一般给学生们上课之前,老师就早早地准备好了教案课件,大家在认真准备自己的教案课件了吧。只有规划好新的教案课件工作,新的工作才会更顺利!你们知道哪些教案课件的范文呢?下面是小编精心为您整理的“数学竞赛平面几何讲座:注意添加平行线证题”,大家不妨来参考。希望您能喜欢!
第一讲注意添加平行线证题
在同一平面内,不相交的两条直线叫平行线.平行线是初中平面几何最基本的,也是非常重要的图形.在证明某些平面几何问题时,若能依据证题的需要,添加恰当的平行线,则能使证明顺畅、简洁.
添加平行线证题,一般有如下四种情况.
1为了改变角的位置
大家知道,两条平行直线被第三条直线所截,同位角相等,内错角相等,同旁内角互补.利用这些性质,常可通过添加平行线,将某些角的位置改变,以满足求解的需要.
例1设P、Q为线段BC上两点,且BP=CQ,
A为BC外一动点(如图1).当点A运动到使
∠BAP=∠CAQ时,△ABC是什么三角形?试
证明你的结论.
答:当点A运动到使∠BAP=∠CAQ时,△ABC为等腰三角形.
证明:如图1,分别过点P、B作AC、AQ的平行线得交点D.连结DA.
在△DBP=∠AQC中,显然
∠DBP=∠AQC,∠DPB=∠C.
由BP=CQ,可知
△DBP≌△AQC.
有DP=AC,∠BDP=∠QAC.
于是,DA∥BP,∠BAP=∠BDP.
则A、D、B、P四点共圆,且四边形ADBP为等腰梯形.故AB=DP.
所以AB=AC.
这里,通过作平行线,将∠QAC“平推”到∠BDP的位置.由于A、D、B、P四点共圆,使证明很顺畅.
例2如图2,四边形ABCD为平行四边形,
∠BAF=∠BCE.求证:∠EBA=∠ADE.
证明:如图2,分别过点A、B作ED、EC
的平行线,得交点P,连PE.
由ABCD,易知△PBA≌△ECD.有
PA=ED,PB=EC.
显然,四边形PBCE、PADE均为平行四边形.有
∠BCE=∠BPE,∠APE=∠ADE.
由∠BAF=∠BCE,可知
∠BAF=∠BPE.
有P、B、A、E四点共圆.
于是,∠EBA=∠APE.
所以,∠EBA=∠ADE.
这里,通过添加平行线,使已知与未知中的四个角通过P、B、A、E四点共圆,紧密联系起来.∠APE成为∠EBA与∠ADE相等的媒介,证法很巧妙.
2欲“送”线段到当处
利用“平行线间距离相等”、“夹在平行线间的平行线段相等”这两条,常可通过添加平行线,将某些线段“送”到恰当位置,以证题.
例3在△ABC中,BD、CE为角平分线,P为ED上任意一点.过P分别作AC、AB、BC的垂线,M、N、Q为垂足.求证:
PM+PN=PQ.
证明:如图3,过点P作AB的平行线交BD
于F,过点F作BC的平行线分别交PQ、AC
于K、G,连PG.
由BD平行∠ABC,可知点F到AB、BC
两边距离相等.有KQ=PN.
显然,==,可知PG∥EC.
由CE平分∠BCA,知GP平分∠FGA.有PK=PM.于是,
PM+PN=PK+KQ=PQ.
这里,通过添加平行线,将PQ“掐开”成两段,证得PM=PK,就有PM+PN=PQ.证法非常简捷.
3为了线段比的转化
由于“平行于三角形一边的直线截其它两边,所得对应线段成比例”,在一些问题中,可以通过添加平行线,实现某些线段比的良性转化.这在平面几何证题中是会经常遇到的.
例4设M1、M2是△ABC的BC边上的点,且BM1=CM2.任作一直线分别交AB、AC、AM1、AM2于P、Q、N1、N2.试证:
+=+.
证明:如图4,若PQ∥BC,易证结论成立.
若PQ与BC不平行,设PQ交直线BC
于D.过点A作PQ的平行线交直线BC于
E.
由BM1=CM2,可知BE+CE=M1E+
M2E,易知
=,=,
=,=.
则+===+.
所以,+=+.
这里,仅仅添加了一条平行线,将求证式中的四个线段比“通分”,使公分母为DE,于是问题迎刃而解.
