一个数的近似数.
教学难点
归纳求万以内近似数的方法.
教学步骤
一、铺垫孕伏.
出示卡片,进行口算练习.
60×4= 57-20= 36÷4= 300×6=
72÷9= 30×70= 23×4= 25+8=
二、探究新知.
1.导入新课.
(1)教师引导:请同学们拿出直尺测量一下教科书封面的长度是多少厘米?
学生测后:20厘米多一些,接近21厘米.
教师明确:如果我们不需要非常准确的结果,可以认为教科书的长大约是20厘米.
(2)我们在日常生活中会经常遇到上面的情况.例如:今天早晨老师买早点,花去了2.1元,我们可以说花去了2元左右;又如:小明家路学校495米,我们可以说小明家距学校大约500米.在这里,我们就把“2元钱”、“500米”叫做2.1元和495米的近似数.(板书)
(3)近似数在我们日常生活中运用是非常广泛的,同学们回忆一下,我们日常生活中哪些地方运用过近似数?(学生自由回答)
引导学生回答:我们伟大祖国的陆地面积是多少平方千米?(大约960万平方千米)
哪位同学知道我国的人口约为多少亿?(十二亿)
2.教师:以上一些数据,都是一些近似数.那么,究竟怎样来一个数的近似数呢?
(1)出示例9:同学们浇树,浇了206棵松树,浇了284棵杨树,求这两个数的近似数.
教师根据学生回答情况,总结说明:因206与200相差6,而206与300相差94,所以206最接近200,也就是说,206的近似数是200.板书:206≈200
(2)讲授约等号.
教师:这里的“≈”是约等号,206≈200读作206约等于200.
(3)让学生通过以上的学习,自己类推284的近似数是284≈300.
3.讲授“四舍五入法”.
(1)二百几十几的近似数有的是200,有的是300,讨论一下,为什么出现这种情况?
根据学生讨论,教师小结:二百几十几的数,十位上的数是0、1、2、3、4时,它们都比较接近于200,因此,求它们的近似数时,都是把百位后面的尾数会去,并且把会去的数位用“0”补足.如果二百几十几的数,十位上的数是5、6、7、8、9,它们比较接近于300,因此,求它们的近似数,是把这个数百位后面的尾数改写成0,同时,向百位进一.因此,284年的近似数就是300,这种求近似值的方法叫做“四舍五入法”.(板书)
(2)用“四舍五入法”求一个数的近似数,比如求几百几十几的近似数大约是几百,首先看它十位上的数.如果十位上的数是4或者比4小的数,就把百位后的尾数舍去,改写为“0”;如果十位是5或者比5大的数,就把尾数改写为0,并向百位进一.
4.反馈练习.
(1)694大约是几百,并说出理由.
引导学生明确:先看十位上的数是不是满5,9比5大,把尾数改写成0,还要向百位进一,写作694≈700.
(2)6250大约是几千?
三、课堂小结.
本堂课我们学习了用“四舍五入”求一个数的近似数.即根据要求省略它的尾数:如果要省略的尾数最高位不满5,就把尾数舍去,改写为0;如果要省略的尾数最高位满5,把尾数改写为0后,还要向它的前一位进1.
四、随堂练习.
1.求出下面各数的近似数.(省略最高位后面的尾数)
89 419 581 6792 8870
2.填空.
(1)新编小学生字典有592页,大约是_______页.
(2)我班有学生43人,大约有_______人.
(3)今天,小明买学习用具花去大约10元钱,小明可能花去了_______元或_______元.
3.(1)下面各数大约是几百?
189≈ 203≈ 451≈
(2)下面各数大约是几千?
1120≈ 5906≈ 3005≈
五、布置作业.
结合生活实际,自编5道用“四舍五入法”求近似数的题,如:我们班有72块玻璃,72≈70;奶奶今年59岁,大约60岁.
板书设计
作为一小学位老师,我们要让同学们听得懂我们所讲的内容。因此,老师会想尽一切方法编写一份学生易接受的教案。从而在课堂上与学生更好的交流,那你们知道有哪些优秀的小学教案吗?下面是小编精心整理的“人教版四年级上册《求亿以上数的近似数》数学教案”,欢迎大家阅读,希望对大家有所帮助。
人教版四年级上册《求亿以上数的近似数》数学教案
第1单元 大数的认识
第12课时 求亿以上数的近似数
【教学内容】:教材第21页例4。
【教学目标】:
1.能用“四舍五入”法正确地求出亿以上数的近似数。
【重点难点】:
掌握亿以上数近似数的方法。
【教学过程】:
一、创设情境
我们已经学会了亿以内数用“四舍五入”法求近似数的方法。那么亿以上的数又该怎样求近似数呢?
