教案课件是每个老师工作中上课需要准备的东西,是认真规划好自己教案课件的时候了。只有规划好教案课件工作计划,才能更好地安排接下来的工作!究竟有没有好的适合教案课件的范文?为此,小编从网络上为大家精心整理了《《点与圆的位置关系》教案设计》,欢迎阅读,希望您能阅读并收藏。
《点与圆的位置关系》教案设计
一、内容和内容解析
1.内容
探究点与圆的位置关系;过不在同一直线上的三点画圆;三角形的外心;反正法的逻辑关系。
2.内容解析
点与圆的位置关系在圆的知识体系中有着非常重要的地位,它为后面直线与圆的位置关系学习作好铺垫。
本节课,主要是从探究点与圆的位置出发,从而引出经过一个点、两个点、三个点画圆。在经过三个点画圆在探究中引出三角形外心的概念,以及反证法的证明思路。而知识的应用是检验学习效果的关键。
基于以上分析,本节课的教学重点是:了解点与圆的位置关系,并能通过d与r的数量关系进行判断;会经过不在同一条直线上在三点用尺规作画圆;知道三角形外心的概念,以及外心是三角形三边垂直平分线的交点这一结论,并能进行简单应用。
二、目标和目标解析
1.目标
1)探究并了解点与圆的位置关系。
2)用尺规作图:过不在同一直线上的三点画圆。
3)知道什么是三角形的外心。
4)感知反证法的逻辑思路。
5)经历实验、证明的过程,培养学生分析、解决问题的能力,以及逻辑思维能力,进一步提高学生的数学学科素养。
2.目标解析
目标(1)的具体要求是:通过实验及归纳,知道点与圆的三种位置关系,并能通过d与r的数量关系进行判断。
目标(2)的具体要求是:会利用尺规作图:过不在同一直线上的三点画圆。或是画三角形的外接圆,找残缺圆的圆心。
目标(3)的具体要求是:知道三角形外心的概念,以及外心是三角形三边垂直平分线的交点这一结论,并能进行简单应用。
目标(4)的具体要求是:了解反证法的证明思路,会确定一个命题结论的反面。
目标(5)的具体要求是:让学生通过参与、观察、讨论的形式,经历猜想、验证、实验、证明的过程,共同探究点与圆的位置关系,过点画圆等问题,培养学生分析、解决问题的能力,以及逻辑思维能力,进一步关注学生的数学学科素养的培养。
三、教学问题诊断分析
对于九年级的学生而言,经过实验探究很容易得到点与圆的三种位置关系以及会用d与r的数量关系进行表示,知识的应用也不会有太多的问题,过三点画圆也是对以往知识的应用。但是对三角形外心及应用会和以往的知识混淆,而产成错误。另外反证法的证明思路学生初次接触不易理解,教师应该重点解读。
基于以上分析,本节课的教学难点是:三角形的外心及应用;反证法的证明思路的理解。
《圆与圆的位置关系》导学案
学习目标
了解圆与圆之间的几种位置关系;经历探索两个圆之间位置关系的过程,训练的探索能力;通过平移实验直观地探索圆和圆的位置关系,发展的识图能力和动手操作能力.
教学重点难点探索圆与圆之间的几种位置关系
教学过程
一创设情境,引发探究
1点与圆的位置关系2直线与圆的位置关系
点与圆的位置关系
点到圆心的距离d与半径r的数量关系
点在圆内
点在圆上
点在圆外
直线与圆的位置关系
相交
相离
相切
公共点个数
公共点名称
集体备课5.1《圆与圆的位置关系》
直线名称
d与r的关系
3我们已经研究过点和圆的位置关系,分别为点在圆内、点在圆上、点在圆外三种;还探究了直线和圆的位置关系,分别为相离、相切、相交.它们的位置关系都有三种.今天我们要学习的内容是圆和圆的位置关系,那么结果是不是也是三种呢?没有集体备课5.1《圆与圆的位置关系》调查就没有发言权
在纸上画一个半径为3cm的⊙O1,把一枚硬币平放在纸上作为另一个圆,将这枚硬币向圆不断移动:观察硬币的运动过程,思考两圆公共点的个数在如何变化?
集体备课5.1《圆与圆的位置关系》
4根据观察给出有关概念类似于前面集体备课5.1《圆与圆的位置关系》点与圆、直线与圆的位置关系,在五种位置关系中,两圆的圆心距d与两圆的半径R、r(R>r)间有什么关系?