例5AD是△ABC的高线,K为AD上一点,BK交AC于E,CK交AB于F.求证:∠FDA=∠EDA.
证明:如图5,过点A作BC的平行线,分
别交直线DE、DF、BE、CF于Q、P、
N、M.
显然,==.
有BDAM=DCAN.(1)
由==,有
AP=.(2)
由==,有
AQ=.(3)
对比(1)、(2)、(3)有
AP=AQ.
显然AD为PQ的中垂线,故AD平分∠PDQ.
所以,∠FDA=∠EDA.
这里,原题并未涉及线段比,添加BC的平行线,就有大量的比例式产生,恰当地运用这些比例式,就使AP与AQ的相等关系显现出来.
4为了线段相等的传递
当题目给出或求证某点为线段中点时,应注意到平行线等分线段定理,用平行线将线段相等的关系传递开去.
例6在△ABC中,AD是BC边上的中线,点M在AB边上,点N在AC边上,并且∠MDN=90°.如果BM2+CN2=DM2+DN2,求证:AD2=(AB2+AC2).
证明:如图6,过点B作AC的平行线交ND
延长线于E.连ME.
由BD=DC,可知ED=DN.有
△BED≌△CND.
于是,BE=NC.
显然,MD为EN的中垂线.有
EM=MN.
由BM2+BE2=BM2+NC2=MD2+DN2=MN2=EM2,可知△BEM为直角三角形,∠MBE=90°.有
∠ABC+∠ACB
=∠ABC+∠EBC=90°.
于是,∠BAC=90°.
所以,AD2==(AB2+AC2).
这里,添加AC的平行线,将BC的以D为中点的性质传递给EN,使解题找到出路.
例7如图7,AB为半圆直径,D为AB上一点,
分别在半圆上取点E、F,使EA=DA,FB=DB.
过D作AB的垂线,交半圆于C.求证:CD平
分EF.
证明:如图7,分别过点E、F作AB的垂线,G、H为垂足,连FA、EB.易知
DB2=FB2=ABHB,
AD2=AE2=AGAB.
二式相减,得
DB2-AD2=AB(HB-AG),
或(DB-AD)AB=AB(HB-AG).
于是,DB-AD=HB-AG,
或DB-HB=AD-AG.
就是DH=GD.
显然,EG∥CD∥FH.
故CD平分EF.
这里,为证明CD平分EF,想到可先证CD平分GH.为此添加CD的两条平行线EG、FH,从而得到G、H两点.证明很精彩.
经过一点的若干直线称为一组直线束.
一组直线束在一条直线上截得的线段相等,在该直线的平行直线上截得的线段也相等.
如图8,三直线AB、AN、AC构成一组直线束,DE是与BC平行的直线.于是,有
=
=,
即=或=.
此式表明,DM=ME的充要条件是
BN=NC.
利用平行线的这一性质,解决某些线段相等的问题会很漂亮.
例8如图9,ABCD为四边形,两组对边延长
后得交点E、F,对角线BD∥EF,AC的延长
线交EF于G.求证:EG=GF.
证明:如图9,过C作EF的平行线分别交AE、
AF于M、N.由BD∥EF,可知MN∥BD.易知
S△BEF=S△DEF.
有S△BEC=S△ⅡKG-*5ⅡDFC.
可得MC=CN.
所以,EG=GF.
例9如图10,⊙O是△ABC的边BC外的旁
切圆,D、E、F分别为⊙O与BC、CA、AB
的切点.若OD与EF相交于K,求证:AK平
分BC.
证明:如图10,过点K作BC的行平线分别
交直线AB、AC于Q、P两点,连OP、OQ、
OE、OF.
由OD⊥BC,可知OK⊥PQ.
由OF⊥AB,可知O、K、F、Q四点共圆,有
∠FOQ=∠FKQ.
由OE⊥AC,可知O、K、P、E四点共圆.有
∠EOP=∠EKP.
显然,∠FKQ=∠EKP,可知
∠FOQ=∠EOP.
由OF=OE,可知
Rt△OFQ≌Rt△OEP.
则OQ=OP.
于是,OK为PQ的中垂线,故
QK=KP.
所以,AK平分BC.
综上,我们介绍了平行线在平面几何问题中的应用.同学们在实践中应注意适时添加平行线,让平行线在平面几何证题中发挥应有的作用.