(板书课题:求亿以上数的近似数)
二、学习新知
1.教学例4。
(1)整亿的数我们都会直接改写成用“亿”作单位的数了,如果不是整亿的数怎样才能知道它接近多少亿呢?也可以用“四舍五入”法来求出亿以上数的近似数。
(2)出示例4。
①试做。
②指名说一说你是怎么做的。先分级找到亿位,再看千万位上的数,用“四舍五入”法求出近似数,再加上“亿”字。
(3)小结方法:省略亿位后面的尾数,要看千万位上的数是大于或等于5、还是小于5,根据“四舍五入”的方法求出近似数,结果要加一个“亿”字,由于是近似数,必须用“≈”连接。
(4)教材第21页“做一做”。
指名板演,余者练习,集体订正。
三、实践应用
1.补充练习:
把下面的数改写成用“亿”作单位的数。(不是整亿的,用“四舍五入”法省略亿位后面的尾数)
10600000000 503000000000 7200000000
5270230000 49692000000 26900800000
(1)组织学生独立练习。
(2)教师巡视,检查学生存在什么问题?
四、课堂小结
这节课你学会了什么?有什么收获?
人教版五年级上册《积的近似数》数学教案
第1单元 小数乘法
第6课时 积的近似数
【教学内容】:教材P11例6及练习三第1、2、3题。
【教学目标】:
知识与技能:使学生掌握用“四舍五入”法取积的近似数。
过程与方法:利用已有知识经验,让学生学会根据题目要求与实际需要求积的近似数,并培养学生自主探索和迁移类推的能力。
情感、态度与价值观:使学生感受数学与实际生活的联系,渗透人类与动物和谐相处的育人理念。
【教学重、难点】
重 点:正确地进行“四舍五入”。
难 点:应用“四舍五入”法取积的近似数。
【教学方法】:自主学习,交流互动。
【教学准备】:多媒体。
【教学过程】
一、情境导入
我们生活中有时需要很准确的数字,但是有些时候往往不需要知道很精确的数字,只需要知道它们的近似值就可以了,那我们一般用什么方法来取近似值呢?(用“四舍五入”法)(出示如下表格)用“四舍五入”法求出小数的近似值。
保留整数保留一位小数保留两位小数2.0954.3071.先思考再回答:
(1)怎么样用“四舍五入”法将这些小数保留整数、一位小数或两位小数,取它们的近似值?
(2)按要求,它们的近似值应各是多少?指生回答。
2.揭题:在实际应用中,小数乘法乘得的积往往不需要保留很多的小数位数,这时可根据需要,用“四舍五入”法保留一定的小数位数,求出积的近似数。
二、互动新授
1.激趣谈话:狗是人类的好朋友,特别是经过训练后的警犬,可以帮助警察叔叔破获很多案件,比如追捕逃犯、搜查违禁品等。同学们,为什么警犬能很快帮助警察抓获犯罪嫌疑人?你们知道吗?谁来说一说。(出示教材第11页情境图)
(1)学生自主回答。
(2)师补充:因为狗的嗅觉很灵敏,狗的嗅觉细胞数量比人多得多,狗能利用它十分灵敏的嗅觉闻出坏蛋身上的气味。在现实生活中,动物是人类的好朋友,我们要保护动物,保护动物生存的环境。
(3)出示:人的嗅觉细胞约有0.049亿个,狗的嗅觉细胞个数是人的45倍。根据信息,你能提出什么问题?
根据学生回答板书问题:狗约有多少亿个嗅觉细胞?
追问:怎么列式呢?让学生独立列算式并计算出算式的积。(求0.049的45倍,就是求45个0.049是多少,用乘法计算,即0.049×45。)
学生算出:0.049×45=2.205
(4)(出示)追问学生:如果给题目加一个要求:保留一位小数,如何求积的近似数呢?
先让学生独立求出2. 205的近似数,再交流:0.049×45=2.205≈2.2(亿个)
让学生先说一说怎样保留积的一位小数,然后在小组内讨论交流。
小组交流后,指名汇报:0.049×45≈2.2(亿个),
2.205要保留一个小数,因为0
(5)小结:求2.205这个积保留一位小数的近似数,要看小数点后第二位,因为积的十分位上的数是O,0
(6)提出问题:求积的近似数的一般方法是什么?