位置d与两圆的半径R、r关系公共点的个数集体备课5.1《圆与圆的位置关系》
集体备课5.1《圆与圆的位置关系》(1)外离_________集体备课5.1《圆与圆的位置关系》_____________________________________集体备课5.1《圆与圆的位置关系》_________________
集体备课5.1《圆与圆的位置关系》2)外切________________________________________________________________
集体备课5.1《圆与圆的位置关系》(3)相交______________________________________________集体备课5.1《圆与圆的位置关系》_________________
集体备课5.1《圆与圆的位置关系》(4)内切_______集体备课5.1《圆与圆的位置关系》集体备课5.1《圆与圆的位置关系》________________________________________________________
集体备课5.1《圆与圆的位置关系》(5)内含_____________________________集体备课5.1《圆与圆的位置关系》__________________________________
二、巩固练习:
1、举出一些能表示两个圆不同位置关系的实例。
2、⊙O1和⊙O2的半径分别为3厘米和4厘米,若
(集体备课5.1《圆与圆的位置关系》1)O1O2=8厘米;(2)O1O2=7厘米;(3)O1O2=5厘米;
(4)O1O2=1厘米;(5)O集体备课5.1《圆与圆的位置关系》1O2=0.5厘米;(6)O1和O2重合。
⊙O1和⊙O2的位置关系怎样?
三、例题讲解
例1如图⊙O的半径为5cm,点P是⊙O外一点,OP=8cm。若以P为圆心作⊙P与⊙O相切,求⊙P的半径?
例2两圆的半径之比为5:3,集体备课5.1《圆与圆的位置关系》当两圆相切时,圆心距为8cm,求两圆的半径?
四、课后检测:
1.⊙O1的半径为4,⊙O2的半径为2,两圆的圆心距为1,则两圆的位置关系是()A.内含集体备课5.1《圆与圆的位置关系》B.内切C.相交D.外切
2.若两圆没有公共点,则两圆的位置关系为———————————————()
A.只有外离B.只有内含C.相切D.外离或内含
3.已知两圆圆心距是7,两圆半径分别是方程x2-6x+8=0的两根,那么这两圆的位置关系是A.内切B.外切C.相交D.外离--------------------------------()
4.两圆内切圆心距等于2cm,一个圆的半径等于6cm,则另一个圆半径是———()
A.10cmB.4cmC.8cmD.4cm或8cm
5.两圆半径分别是R和r(Rr),其圆心距为d,若R2+d2-r2=2Rd,则两圆位置关集体备课5.1《圆与圆的位置关系》系是A.内切B.外切C.内切或外切D.相交-----------------------------()
6.已知O1与O2的半径分别为R,r(Rr),圆心距为d,且两圆相交,判定关于x的一元二次方程x2—2(d—R)x+r2=0根的情况
7.⊙O1与⊙O2的圆心O1、O2的坐标分别是O1(3,0)、O2(0,4),两圆的半径分别
是R=8,r=2,判断⊙O1与⊙O2的位置关系
一般给学生们上课之前,老师就早早地准备好了教案课件,到写教案课件的时候了。我们制定教案课件工作计划,才能更好地安排接下来的工作!你们清楚教案课件的范文有哪些呢?下面是小编精心为您整理的“点和圆的位置关系”,仅供参考,欢迎大家阅读。
点和圆的位置关系
教学目标
(一)教学知识点
了解不在同一条直线上的三个点确定一个圆,以及过不在同一条直线上的三个点作圆的方法,了解三角形的外接圆、三角形的外心等概念.
(二)能力训练要求
1.经历不在同一条直线上的三个点确定一个圆的探索过程,培养学生的探索能力.
2.通过探索不在同一条直线上的三个点确定一个圆的问题,进一步体会解决数学问题的策略.
(三)情感与价值观要求
1.形成解决问题的一些基本策略,体验解决问题策略的多样性,发展实践能力与创新精神.
2.学会与人合作,并能与他人交流思维的过程和结果.
教学重点
1.经历不在同一条直线上的三个点确定一个圆的探索过程,并能掌握这个结论.
2.掌握过不在同一条直线上的三个点作圆的方法.
3.了解三角形的外接圆、三角形的外心等概念.
教学难点
经历不在同一条直线上的三个点确定一个圆的探索过程,并能过不在同一条直线上的三个点作圆.
教学方法
教师指导学生自主探索交流法.
教具准备
投影片三张
第一张:(记作§3.4A)
第二张:(记作§3.4B)
第三张:(记作§3.4C)
教学过程
Ⅰ.创设问题情境,引入新课
[师]我们知道经过一点可以作无数条直线,经过两点只能作一条直线.那么,经过一点能作几个圆?经过两点、三点……呢?本节课我们将进行有关探索.
Ⅱ.新课讲解
1.回忆及思考
投影片(§3.4A)
1.线段垂直平分线的性质及作法.
2.作圆的关键是什么?
[生]1.线段垂直平分线的性质是:线段垂直平分线上的点到线段两端点的距离相等.