练习题
1.四边形ABCD中,AB=CD,M、N分别为AD、BC的中点,延长BA交直线NM于E,延长CD交直线NM于F.求证:∠BEN=∠CFN.
(提示:设P为AC的中点,易证PM=PN.)
2.设P为△ABC边BC上一点,且PC=2PB.已知∠ABC=45°,∠APC=60°.求∠ACB.
(提示:过点C作PA的平行线交BA延长线于点D.易证△ACD∽△PBA.答:75°)
3.六边开ABCDEF的各角相等,FA=AB=BC,∠EBD=60°,S△EBD=60cm2.求六边形ABCDEF的面积.
(提示:设EF、DC分别交直线AB于P、Q,过点E作DC的平行线交AB于点M.所求面积与EMQD面积相等.答:120cm2)
4.AD为Rt△ABC的斜边BC上的高,P是AD的中点,连BP并延长交AC于E.已知AC:AB=k.求AE:EC.
(提示:过点A作BC的平行线交BE延长线于点F.设BC=1,有AD=k,DC=k2.答:)
5.AB为半圆直径,C为半圆上一点,CD⊥AB于D,E为DB上一点,过D作CE的垂线交CB于F.求证:=.
(提示:过点F作AB的平行线交CE于点H.H为△CDF的垂心.)
6.在△ABC中,∠A:∠B:∠C=4:2:1,∠A、∠B、∠C的对边分别为a、b、c.求证:+=.
(提示:在BC上取一点D,使AD=AB.分别过点B、C作AD的平行线交直线CA、BA于点E、F.)
7.分别以△ABC的边AC和BC为一边在△ABC外作正方形ACDE和CBFG,点P是EF的中点.求证:P点到边AB的距离是AB的一半.
8.△ABC的内切圆分别切BC、CA、AB于点D、E、F,过点F作BC的平行线分别交直线DA、DE于点H、G.求证:FH=HG.
(提示:过点A作BC的平行线分别交直线DE、DF于点M、N.)
9.AD为⊙O的直径,PD为⊙O的切线,PCB为⊙O的割线,PO分别交AB、AC于点M、N.求证:OM=ON.
(提示:过点C作PM的平行线分别交AB、AD于点E、F.过O作BP的垂线,G为垂足.AB∥GF.)
老师工作中的一部分是写教案课件,大家应该要写教案课件了。只有制定教案课件工作计划,可以更好完成工作任务!你们到底知道多少优秀的教案课件呢?小编特地为您收集整理“数学竞赛平面几何讲座:讲巧添辅助妙解竞赛题”,欢迎阅读,希望您能够喜欢并分享!
第二讲巧添辅助妙解竞赛题
在某些数学竞赛问题中,巧妙添置辅助圆常可以沟通直线形和圆的内在联系,通过圆的有关性质找到解题途径.下面举例说明添置辅助圆解初中数学竞赛题的若干思路.
1挖掘隐含的辅助圆解题
有些问题的题设或图形本身隐含着“点共圆”,此时若能把握问题提供的信息,恰当补出辅助圆,并合理挖掘图形隐含的性质,就会使题设和结论的逻辑关系明朗化.
1.1作出三角形的外接圆
例1如图1,在△ABC中,AB=AC,D是底边BC
上一点,E是线段AD上一点且∠BED=2∠CED=
∠A.求证:BD=2CD.
分析:关键是寻求∠BED=2∠CED与结论的联系.
容易想到作∠BED的平分线,但因BE≠ED,故不能
直接证出BD=2CD.若延长AD交△ABC的外接圆
于F,则可得EB=EF,从而获取.
证明:如图1,延长AD与△ABC的外接圆相交于点F,连结CF与BF,则∠BFA=∠BCA=∠ABC=∠AFC,即∠BFD=∠CFD.故BF:CF=BD:DC.
又∠BEF=∠BAC,∠BFE=∠BCA,从而∠FBE=∠ABC=∠ACB=∠BFE.
故EB=EF.
作∠BEF的平分线交BF于G,则BG=GF.
因∠GEF=∠BEF=∠CEF,∠GFE=∠CFE,故△FEG≌△FEC.从而GF=FC.
于是,BF=2CF.故BD=2CD.
1.2利用四点共圆
例2凸四边形ABCD中,∠ABC=60°,∠BAD=
∠BCD=90°,
AB=2,CD=1,对角线AC、BD交于点O,如图2.