小组交流讨论,指一小组汇报并加以引导小结。
师小结:求积的近似数时,首先求出积的准确值,然后明确要保留的小数位数,再看比要保留的小数位数多一位上的数字,按“四舍五入”法截取积的近似数。
2.拓展延伸。
出示生活中要按实际情境取近似值的实际例子:(出示题目):一个箱子可以装13.5千克土豆,27箱的土豆可以装多少千克?(得数保留整数)
学生独立列式计算:13.5×27=364.5(千克)
这时可能会出现两种情况:有的学生约等于365千克,有的可能约等于364千克。
这时教师要组织学生小组讨论交流:到底应该保留多少呢?
通过讨论,学生会得出:364.5不够365千克,所以27箱不能装365千克土豆,只能装364千克。
接着提问:如果是做衣服用多少布料,保留整数时要怎么办?
引导学生小结:如果要算能装多少东西或用多少材料,即使小数大于四也要舍去,只保留整数部分。所以在实际应用中,小数乘得的积可以根据需要或题目要求取积的近似数。
最后引导学生总结取近似数的一般方法是:保留整数,就看第一位小数是几;保留一位小数,就看第二位小数是几;保留两位小数,就看第三位小数是几……然后按“四舍五入”法保留小数位数。
三、巩固拓展
1.完成教材第11页“做一做”第1题。
按题目要求先计算出算式的乘积。完成后组织学生集体订正,并说一说你是怎么取积的近似值的。
2.完成教材第11页“做一做”第2题。
先让学生根据题目的条件列出算式计算,再集体订正。
学生汇报:3. 85×2.5=9.625(元)≈9.63(元)时,问:题目没有要求取近似值,你为什么要保留两位小数呢?提醒学生在解决问题时要根据生活实际灵活处理。
强调:由于在实际生活中,付款时通常只算到“分”,即保留两位小数,因此9. 625要约等于9.63。
四、课堂小结
师:这节课你们都学会了什么知识?有什么收获呢?
生1:这节课我知道了如何用“四舍五入”法求积的近似值。
生2:我还学会了有时还要根据生活实际来求积的近似值。
五、作业:教材第13页练习三第1、2、3题。
【板书设计】:
作为一小学位老师,我们要让同学们听得懂我们所讲的内容。为此老师就需要在上课前准备好教案,以此来提高课堂的教学质量。对教学过程进行预测和推演,从而更好地实现教学目标,那怎样写才能有一份高质量教案呢?下面是由小编为大家整理的人教版四年级上册《求亿以内数的近似数》数学教案,仅供参考,希望可以帮助到您。
人教版四年级上册《求亿以内数的近似数》数学教案
第1单元 大数的认识
第7课时 求亿以内数的近似数
【教学内容】:教材第13页例7。
【教学目标】:
1.使学生理解准确数、近似数的含义,知道它们与日常生活的联系。
2.学会用“四舍五入”法把一个亿以内数的万位后面的尾数省略,求出它的近似数。
【重点难点】:
重点:掌握用“四舍五入”法求近似数的方法。
难点:省略尾数时怎样进行“舍”和“入”。
【教学过程】:
一、创设情境
1.我们班有48名同学,有多少人去过万里长城?你们对万里长城有哪些了解?
教师根据学生回答的情况出示:
长城距今大约有2500年的历史,长城大约有1万里长。我们班有48名同学,去过长城的有13人。
2.观察上面的数据,你发现了什么?
(有的数据前面加了“大约”,说明不是准确的数据;有的是准确的数据)
这是为什么呢?这节课我们来研究这个问题。
二、自主探究
1.教学运用“四舍五入”法求近似数。
(1)理解“四舍五入”法。
A.投影出示:光明小学有1105名学生,红华小学有1920名学生。
教师:如果以“千”作单位,你认为光明小学和红华小学各大约有几千名学生?为什么?(光明小学大约有1千名学生,红华小学大约有2千名学生。因为1105接近于1千,1920接近于2千)
B.教师:求一个数的近似数,可以根据要求舍去这个数某一位后面的尾数。如果尾数的最高位小于5(如4,3,2,1,0),就直接把尾数舍去,改成0;如果尾数的最高位大于或等于5(如5,6,7,8,9),舍去尾数改写成0后,还要向它的前一位进1。
例如:1105≈1000
↑
尾数的最高位小于5,把尾数舍去,改写成0。
1920≈2000
↑
尾数的最高位大于5,把尾数舍去改写成0,向前一位进1。
(2)省略千位后面的尾数,求近似数。
3250 4608 7432 6501 3849
组织学生在小组中议一议,相互交流,再指名汇报,并说明求近似数的过程。
教师:这种求近似数的方法叫“四舍五入”法。
(板书:“四舍五入”法)
2.教学例7。
教师:如果省略万位后面的尾数求近似数,又该怎样求呢?