作法:如下图,分别以A、B为圆心,以大于AB长为半径画弧,在AB的两侧找出两交点C、D,作直线CD,则直线CD就是线段AB的垂直平分线,直线CD上的任一点到A与B的距离相等.
[师]我们知道圆的定义是:平面上到定点的距离等于定长的所有点组成的图形叫做圆.定点即为圆心,定长即为半径.根据定义大家觉得作圆的关键是什么?
[生]由定义可知,作圆的问题实质上就是圆心和半径的问题.因此作圆的关键是确定圆心和半径的大小.确定了圆心和半径,圆就随之确定.
2.做一做(投影片§3.4B)
(1)作圆,使它经过已知点A,你能作出几个这样的圆?
(2)作圆,使它经过已知点A、B.你是如何作的?你能作出几个这样的圆?其圆心的分布有什么特点?与线段AB有什么关系?为什么?
(3)作圆,使它经过已知点A、B、C(A、B、C三点不在同一条直线上).你是如何作的?你能作出几个这样的圆?
[师]根据刚才我们的分析已知,作圆的关键是确定圆心和半径,下面请大家互相交换意见并作出解答.
[生](1)因为作圆实质上是确定圆心和半径,要经过已知点A作圆,只要圆心确定下来,半径就随之确定了下来.所以以点A以外的任意一点为圆心,以这一点与点A所连的线段为半径就可以作一个圆.由于圆心是任意的.因此这样的圆有无数个.如图(1).
(2)已知点A、B都在圆上,它们到圆心的距离都等于半径.因此圆心到A、B的距离相等.根据前面提到过的线段的垂直平分线的性质可知,线段的垂直平分线上的点到线段两端点的距离相等,则圆心应在线段AB的垂直平分线上.在AB的垂直平分线上任意取一点,都能满足到A、B两点的距离相等,所以在AB的垂直平分线上任取一点都可以作为圆心,这点到A的距离即为半径.圆就确定下来了.由于线段AB的垂直平分线上有无数点,因此有无数个圆心,作出的圆有无数个.如图(2).
(3)要作一个圆经过A、B、C三点,就是要确定一个点作为圆心,使它到三点的距离相等.因为到A、B两点距离相等的点的集合是线段AB的垂直平分线,到B、C两点距离相等的点的集合是线段BC的垂直平分线,这两条垂直平分线的交点满足到A、B、C三点的距离相等,就是所作圆的圆心.
因为两条直线的交点只有一个,所以只有一个圆心,即只能作出一个满足条件的圆.
[师]大家的分析很有道理,究竟应该怎样找圆心呢?
3.过不在同一条直线上的三点作圆.
投影片(§3.4C)
作法图示
1.连结AB、BC
2.分别作AB、BC的垂直
平分线DE和FG,DE和
FG相交于点O
3.以O为圆心,OA为半径作圆
⊙O就是所要求作的圆[
他作的圆符合要求吗?与同伴交流.
[生]符合要求.
因为连结AB,作AB的垂直平分线ED,则ED上任意一点到A、B的距离相等;连结BC,作BC的垂直平分线FG,则FG上的任一点到B、C的距离相等.ED与FG的满足条件.
[师]由上可知,过已知一点可作无数个圆.过已知两点也可作无数个圆,过不在同一条直线上的三点可以作一个圆,并且只能作一个圆.
不在同一直线上的三个点确定一个圆.
4.有关定义
由上可知,经过三角形的三个顶点可以作一个圆,这个圆叫做三角形的外接圆(circumcircleoftriangle),这个三角形叫这个圆的内接三角形.
外接圆的圆心是三角形三边垂直平分线的交点,叫做三角形的外心(circumcenter).
Ⅲ.课堂练习
已知锐角三角形、直角三角形、钝角三角形,分别作出它们的外接圆,它们外心的位置有怎样的特点?
解:如下图.
O为外接圆的圆心,即外心.
锐角三角形的外心在三角形的内部,直角三角形的外心在斜边上,钝角三角形的外心在三角形的外部.
Ⅳ.课时小结
本节课所学内容如下:
1.经历不在同一条直线上的三个点确定一个圆的探索过程.
方法.
3.了解三角形的外接圆,三角形的外心等概念.
Ⅴ.课后作业
习题3.6
Ⅵ.活动与探究
如下图,CD所在的直线垂直平分线段AB.怎样使用这样的工具找到圆形工件的圆心?
解:因为A、B两点在圆上,所以圆心必与A、B两点的距离相等,又因为和一条线段的两个端点距离相等的点在这条线段的垂直平分线上,所以圆心在CD所在的直线上.因此使用这样的工具可以作出圆形工件的任意两条直径.它们的交点就是圆心.
文章来源:http://m.jab88.com/j/76665.html
更多