则sin∠AOB=____.
分析:由∠BAD=∠BCD=90°可知A、B、C、D
四点共圆,欲求sin∠AOB,联想到托勒密定理,只须求出BC、AD即可.
解:因∠BAD=∠BCD=90°,故A、B、C、D四点共圆.延长BA、CD交于P,则∠ADP=∠ABC=60°.
设AD=x,有AP=x,DP=2x.由割线定理得(2+x)x=2x(1+2x).解得AD=x=2-2,BC=BP=4-.
由托勒密定理有
BDCA=(4-)(2-2)+2×1=10-12.
又SABCD=S△ABD+S△BCD=.
故sin∠AOB=.
例3已知:如图3,AB=BC=CA=AD,AH
⊥CD于H,CP⊥BC,CP交AH于P.求证:
△ABC的面积S=APBD.
分析:因S△ABC=BC2=ACBC,只
须证ACBC=APBD,转化为证△APC∽△BCD.这由A、B、C、Q四点共圆易证(Q为BD与AH交点).
证明:记BD与AH交于点Q,则由AC=AD,AH⊥CD得∠ACQ=∠ADQ.
又AB=AD,故∠ADQ=∠ABQ.
从而,∠ABQ=∠ACQ.可知A、B、C、Q四点共圆.
∵∠APC=90°+∠PCH=∠BCD,∠CBQ=∠CAQ,
∴△APC∽△BCD.
∴ACBC=APBD.
于是,S=ACBC=APBD.
2构造相关的辅助圆解题
有些问题貌似与圆无关,但问题的题设或结论或图形提供了某些与圆的性质相似的信息,此时可大胆联想构造出与题目相关
的辅助圆,将原问题转化为与圆有关的问题加以解决.
2.1联想圆的定义构造辅助圆
例4如图4,四边形ABCD中,AB∥CD,AD=DC
=DB=p,BC=q.求对角线AC的长.
分析:由“AD=DC=DB=p”可知A、B、C在
半径为p的⊙D上.利用圆的性质即可找到AC与
p、q的关系.
解:延长CD交半径为p的⊙D于E点,连结AE.
显然A、B、C在⊙D上.
∵AB∥CD,
∴BC=AE.
从而,BC=AE=q.
在△ACE中,∠CAE=90°,CE=2p,AE=q,故
AC==.
2.2联想直径的性质构造辅助圆
例5已知抛物线y=-x2+2x+8与x轴交于B、C两点,点D平分BC.若在x轴上侧的A点为抛物线上的动点,且∠BAC为锐角,则AD的取值范围是____.
分析:由“∠BAC为锐角”可知点A在以定线段BC为直径的圆外,又点A在x轴上侧,从而可确定动点A的范围,进而确定AD的取值范围.
解:如图5,所给抛物线的顶点为A0(1,9),
对称轴为x=1,与x轴交于两点B(-2,0)、
C(4,0).
分别以BC、DA为直径作⊙D、⊙E,则
两圆与抛物线均交于两点P(1-2,1)、
Q(1+2,1).
可知,点A在不含端点的抛物线PA0Q
内时,∠BAC<90°.且有3=DP=DQ<AD
≤DA0=9,即AD的取值范围是3<AD≤9.
2.3联想圆幂定理构造辅助圆
例6AD是Rt△ABC斜边BC上的高,∠B的平行线交AD于M,交AC于N.求证:AB2-AN2=BMBN.
分析:因AB2-AN2=(AB+AN)(AB-AN)=BMBN,而由题设易知AM=AN,联想割线定理,构造辅助圆即可证得结论.
证明:如图6,
∵∠2+∠3=∠4+∠5=90°,
又∠3=∠4,∠1=∠5,
∴∠1=∠2.从而,AM=AN.
以AM长为半径作⊙A,交AB于F,交
BA的延长线于E.则AE=AF=AN.
由割线定理有
BMBN=BFBE
=(AB+AE)(AB-AF)
=(AB+AN)(AB-AN)
=AB2-AN2,
即AB2-AN2=BMBN.
例7如图7,ABCD是⊙O的内接四边形,延长AB和DC相交于E,延长AB和DC相交于E,延长AD和BC相交于F,EP和FQ分别切⊙O于P、Q.求证:EP2+FQ2=EF2.
分析:因EP和FQ是⊙O的切线,由结论联想到切割线定理,构造辅助圆使EP、FQ向EF转化.