(1)投影出示例7。
先指名读出地球和太阳的直径各是多少,再引导学生理解“大约是多少万千米”的意思,就是省略万位后面的尾数求近似数。
让学生独立做一做,再在小组中相互交流。
指名汇报求近似数的过程,教师根据学生的汇报板书:
12756≈10000=1万 1389000≈1390000=139万
(2)教师指出:第一步是求近似数,改变了数的大小,使用的是约等号,而第二步是改写成用“万”作单位,大小没有变,因此用等号。
3.教材第13页“做一做”。
组织学生在小组中议一议题目中不同的要求,应怎样求近似数,再共同练一练,然后组织汇报,集体订正。
4.讨论:怎样求亿以内数的近似数呢?
引导学生归纳出求近似数的方法和步骤:先找到要省略的尾数,再找到尾数的最高位,用“四舍五入”法决定是舍去还是向前一位进1。
三、实践应用
1.教材“练习二”第2题。
组织学生读题,理解题意,再在小组中议一议。
2.教材“练习二”第3题。
让学生独立完成,并在小组中相互交流检查。
3.教材“练习二”第4题。
组织学生独立完成,集体订正。
四、课堂小结
通过这节课的学习活动,你有什么收获?
【教学反思】:
从课堂上学习的反应来看,大家对这部分知识理解是比较轻松的。在教学中,教师始终将学生当学习的主人,从学生的生活经验和已有的知识出发,使学生通过亲自实践,掌握基本的数学知识和技能。
人教版五年级上册《商的近似数》数学教案
教学内容:教材P32例6及练习八第1、2、3、8题。
教学目标:
知识与技能:能理解商的近似数的意义。
过程与方法:掌握小数除法计算中用“四舍五入”法求商的近似数的一般方法。
情感、态度与价值观:培养学生在实际生活中灵活运用数学知识的能力,能根据实际情况进行求近似数。
教学重点:掌握小数除法计算中用“四舍五入”法求商的近似数的一般方法。
教学难点:根据题意正确求出商的近似数。
教学方法:注重新旧知识的迁移,引导学生自主学习、总结。
教学准备:多媒体。
教学过程
一、温习旧知
1、按要求求下列各数的近似数。
(1)保留一位小数 3.72 4.18 9.98
(2)保留两位小数 5.347 7.602 3.996
2、 做完第1、2题后,说一说。
(1)近似数中小数末尾的“0”为什么不能去掉?
(2)为什么要用约等号?
二、互动新授
1.出示教材第32页例6情境图。
阅读情境图中的信息,并问:怎样解决爸爸提出的问题呢?
引导学生自主列算式,并试着计算:19.4÷12
学生在计算过程中,会发现除不尽。这时,师引导学生小组交流,遇到这种情况应该怎么办?
通过交流,学生可能会想到:实际计算钱数时应该算到分,因为分是人民币的最小单位;也可以算到角,因为现在买东西时已经不用分了。
教师小结:根据我们的生活实际,当所买的商品数量少的时候,可以保留整数,或者保留一位小数,或者两位小数。当然如果数量很多的时候,通常会计算到分,这就要根据我们的实际需要进行取近似数了。看来取近似数一种是按照要求去取,一种是按照实际情况去取。(板书:按要求取,按需要取。)
然后再引导学生想一想:算到分和角时分别需要保留几位小数?
(算到分要保留两位小数,算到角就要保留一位小数。)
师引导学生思考并讨论:除的时候应该怎么算?
小组讨论后,学生汇报:保留两位小数,就要算出三位小数,再按“四舍五入”法省略百分位后面的尾数;保留一位小数,就要算出两位小数,再按“四舍五入”法省略十分位后面的尾数。
让学生自己用竖式计算:19.4÷12。教师根据学生汇报,板书:
2.提问:说一说如何求商的近似数?
让学生独立思考后,在小组内交流、讨论。引导学生小结:求商的近似数时,只需要比需要保留的小数位数多除出一位,然后再用“四舍五入”法就可以取近似数了。或者除到要保留的小数位数后,不再继续除了,只把余数同除数作比较,若余数比除数的一半小,就说明求出下一位商要直接舍去,若余数等于或者大于除数的一半,就说明要在已除得的商的末一位加上1。同时,求商的近似数的时,不需要算出商的准确值之后再进行取舍。
3.引导学生比较求商的近似值和求积的近似值的异同点。
小组讨论后发言:相同点:都是用“四舍五入”法求近似数。
不同点:积的近似数要求出准确数之后再求近似数;商的近似数不需要求出准确数,只需比需要保留的小数位数多除出一位就可以求近似数。
师小结:求商的近似数非常重要,有时按照要求取近似数,有时按照实际取,在取商的近似数的时候,要明白应该除到哪位就可以不用再除了。
三、巩固拓展
1.完成教材第32页“做一做”。学生独立完成。订正时让学生说一说它们的近似值分别是怎么取的。有些题保留指定小数位数后,近似数的末尾有0,要让学生说说是如何处理的。如第2小题1.55÷3.9,保留两位小数是0.40。
四、课堂小结。同学们,这节课你学了什么知识?有哪些收获?
引导学生归纳:
1.求商的近似数时,计算到比保留的小数位数多一位,再将最后一位“四舍五入”。
2.求商的近似数的时候不需要算出商的准确值之后再进行取舍。除到要保留的小数位数后,不再继续除了,只把余数同除数作比较,若余数比除数的一半小,就说明求出下一位商要直接舍去,若余数等于或者大于除数的一半,就说明要在已除得的商的末一位加上1。
布置作业:
板书设计:
商的近似数
按要求取
求商的近似数时,计算到比保留的小数位数
多一位,再将最后一位“四舍五入”。
按实际需要取
作为杰出的教学工作者,为了教学顺利的展开。在上课前要仔细认真的编写一份全面的教案。才能有计划、有步骤、有质量的完成教学任务,你们知道那些比较有创意的教学方案吗?以下是小编为大家精心整理的“二年级下册《近似数》教案苏教版”,仅供参考,希望能为您提供参考!
二年级下册《近似数》教案苏教版
教学目标:
通过准确数与近似数的比较,理解近似数的含义。
初步知道准确数与近似数的区别,会正确辨别准确数与近似数,并会恰当选用近似数。
通过学生的数据收集与交流,能对近似数和准确数互相转化。
体会近似数在生活中的作用,体验数学与生活的密切联系。
教学重点:
理解近似数的含义。
教学难点:
合理地取近似数。
教具准备:课件、铅笔
教学过程:
情境引入
师:今天老师带来了一把铅笔,请同学们猜一猜老师手中的铅笔有几支?
让学生充分地、大胆地猜。师根据学生的回答适时地提示“多得多、少得多、多一些、少一些”,并根据学生的回答在黑板上面板书。
现在老师想请你们猜一猜手中的铅笔是几十支?
根据学生的回答,板书后出示准确的数据。(18支)
现在让你们猜手中的铅笔是几十支,你会怎样说?(学生回答:大约20支)
像这样大概的数就是近似数,今天这节课我们就一起来研究近似数。
交流共享
1.汇报课前调查各个年级的学生数。
师:老师要求你们课前调查各个年级的学生数,你们做到了吗?来看大屏幕:二年级(1)班有学生50人,那么二年级三个班大约有多少人呢?请你们猜一猜。
学生猜,老师板书后出示准确数,留下接近的数。
师:如果让你们用两句话来说这两个数字,你会怎样说呢?师引导说:二年级有学生154人,大约150人。
师:二年级有154人,那么全校有6个年级大约有多少人呢?
学生猜,老师板书,出示正确的数后留下最接近的数字。
提问:现在我们来观察一下,前面一排的数字和后面一排的数字有什么特点?(前面一排是准确的数,后面一排是大概的数)。
像这样大概的数我们就把它叫做近似数,板书。
教学例9
创设情境:小明是龙岗小学的学生,小华是东山小学的学生,一天他们俩相遇了,都说自己学校的人最多,看大屏幕。
显示:小明:“我是龙岗小学的,我们学校大约有700人”。
小华:“我是东山小学的,我们学校大约也有700人”。
同学们你们知道这两个学校到底哪个学校的人数多吗?在小组里面说一说。
学生在充分讨论后老师指名回答,只要有道理都要给予肯定。
师:现在我来告诉你们答案吧!教师出示龙岗小学695人,东山小学703人,并引导得出:695人比700人少一些,接近700人,所以说大约有700人;703人比700人多一些,也接近700,所以也可以说大约有700人。我们可以这样用数学的方法表示:
板书:695≈700703≈700
师边板书边引导学生说:695约等于700,703约等于700.