证明:如图7,作△BCE的外接圆交EF于G,连
结CG.
因∠FDC=∠ABC=∠CGE,故F、D、C、
G四点共圆.
由切割线定理,有
EF2=(EG+GF)EF
=EGEF+GFEF
=ECED+FCFB
=ECED+FCFB
=EP2+FQ2,
即EP2+FQ2=EF2.
2.4联想托勒密定理构造辅助圆
例8如图8,△ABC与△A'B'
C'的三边分别为a、b、c与a'、
b'、c',且∠B=∠B',∠A+∠A
'=180°.试证:aa'=bb'+cc'.
分析:因∠B=∠B',∠A+∠A'
=180°,由结论联想到托勒密定理,构造圆内接四边形加以证明.
证明:作△ABC的外接圆,过C作CD∥AB交圆于D,连结AD和BD,如图9所示.
∵∠A+∠A'=180°=∠A+∠D,
∠BCD=∠B=∠B',
∴∠A'=∠D,∠B'=∠BCD.
∴△A'B'C'∽△DCB.
有==,
即==.
故DC=,DB=.
又AB∥DC,可知BD=AC=b,BC=AD=a.
从而,由托勒密定理,得
ADBC=ABDC+ACBD,
即a2=c+b.
故aa'=bb'+cc'.
练习题
1.作一个辅助圆证明:△ABC中,若AD平分∠A,则=.
(提示:不妨设AB≥AC,作△ADC的外接圆交AB于E,证△ABC∽△DBE,从而==.)
2.已知凸五边形ABCDE中,∠BAE=3a,BC=CD=DE,∠BCD=∠CDE=180°-2a.求证:∠BAC=∠CAD=∠DAE.
(提示:由已知证明∠BCE=∠BDE=180°-3a,从而A、B、C、D、E共圆,得∠BAC=∠CAD=∠DAE.)
3.在△ABC中AB=BC,∠ABC=20°,在AB边上取一点M,使BM=AC.求∠AMC的度数.
(提示:以BC为边在△ABC外作正△KBC,连结KM,证B、M、C共圆,从而∠BCM=∠BKM=10°,得∠AMC=30°.)
4.如图10,AC是ABCD较长的对角线,过C作
CF⊥AF,CE⊥AE.求证:ABAE+ADAF=AC2.
(提示:分别以BC和CD为直径作圆交AC于点
G、H.则CG=AH,由割线定理可证得结论.)
5.如图11.已知⊙O1和⊙O2相交于A、B,直线
CD过A交⊙O1和⊙O2于C、D,且AC=AD,EC、ED分别切两圆于C、D.求证:AC2=ABAE.
(提示:作△BCD的外接圆⊙O3,延长BA交⊙O3
于F,证E在⊙O3上,得△ACE≌△ADF,从而AE
=AF,由相交弦定理即得结论.)
6.已知E是△ABC的外接圆之劣弧BC的中点.
求证:ABAC=AE2-BE2.
(提示:以BE为半径作辅助圆⊙E,交AE及其延长线于N、M,由△ANC∽△ABM证ABAC=ANAM.)
7.若正五边形ABCDE的边长为a,对角线长为b,试证:-=1.
(提示:证b2=a2+ab,联想托勒密定理作出五边形的外接圆即可证得.)
教案课件是老师上课中很重要的一个课件,大家正在计划自己的教案课件了。各行各业都在开始准备新的教案课件工作计划了,未来工作才会更有干劲!你们知道多少范文适合教案课件?以下是小编为大家精心整理的“数学竞赛平面几何讲座:三角形的五心”,仅供参考,欢迎大家阅读。
第五讲三角形的五心
三角形的外心、重心、垂心、内心及旁心,统称为三角形的五心.
一、外心.
三角形外接圆的圆心,简称外心.与外心关系密切的有圆心角定理和圆周角定理.
例1.过等腰△ABC底边BC上一点P引PM∥CA交AB于M;引PN∥BA交AC于N.作点P关于MN的对称点P′.试证:P′点在△ABC外接圆上.
分析:由已知可得MP′=MP=MB,NP′=NP
=NC,故点M是△P′BP的外心,点
N是△P′PC的外心.有
∠BP′P=∠BMP=∠BAC,
∠PP′C=∠PNC=∠BAC.
∴∠BP′C=∠BP′P+∠P′PC=∠BAC.