师问:“≈”这个符号怎么读的?(约等于。)这个符号就叫约等号。
教学“试一试”。
出示:实验小学有学生2016人,大约是几千人?
让学生充分地猜以后,优化得出2016大约是2千人,所以写成:2016≈2000
反馈检测
1.完成“想想做做”第1题。
先让学生说一说数轴上面的数有什么规律,再让学生独立完成。
完成后师问:我们一共填了哪些数,这些数中哪些接近500,哪些接近600?
完成“想想做做”第2题。
引导学生读题后强调题目要求:大约是几百或几千元,独立完成后集体评价。
3.完成“想想做做”第3题。
独立完成后集体评价。
总结:我们在说近似数的时候通常都是约等于几百或几千。
完成“想想做做”第4题。
师引导依次讨论三个子问题。
完成“想想做做”第5题。
怎样摆接近2000的数?先摆一摆,再读一读。你知道怎么摆接近9000、5000、1000的四位数吗?
学生独立完成,集体评价。
反思总结
提问:这节课我们学习了什么?你有什么收获和体会?
归纳:这节课我们学习了近似数,近似数是一个大概的数。
课堂作业
第四单元课题:练习四
教学目标:
使学生进一步掌握万以内的数的读写方法及其组成,会比较万以内的数的大小比较。根据实际情况取近似数的能力有进一步的提高。
通过练习使学生的估算能力、分析问题、解决问题、提出问题的能力有进一步的提高。
教学重点:
会读写万以内的数,掌握万以内的数的组成;掌握万以内的数的大小比较,会根据要求取近似数。
教学难点:有0的读写,万以内的数的大小比较。
教具准备:课件
教学过程:
知识再现
前面一段时间认识了万以内的数,学习了万以内数的读写、会比较万以内的数,能根据要求写出近似数,今天我们就进一步来学习这些知识。板书:练习四。
复习数位顺序表。
到现在为止我们学习了几个数位?你能从右往左说一说吗?
指名学生回答后完成“练习四”第1题。
独立完成后集体评价,引导学生说出相邻数位计数单位之间的进率是10.
基本练习
1.完成“练习四”第2题。
我们在读写数的时候要从最高位想起,几个千就在千位上写几,读几千;几个百就在百位上写几,读几百;几个十就在十位上写几,读几十;几个一就在个位上写几,读几。遇到哪一个数位没有就写0,中间有一个0或两个0都只读一个0,末尾的0不读。
完成“练习四”第6题。
对万以内的数的读写,同学们掌握得很好,下面考一考你们。
独立完成后提问:比较每一组的两道题,你发现了什么?在小组里面说一说。
完成“练习四”第3题。
出示后问:下面四个数都有一个“6”,这几个“6”有什么不同吗?表示的意义是?
完成“练习四”第4、5题。
综合练习
1.完成“练习四”第7题。
独立完成后师指名说一说比较的方法。
完成“练习四”第8题。
引导学生读题后师问:杉树可能栽了多少棵?说出你的理由。
完成“练习四”第9题。
独立完成后引导学生集体评价。
完成“练习四”第10题。
问:参观科学宫的人数哪一天最多,哪一天最少?为什么?可小组里面讨论一下。
每天参观的人数各接近几千?
反思总结
提问:同学们,今天这节课你学到了什么?有什么收获和体会?
课堂作业
沪教版五年级上册《商的近似数》数学教案
教学内容:
人教版义务教育课程标准实验教科书数学五年级上册商的近似数(23页例7)
教学目标:
1、会用四舍五入法求商的近似数。
2、培养学生的实践能力,思维的灵活性,培养学生解决实际问题的能力。
教学重难点:
知道为什么要求商的近似数,会用四舍五入法求商的近似数。
教具准备: 多媒体课件
教学过程;
一、 复习旧知
1、用“四舍五入”法求近似数,
保留一位小数: 2.6 1 4.17 9.25 7.03 8.96 ;
保留两位小数:1.832 4.347 3.295 10.403
2、师:求小数的近似值在除法中有哪些应用呢?我们今天这节课就来一起研究求商的近似数。(板书课题:商的近似数)
二、探究新知
1、师:同学们,“生命在于运动”,平时你 们喜欢运动吗?你们最喜欢参加什么运动?
生:“师:看来同学们都喜欢参加体育运动,真不错。”
师:有个小朋友叫王鹏,他特喜欢打羽毛球,这天他爸爸给他新买了一筒羽毛球。瞧(课件出示例7)
师:那你们知道这一筒羽毛球有多少个吗?
生1:10个。
生2:12个。
师:你怎么知道有12个?
生:一打就是12个。
师:对,在我们日常生活中,一打就是12个。
师:那你们现在能算出一个羽毛球是多少钱吗?请同学们在课堂练习本上计算出结果。 (教师巡视,学生交流)
师:好了,同学们,请大家停止计算,你们是不是遇到什么问题了?
生:这个算式除不尽!
师:呀,这样啊,那一个羽毛球到底是多少钱呢?这个1.6166666到底是多少钱呢?是不是我们就没办法定出一个羽毛球的价钱呢?这样好了,你们四人小组讨论一下,你们准备怎么给这个羽毛球定价,为什么?
(生四人小组讨论,教师巡视,听取学生意见,讨论结束后,各小组成员发表意见)
生1:我们小组决定给一个羽毛球定价1.6元,因为1.6元比较接近1.6166666元。
生2:我们小组决定给一个羽毛球定价1.61元,直接把后面哪些6去掉,因为货币最小面值是分。
生3:我们小组决定给一个羽毛球定价1.62元,因为1.6166666保留两位小数是1.62.
生4:我们小组决定给一个羽毛球定价2元,因为这样比较方便,给整数就可以了。
师:为什么没人给这个羽毛球定价1.617元或者1.6167元?
生:因为1.61元就是1元6角1分,在往下就没法付钱了。
师:同学们,你们想的都不错,这么多定价,你们觉得哪种更合理些?为什么?
生1:我觉得定价1.6元比较合理,因为现在很少看到一分两分的了。
生2:我觉得定价1.62元比较合理,不同意定价1.61元 ,因为随便把后面的6去掉不是很好,应该用四舍五入法。
师:(询问刚才定价1.61元的小组)别人给你们提的建议你们接受吗?
生:接受。
生3:我也觉得1.6元和1.62元比较合适,如果定价2元,差距太大了。
师:看来经过第二轮的思考,大家考虑问题越来越仔细,大家倾向给这个羽毛球定价1.6元和1.62元。这两种定价有什么不同呢?
生:如果定价1.6元,是保留一位小数,如果定价1.62元是保留两位小数。
师:如果定价2元呢?
生:是保留整数。
师:那这种价格是不是一个羽毛球的最精确的价格呢?
生:不是,它们只是接近准确价格,它们是近似数。
师:当近似数作为结果的时候,应该用什么数学符号呢?
生:应该用约等号。(教师板书)19.4÷12≈1.6(元) 或19.4÷12≈1.62(元)
师:在我们的生活中,常常遇到小数除法除不尽的情况,如果下次遇到同样的问题, 你们会解决吗?怎样解决?
生1:可以用四舍五入法取近似值。
生2:可以根据不同情况保留一定的小数位数。
师:不错,同学们总结的很好。现在我们来做一些题目,有信心吗?
2、研究求商的技巧 出示一道计算题48÷23 (得数保留两位小数) (学生尝试,教师巡视,发现问题,指出学生的计算错误)
师:同学们计算出结果了吗?是多少?
生1:约等于2.09. 生2:约等于2.08.
师:看来,大家的意见不同,那到底谁做的又对又简练呢?(教师展 示几个学生的计算过程)
(生1: 48÷23 ≈2.09 除到2.08695 )
(生2: 48÷23≈2.09 除到2.086 )
(生3: 48÷23≈2.09 除到2.08 )
生1:我认为前两位同学做对了。
生2:我也认为前两位同学做对了,第三位同学之计算到了两位小数,就没办法判断第三位小数是大于5还是小于5.
师:同意这两位同学意见的请举手。(同学们纷纷举手)
师:(指着前两位同学的算式),谁的比较简练,为什么 ?
生:(齐答)第二个同学的比较简练。
生1:第一个同学步骤比较多,算到了2.08695,第二个同学才算到了2.086.
生2:看到第二个同学的算式,我知道不用算太多位,只要算到小数第三位就够了。
师:为什么算到第三位就够了?