从而,P′点与A,B,C共圆、即P′在△ABC外接圆上.
由于P′P平分∠BP′C,显然还有
P′B:P′C=BP:PC.
例2.在△ABC的边AB,BC,CA上分别取点P,Q,S.证明以△APS,△BQP,△CSQ的外心为顶点的三角形与△ABC相似.
分析:设O1,O2,O3是△APS,△BQP,
△CSQ的外心,作出六边形
O1PO2QO3S后再由外
心性质可知
∠PO1S=2∠A,
∠QO2P=2∠B,
∠SO3Q=2∠C.
∴∠PO1S+∠QO2P+∠SO3Q=360°.从而又知∠O1PO2+
∠O2QO3+∠O3SO1=360°
将△O2QO3绕着O3点旋转到△KSO3,易判断△KSO1≌△O2PO1,同时可得△O1O2O3≌△O1KO3.
∴∠O2O1O3=∠KO1O3=∠O2O1K
=(∠O2O1S+∠SO1K)
=(∠O2O1S+∠PO1O2)
=∠PO1S=∠A;
同理有∠O1O2O3=∠B.故△O1O2O3∽△ABC.
二、重心
三角形三条中线的交点,叫做三角形的重心.掌握重心将每
条中线都分成定比2:1及中线长度公式,便于解题.
例3.AD,BE,CF是△ABC的三条中线,P是任意一点.证明:在△PAD,△PBE,△PCF中,其中一个面积等于另外两个面积的和.
分析:设G为△ABC重心,直线PG与AB
,BC相交.从A,C,D,E,F分别
作该直线的垂线,垂足为A′,C′,
D′,E′,F′.
易证AA′=2DD′,CC′=2FF′,2EE′=AA′+CC′,
∴EE′=DD′+FF′.
有S△PGE=S△PGD+S△PGF.
两边各扩大3倍,有S△PBE=S△PAD+S△PCF.
例4.如果三角形三边的平方成等差数列,那么该三角形和由它的三条中线围成的新三角形相似.其逆亦真.
分析:将△ABC简记为△,由三中线AD,BE,CF围成的三角形简记为△′.G为重心,连DE到H,使EH=DE,连HC,HF,则△′就是△HCF.
(1)a2,b2,c2成等差数列△∽△′.
若△ABC为正三角形,易证△∽△′.
不妨设a≥b≥c,有
CF=,
BE=,
AD=.
将a2+c2=2b2,分别代入以上三式,得
CF=,BE=,AD=.
∴CF:BE:AD=::
=a:b:c.
故有△∽△′.
(2)△∽△′a2,b2,c2成等差数列.
当△中a≥b≥c时,
△′中CF≥BE≥AD.
∵△∽△′,
∴=()2.
据“三角形的三条中线围成的新三角形面积等于原三角形面积的”,有=.
∴=3a2=4CF2=2a2+b2-c2
a2+c2=2b2.
三、垂心
三角形三条高的交战,称为三角形的垂心.由三角形的垂心造成的四个等(外接)圆三角形,给我们解题提供了极大的便利.
例5.设A1A2A3A4为⊙O内接四边形,H1,H2,H3,H4依次为
△A2A3A4,△A3A4A1,△A4A1A2,△A1A2A3的垂心.求证:H1,H2,H3,H4四点共圆,并确定出该圆的圆心位置.
分析:连接A2H1,A1H2,H1H2,记圆半径
为R.由△A2A3A4知
=2RA2H1=2Rcos∠A3A2A4;
由△A1A3A4得
A1H2=2Rcos∠A3A1A4.
但∠A3A2A4=∠A3A1A4,故A2H1=A1H2.
易证A2H1∥A1A2,于是,A2H1A1H2,
故得H1H2A2A1.设H1A1与H2A2的交点为M,故H1H2与A1A2关于M点成中心对称.
同理,H2H3与A2A3,H3H4与A3A4,H4H1与A4A1都关于M点成中心对称.故四边形H1H2H3H4与四边形A1A2A3A4关于M点成中心对称,两者是全等四边形,H1,H2,H3,H4在同一个圆上.后者的圆心设为Q,Q与O也关于M成中心对称.由O,M两点,Q点就不难确定了.
例6.H为△ABC的垂心,D,E,F分别是BC,CA,AB的中心.一个以H为圆心的⊙H交直线EF,FD,DE于A1,A2,B1,B2,C1,C2.