生:要保留两位小数,我们只要看小数第三位上的数字是不是比5大就可以了。
师:那要是把题目改改,要求保留一位小数,应该计算到什么位?
生:(齐答)计算到两位小数。
师:保留三位小数呢?
生:(齐答)计算到四位小数。
师:保留八位小数呢?
生:(齐答)计算到九位小数。
师:谁能用一句话概括出你们的发现呢?
生:保留几位小数,只要计算到比保留位数多一位的小数就可以了。
师:同学们真聪明,当我们求商的近似值,一般先除 到比需 要保留的小数位数多一位,再按照”四舍五入“法取商的近似值 。(课件展示)
师:这样有什么好处呢?
生:这样可以减轻我们的计算步骤,可以让我们计算快点。
师:做一做
37.3÷2.7的商保留两位小数约是()
3.6÷1.7≈ 19÷7≈ 保留两位小数
三.课后巩固
P35 练习5
四、全课总结 师:同 学们,这节课都有什么样的收获?
在上课时老师为了能够精准的讲出一道题的解决步骤。老师需要提前做好准备,让学生能够快速的明白这个知识点。这样我们可以在上课时根据不同的情况做出一定的调整,那怎样写才能有一份高质量教案呢?以下是小编为大家收集的“一个数乘以小数教学设计”,欢迎您参考,希望对您有所助益。
教学内容:九年义务教青六年制小学数学第九册第2页例2,"做一做"及练习一的第5一9题。
教学目的:
1.使学生理解、掌握一个数乘以小数的意义;
2.掌握小数乘法的计算方法,并能正确进行小数乘法的计算;
3.培养学生迁移、类推能力,初步了解数学中的转化思想。
教学准备:投影仪,例2线段图的灯片。
教学过程:
一、复习
1.口述下面各数的意义。
0.5 0.82 0.325
2.填空。
(1)一个因数不变,另一个因数扩大10倍,积( )
(2)一个因数扩大10倍,另一个因数扩大100倍,积( )。
3.花布每米6.5元,买5米要用多少元?
学生独立完成,同时指名演板。订正的提问:
(1)列式时依据的数量关系是什么?
(2)"6.5×5"表示的意义是什么?
(3)你是怎样小数乘以整数的?
二、新课教学
1.教学一个数乘以小数的意义。
(1)出示例2花布每米6.5元,买0.5米和0.82米各用多少元?
(2)指名读题后提问:根据求总价的数量关系式你会列式吗?
0.5米的总价:6.5×0.5
0.82米的总价:6.5×0.82
(3)投影例2的线段图,教师结合图示讲解:0.5米是1米的十分之五,所以"6.5×0.5"表示求6.5的十分之五。
提问:你能说?quot;6.5×0.82"表示什么吗?"80×0.125"又表示什么呢?
(4)概括一个数乘以小数的意义。
提问:①上面三个算式的乘数有什么特点?
②概括地说一个数乘以小数表示的意义是什么?
教师小结:一个数乘以小数的意义是求这个数的十分之几,百分之几,千分之几……
③省略号的意思是什么?你能举一例加以说明吗?
(5)说出下面算式所表示的意义。
8.75×0.08 750×0.2
2.教学小数乘法的计算。
(1)提问:你能把"6.5×0.5"转化为学过的旧知识来计算吗?说说你是怎样想的。
(2)学生试算,指名演板。
(3)集体讲解。要求学生说明积中为什么有两位小数。
(4)放手让学生计算"6.5×0.82"。
订正时重点强调怎样确定积的小数位数。并向学生说明积里小数末尾的"0"应划去。
(5)小结计算法则。
提问:①计算小数乘法,先按什么方法算积?
②积里的小数位数与因数中小数位数有什么关系?
③你能总结出小数乘法的计算法则吗?
学生回答后教师小结,学生齐说一遍。
(6)做一做。
67×0.3 2.14×6.2
3.新课小结。
提问:(1)这节课学习了哪些内容?
(2)一个数乘以小数的意义是什么?怎样计算小数乘法?
三、巩固练习
完成练习一的第5、6、8、9题。
练习第5题时注重加强小数乘以整数与一个数乘以小数的意义的比较。
四、课堂作业
完成练习一的第7题。
五、指导学生看书质疑
《小数的近似数》一文就此结束,希望能帮助您在小学教学中起到作用,如还需更多,请关注我们的“小学小数的教案”专题。
文章来源:http://m.jab88.com/j/7715.html
更多