求证:AA1=AA2=BB1=BB2=CC1=CC2.
分析:只须证明AA1=BB1=CC1即可.设
BC=a,CA=b,AB=c,△ABC外
接圆半径为R,⊙H的半径为r.
连HA1,AH交EF于M.
A=AM2+A1M2=AM2+r2-MH2
=r2+(AM2-MH2),①
又AM2-HM2=(AH1)2-(AH-AH1)2
=AHAH1-AH2=AH2AB-AH2
=cosAbc-AH2,②
而=2RAH2=4R2cos2A,
=2Ra2=4R2sin2A.
∴AH2+a2=4R2,AH2=4R2-a2.③
由①、②、③有
A=r2+bc-(4R2-a2)
=(a2+b2+c2)-4R2+r2.
同理,=(a2+b2+c2)-4R2+r2,
=(a2+b2+c2)-4R2+r2.
故有AA1=BB1=CC1.
四、内心
三角形内切圆的圆心,简称为内心.对于内心,要掌握张角公式,还要记住下面一个极为有用的等量关系:
设I为△ABC的内心,射线AI交△ABC外接圆于A′,则有A′I=A′B=A′C.换言之,点A′必是△IBC之外心(内心的等量关系之逆同样有用).
例7.ABCD为圆内接凸四边形,取
△DAB,△ABC,△BCD,
△CDA的内心O1,O2,O3,
O4.求证:O1O2O3O4为矩形.
(1986,中国数学奥林匹克集训题)
证明见《中等数学》1992;4
例8.已知⊙O内接△ABC,⊙Q切AB,AC于E,F且与⊙O内切.试证:EF中点P是△ABC之内心.
分析:在第20届IMO中,美国提供的一道题实际上是例8的一种特例,但它增加了条件AB=AC.当AB≠AC,怎样证明呢?
如图,显然EF中点P、圆心Q,BC中点K都在∠BAC平分线上.易知AQ=.
∵QKAQ=MQQN,
∴QK=
==.
由Rt△EPQ知PQ=.
∴PK=PQ+QK=+=.
∴PK=BK.
利用内心等量关系之逆定理,即知P是△ABC这内心.
五、旁心
三角形的一条内角平分线与另两个内角的外角平分线相交于
一点,是旁切圆的圆心,称为旁心.旁心常常与内心联系在一起,
旁心还与三角形的半周长关系密切.
例9.在直角三角形中,求证:r+ra+rb+rc=2p.
式中r,ra,rb,rc分别表示内切圆半径及与a,b,c相切的旁切圆半径,p表示半周.
分析:设Rt△ABC中,c为斜边,先来证明一个特性:
p(p-c)=(p-a)(p-b).
∵p(p-c)=(a+b+c)(a+b-c)
=[(a+b)2-c2]
=ab;
(p-a)(p-b)=(-a+b+c)(a-b+c)
=[c2-(a-b)2]=ab.
∴p(p-c)=(p-a)(p-b).①
观察图形,可得
ra=AF-AC=p-b,
rb=BG-BC=p-a,
rc=CK=p.
而r=(a+b-c)
=p-c.
∴r+ra+rb+rc
=(p-c)+(p-b)+(p-a)+p
=4p-(a+b+c)=2p.
由①及图形易证.
例10.M是△ABC边AB上的任意一点.r1,r2,r分别是△AMC,△BMC,△ABC内切圆的半径,q1,q2,q分别是上述三角形在∠ACB内部的旁切圆半径.证明:=.
(IMO-12)
分析:对任意△A′B′C′,由正弦定理可知
OD=OA′
=A′B′
=A′B′,
O′E=A′B′.
∴.
亦即有
=
==.
六、众心共圆
这有两种情况:(1)同一点却是不同三角形的不同的心;(2)同一图形出现了同一三角形的几个心.
例11.设在圆内接凸六边形ABCDFE中,AB=BC,CD=DE,EF=FA.试证:(1)AD,BE,CF三条对角线交于一点;
(2)AB+BC+CD+DE+EF+FA≥AK+BE+CF.
分析:连接AC,CE,EA,由已知可证AD,CF,EB是△ACE的三条内角平分线,I为△ACE的内心.从而有ID=CD=DE,
IF=EF=FA,
IB=AB=BC.
再由△BDF,易证BP,DQ,FS是它的三条高,I是它的垂心,利用不等式有:
BI+DI+FI≥2(IP+IQ+IS).
不难证明IE=2IP,IA=2IQ,IC=2IS.
∴BI+DI+FI≥IA+IE+IC.
∴AB+BC+CD+DE+EF+FA
=2(BI+DI+FI)
≥(IA+IE+IC)+(BI+DI+FI)
=AD+BE+CF.
I就是一点两心.
例12.△ABC的外心为O,AB=AC,D是AB中点,E是△ACD的重心.证明OE丄CD.
分析:设AM为高亦为中线,取AC中点
F,E必在DF上且DE:EF=2:1.设
CD交AM于G,G必为△ABC重心.
连GE,MF,MF交DC于K.易证:
DG:GK=DC:()DC=2:1.
∴DG:GK=DE:EFGE∥MF.
∵OD丄AB,MF∥AB,
∴OD丄MFOD丄GE.但OG丄DEG又是△ODE之垂心.
易证OE丄CD.
例13.△ABC中∠C=30°,O是外心,I是内心,边AC上的D点与边BC上的E点使得AD=BE=AB.求证:OI丄DE,OI=DE.
分析:辅助线如图所示,作∠DAO平分线交BC于K.
易证△AID≌△AIB≌△EIB,
∠AID=∠AIB=∠EIB.
利用内心张角公式,有
∠AIB=90°+∠C=105°,
∴∠DIE=360°-105°×3=45°.
∵∠AKB=30°+∠DAO
=30°+(∠BAC-∠BAO)
=30°+(∠BAC-60°)
=∠BAC=∠BAI=∠BEI.
∴AK∥IE.
由等腰△AOD可知DO丄AK,
∴DO丄IE,即DF是△DIE的一条高.
同理EO是△DIE之垂心,OI丄DE.
由∠DIE=∠IDO,易知OI=DE.
例14.锐角△ABC中,O,G,H分别是外心、重心、垂心.设外心到三边距离和为d外,重心到三边距
离和为d重,垂心到三边距离和为d垂.
求证:1d垂+2d外=3d重.
分析:这里用三角法.设△ABC外接圆
半径为1,三个内角记为A,B,
C.易知d外=OO1+OO2+OO3
=cosA+cosB+cosC,
∴2d外=2(cosA+cosB+cosC).①
∵AH1=sinBAB=sinB(2sinC)=2sinBsinC,
同样可得BH2CH3.
∴3d重=△ABC三条高的和
=2(sinBsinC+sinCsinA+sinAsinB)②
∴=2,
∴HH1=cosCBH=2cosBcosC.
同样可得HH2,HH3.
∴d垂=HH1+HH2+HH3
=2(cosBcosC+cosCcosA+cosAcosB)③
欲证结论,观察①、②、③,
须证(cosBcosC+cosCcosA+cosAcosB)+(cosA+cosB+cosC)=sinBsinC+sinCsinA+sinAsinB.即可.
练习题
1.I为△ABC之内心,射线AI,BI,CI交△ABC外接圆于A′,
B′,C′.则AA′+BB′+CC′>△ABC周长.
2.△T′的三边分别等于△T的三条中线,且两个三角形有一组角相等.求证这两个三角形相似.
3.I为△ABC的内心.取△IBC,△ICA,△IAB的外心O1,O2,O3.求证:△O1O2O3与△ABC有公共的外心.(
4.AD为△ABC内角平分线.取△ABC,△ABD,△ADC的外心O,O1,O2.则△OO1O2是等腰三角形.
5.△ABC中∠C<90°,从AB上M点作CA,CB的垂线MP,MQ.H是△CPQ的垂心.当M是AB上动点时,求H的轨迹.(IMO-7)
6.△ABC的边BC=(AB+AC),取AB,AC中点M,N,G为重心,I为内心.试证:过A,M,N三点的圆与直线GI相切.
7.锐角△ABC的垂心关于三边的对称点分别是H1,H2,H3.已知:H1,H2,H3,求作△ABC.
8.已知△ABC的三个旁心为I1,I2,I3.求证:△I1I2I3是锐角三角形.
9.AB,AC切⊙O于B,C,过OA与BC的交点M任作⊙O的弦EF.求证:(1)△AEF与△ABC有公共的内心;(2)△AEF与△ABC有一个旁心重合.
文章来源:http://m.jab88.com/j/75874.html
更多